Exact Mass: 787.63257

Exact Mass Matches: 787.63257

Found 500 metabolites which its exact mass value is equals to given mass value 787.63257, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PC(18:0/18:1(9Z))

(2R)-3-(Octadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propyl 2-(trimethylammonio)ethyl phosphoric acid

C44H86NO8P (787.6090726)


PC(18:0/18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:0/18:1(9Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of oleic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(14:0/22:1(13Z))

1-tetradecanoyl-2-(13Z-docosenoyl)-sn-glycero-3-phosphocholine

C44H86NO8P (787.6090726)


PC(14:0/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/22:1(13Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of erucic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(14:0/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/22:1(13Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of erucic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(14:1(9Z)/22:0)

(2-{[(2R)-2-(docosanoyloxy)-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C44H86NO8P (787.6090726)


PC(14:1(9Z)/22:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:1(9Z)/22:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of behenic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(16:0/20:1(11Z))

(2-{[(2R)-3-(hexadecanoyloxy)-2-[(11Z)-icos-11-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C44H86NO8P (787.6090726)


PC(16:0/20:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/20:1(11Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(16:1(9Z)/20:0)

(2-{[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-(icosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C44H86NO8P (787.6090726)


PC(16:1(9Z)/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:1(9Z)/20:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:0/18:1(11Z))

trimethyl(2-{[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C44H86NO8P (787.6090726)


PC(18:0/18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:0/18:1(11Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:1(11Z)/18:0)

trimethyl(2-{[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C44H86NO8P (787.6090726)


PC(18:1(11Z)/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(11Z)/18:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of stearic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:1(11Z)/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(11Z)/18:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of stearic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:1(9Z)/18:0)

trimethyl(2-{[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C44H86NO8P (787.6090726)


PC(18:1(9Z)/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(9Z)/18:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of stearic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:1(9Z)/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(9Z)/18:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of stearic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:0/16:1(9Z))

(2-{[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-(icosanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C44H86NO8P (787.6090726)


PC(20:0/16:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:0/16:1(9Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(20:1(11Z)/16:0)

(2-{[(2R)-2-(hexadecanoyloxy)-3-[(11Z)-icos-11-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C44H86NO8P (787.6090726)


PC(20:1(11Z)/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:1(11Z)/16:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:0/14:1(9Z))

(2-{[(2R)-3-(docosanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C44H86NO8P (787.6090726)


PC(22:0/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:0/14:1(9Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:1(13Z)/14:0)

(2-{[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C44H86NO8P (787.6090726)


PC(22:1(13Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:1(13Z)/14:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of myristic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PE(15:0/24:1(15Z))

(2-aminoethoxy)[(2R)-3-(pentadecanoyloxy)-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE(15:0/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/24:1(15Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(15:0/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/24:1(15Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(22:0/P-18:0)

(2-aminoethoxy)[(2R)-3-(docosanoyloxy)-2-[(1Z)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C45H90NO7P (787.645456)


PE(22:0/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:0/P-18:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(24:0/P-16:0)

(2-aminoethoxy)[(2R)-2-[(1Z)-hexadec-1-en-1-yloxy]-3-(tetracosanoyloxy)propoxy]phosphinic acid

C45H90NO7P (787.645456)


PE(24:0/P-16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:0/P-16:0), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(24:1(15Z)/15:0)

(2-aminoethoxy)[(2R)-2-(pentadecanoyloxy)-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE(24:1(15Z)/15:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:1(15Z)/15:0), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(P-16:0/24:0)

(2-aminoethoxy)[(2R)-3-[(1Z)-hexadec-1-en-1-yloxy]-2-(tetracosanoyloxy)propoxy]phosphinic acid

C45H90NO7P (787.645456)


PE(P-16:0/24:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/24:0), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of lignoceric acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the lignoceric acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(P-18:0/22:0)

(2-aminoethoxy)[(2R)-2-(docosanoyloxy)-3-[(1Z)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C45H90NO7P (787.645456)


PE(P-18:0/22:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/22:0), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of behenic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:0/22:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/22:0), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of behenic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(14:0/24:1(15Z))

[2-(methylamino)ethoxy]({2-[(15Z)-tetracos-15-enoyloxy]-3-(tetradecanoyloxy)propoxy})phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(14:0/24:1(15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:0/24:1(15Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(14:1(9Z)/24:0)

[2-(methylamino)ethoxy][2-(tetracosanoyloxy)-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(14:1(9Z)/24:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:1(9Z)/24:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:0/22:1(13Z))

PE-NMe(16:0/22:1(13Z))

C44H86NO8P (787.6090726)


PE-NMe(16:0/22:1(13Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:0/22:1(13Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:1(9Z)/22:0)

[2-(docosanoyloxy)-3-[(9Z)-hexadec-9-enoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(16:1(9Z)/22:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:1(9Z)/22:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of behenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:0/20:1(11Z))

{2-[(11Z)-icos-11-enoyloxy]-3-(octadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(18:0/20:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:0/20:1(11Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(11Z)/20:0)

[2-(icosanoyloxy)-3-[(11Z)-octadec-11-enoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(18:1(11Z)/20:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(11Z)/20:0), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(9Z)/20:0)

[2-(icosanoyloxy)-3-[(9Z)-octadec-9-enoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(18:1(9Z)/20:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(9Z)/20:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:0/18:1(11Z))

[3-(icosanoyloxy)-2-[(11Z)-octadec-11-enoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(20:0/18:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:0/18:1(11Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:0/18:1(9Z))

[3-(icosanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(20:0/18:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:0/18:1(9Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of oleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:1(11Z)/18:0)

{3-[(11Z)-icos-11-enoyloxy]-2-(octadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(20:1(11Z)/18:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:1(11Z)/18:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:0/16:1(9Z))

[3-(docosanoyloxy)-2-[(9Z)-hexadec-9-enoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(22:0/16:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:0/16:1(9Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:1(13Z)/16:0)

{3-[(13Z)-docos-13-enoyloxy]-2-(hexadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(22:1(13Z)/16:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:1(13Z)/16:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(24:0/14:1(9Z))

[2-(methylamino)ethoxy][3-(tetracosanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(24:0/14:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(24:0/14:1(9Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(24:1(15Z)/14:0)

[2-(methylamino)ethoxy]({3-[(15Z)-tetracos-15-enoyloxy]-2-(tetradecanoyloxy)propoxy})phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe(24:1(15Z)/14:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(24:1(15Z)/14:0), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(15:0/22:1(13Z))

[2-(dimethylamino)ethoxy]({2-[(13Z)-docos-13-enoyloxy]-3-(pentadecanoyloxy)propoxy})phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe2(15:0/22:1(13Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(15:0/22:1(13Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:1(13Z)/15:0)

[2-(dimethylamino)ethoxy]({3-[(13Z)-docos-13-enoyloxy]-2-(pentadecanoyloxy)propoxy})phosphinic acid

C44H86NO8P (787.6090726)


PE-NMe2(22:1(13Z)/15:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:1(13Z)/15:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   
   

Phosphatidylcholine 18:0-18:1

Phosphatidylcholine 18:0-18:1

C44H86NO8P (787.6090726)


   

Acanthacerebroside C

Acanthacerebroside C

C44H85NO10 (787.617315)


   

PC 36:1

1-(11Z-octadecenoyl)-2-octadecanoyl-sn-glycero-3-phosphocholine

C44H86NO8P (787.6090726)


Found in mouse brain; TwoDicalId=66; MgfFile=160720_brain_EPA_08_Neg; MgfId=1487

   

trimethyl(2-{[2-[octadec-9-enoyloxy]-3-(octadecanoyloxy)propyl phosphono]oxy}ethyl)azanium

trimethyl(2-{[2-[octadec-9-enoyloxy]-3-(octadecanoyloxy)propyl phosphono]oxy}ethyl)azanium

C44H86NO8P (787.6090726)


   

PC 18:0/18:1(9Z)

PC 18:0/18:1(9Z)

C44H86NO8P (787.6090726)


FRAGMENTATION_MODE is Hydrogen Abstraction Dissociation (HAD); MALDI generates [M+H]+ ion, which is dissociated by the reaction with hydrogen radical (H*) generated by microwave-driven radical generator.; This mass spectral data is shown in Figure 1(B) of the publication.; The instrument consists of QIT-TOF where Q selects [M+H]+ ion, IT is an ion trap chamber for the reaction of HAD, and TOF analyzes the product ions.; The sample was injected by direct infusion of methanol solution.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.; The lipid standard was purchased from Avanti Polar Lipids (Alabaster, AL).

   

PC(16:0/20:1)[U]

3,5,8-Trioxa-4-phosphaoctacos-19-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxohexadecyl)oxy]menthyl]-, inner salt, 4-oxide,

C44H86NO8P (787.6090726)


   

PC(18:0/18:1)[U]

3,5,9-Trioxa-4-phosphaheptacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxo-16-octadecenyl)oxy]-, inner salt, 4-oxide, (Z)-

C44H86NO8P (787.6090726)


   

PC(18:0/18:1)

3,5,9-Trioxa-4-phosphaheptacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxo-16-octadecenyl)oxy]-, inner salt, 4-oxide, [R-(Z)]-

C44H86NO8P (787.6090726)


   

PC(18:0/18:1)[S]

Choline, hydroxide, dihydrogen phosphate, inner salt, ester with 1-stearo-2-olein, L-

C44H86NO8P (787.6090726)


   

PC(18:1/18:0)[U]

3,5,8-Trioxa-4-phosphaoctacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxo-9-hexadecenyl)oxy]methyl]-, inner salt, 4-oxide

C44H86NO8P (787.6090726)


   

PC(20:1/16:0)[U]

3,5,9-Trioxa-4-phosphanonacos-20-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[(1-oxohexadecyl)oxy]-, inner salt, 4-oxide,

C44H86NO8P (787.6090726)


   

Lecithin

1-arachidonyl-2-palmitoleoyl-sn-glycero-3-phosphocholine

C44H86NO8P (787.6090726)


   

PE(39:1)

1-Nervonoyl-2-pentadecanoyl-sn-glycero-3-phosphoethanolamine

C44H86NO8P (787.6090726)


   

PE(40:0)

1-(1-Enyl-palmitoyl)-2-lignoceroyl-sn-glycero-3-phosphoethanolamine

C45H90NO7P (787.645456)


   

PC(14:0/22:1(11Z))

1-tetradecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphocholine

C44H86NO8P (787.6090726)


   

PC(15:1(9Z)/21:0)

1-(9Z-pentadecenoyl)-2-heneicosanoyl-glycero-3-phosphocholine

C44H86NO8P (787.6090726)


   

PC(17:0/19:1(9Z))

1-heptadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphocholine

C44H86NO8P (787.6090726)


   

PC(17:1(9Z)/19:0)

1-(9Z-heptadecenoyl)-2-nonadecanoyl-glycero-3-phosphocholine

C44H86NO8P (787.6090726)


   

PC(19:0/17:1(9Z))

1-nonadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C44H86NO8P (787.6090726)


   

PC(19:1(9Z)/17:0)

1-(9Z-nonadecenoyl)-2-heptadecanoyl-glycero-3-phosphocholine

C44H86NO8P (787.6090726)


   

PC(21:0/15:1(9Z))

1-heneicosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C44H86NO8P (787.6090726)


   

PC(22:1(11Z)/14:0)

1-(11Z-docosenoyl)-2-tetradecanoyl-glycero-3-phosphocholine

C44H86NO8P (787.6090726)


   

PC(O-18:0/19:1(9Z))

1-octadecyl-2-(9Z-nonadecenoyl)-glycero-3-phosphocholine

C45H90NO7P (787.645456)


   

PC(O-20:0/17:1(9Z))

1-eicosyl-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C45H90NO7P (787.645456)


   

PC(P-16:0/21:0)

1-(1Z-hexadecenyl)-2-heneicosanoyl-glycero-3-phosphocholine

C45H90NO7P (787.645456)


   

PC(P-18:0/19:0)

1-(1Z-octadecenyl)-2-nonadecanoyl-glycero-3-phosphocholine

C45H90NO7P (787.645456)


   

PC(P-20:0/17:0)

1-(1Z-eicosenyl)-2-heptadecanoyl-glycero-3-phosphocholine

C45H90NO7P (787.645456)


   

PE(17:0/22:1(11Z))

1-heptadecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphoethanolamine

C44H86NO8P (787.6090726)


   

PE(17:1(9Z)/22:0)

1-(9Z-heptadecenoyl)-2-docosanoyl-glycero-3-phosphoethanolamine

C44H86NO8P (787.6090726)


   

PE(18:1(9Z)/21:0)

1-(9Z-octadecenoyl)-2-heneicosanoyl-glycero-3-phosphoethanolamine

C44H86NO8P (787.6090726)


   

PE(19:0/20:1(11Z))

1-nonadecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

C44H86NO8P (787.6090726)


   

PE(19:1(9Z)/20:0)

1-(9Z-nonadecenoyl)-2-eicosanoyl-glycero-3-phosphoethanolamine

C44H86NO8P (787.6090726)


   

PE(20:0/19:1(9Z))

1-eicosanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C44H86NO8P (787.6090726)


   

PE(20:1(11Z)/19:0)

1-(11Z-eicosenoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C44H86NO8P (787.6090726)


   

PE(21:0/18:1(9Z))

1-heneicosanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphoethanolamine

C44H86NO8P (787.6090726)


   

PE(22:0/17:1(9Z))

1-docosanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

C44H86NO8P (787.6090726)


   

PE(22:1(11Z)/17:0)

1-(11Z-docosenoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C44H86NO8P (787.6090726)


   

PE(O-18:0/22:1(11Z))

1-octadecyl-2-(11Z-docosenoyl)-glycero-3-phosphoethanolamine

C45H90NO7P (787.645456)


   

PE(O-20:0/20:1(11Z))

1-eicosyl-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

C45H90NO7P (787.645456)


   

PE(P-20:0/20:0)

1-(1Z-eicosenyl)-2-eicosanoyl-glycero-3-phosphoethanolamine

C45H90NO7P (787.645456)


   

PC O-37:1

1-(1Z-hexadecenyl)-2-heneicosanoyl-glycero-3-phosphocholine

C45H90NO7P (787.645456)


   

PE 39:1

1-heneicosanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphoethanolamine

C44H86NO8P (787.6090726)


   

PE O-40:1

1-(1Z-octadecenyl)-2-docosanoyl-glycero-3-phosphoethanolamine

C45H90NO7P (787.645456)


   

HexCer 38:1;O4

N-(2R-hydroxyicosanoyl)-1-beta-glucosyl-4R-hydroxy-8Z-octadecasphingenine

C44H85NO10 (787.617315)


   

1-Steroyl-2-oleoylphosphatidylcholine

1-Steroyl-2-oleoylphosphatidylcholine

C44H86NO8P (787.6090726)


   

PE-NMe(16:0/22:1(13Z))

PE-NMe(16:0/22:1(13Z))

C44H86NO8P (787.6090726)


   
   

N-docosanoyl-1-O-beta-D-glucosyl-4-hydroxy-15-methylhexadecasphinganine

N-docosanoyl-1-O-beta-D-glucosyl-4-hydroxy-15-methylhexadecasphinganine

C45H89NO9 (787.6536984)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] docosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] docosanoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-docos-13-enoate

C45H90NO7P (787.645456)


   

[3-hexadecanoyloxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecanoyloxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   
   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (Z)-tetracont-29-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (Z)-tetracont-29-enoate

C45H90NO7P (787.645456)


   

HexCer 16:0;2O/23:0;O

HexCer 16:0;2O/23:0;O

C45H89NO9 (787.6536984)


   

HexCer 21:0;2O/18:0;O

HexCer 21:0;2O/18:0;O

C45H89NO9 (787.6536984)


   

HexCer 22:0;2O/17:0;O

HexCer 22:0;2O/17:0;O

C45H89NO9 (787.6536984)


   

HexCer 17:0;2O/22:0;O

HexCer 17:0;2O/22:0;O

C45H89NO9 (787.6536984)


   

HexCer 18:0;2O/21:0;O

HexCer 18:0;2O/21:0;O

C45H89NO9 (787.6536984)


   

[3-nonoxy-2-[(Z)-octacos-17-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-nonoxy-2-[(Z)-octacos-17-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

HexCer 19:0;2O/20:0;O

HexCer 19:0;2O/20:0;O

C45H89NO9 (787.6536984)


   

HexCer 20:0;2O/19:0;O

HexCer 20:0;2O/19:0;O

C45H89NO9 (787.6536984)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

HexCer 9:0;3O/29:1;(2OH)

HexCer 9:0;3O/29:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 8:0;3O/30:1;(2OH)

HexCer 8:0;3O/30:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 13:0;3O/25:1;(2OH)

HexCer 13:0;3O/25:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 12:1;3O/26:0;(2OH)

HexCer 12:1;3O/26:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 10:0;3O/28:1;(2OH)

HexCer 10:0;3O/28:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 12:0;3O/26:1;(2OH)

HexCer 12:0;3O/26:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 13:1;3O/25:0;(2OH)

HexCer 13:1;3O/25:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 11:0;3O/27:1;(2OH)

HexCer 11:0;3O/27:1;(2OH)

C44H85NO10 (787.617315)


   

[2-nonanoyloxy-3-[(Z)-octacos-17-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-nonanoyloxy-3-[(Z)-octacos-17-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxydocos-4-ene-1-sulfonic acid

(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxydocos-4-ene-1-sulfonic acid

C48H85NO5S (787.6148119999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] tetradecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] tetradecanoate

C45H90NO7P (787.645456)


   

(4E,8E,12E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxyhexacosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxyhexacosa-4,8,12-triene-1-sulfonic acid

C48H85NO5S (787.6148119999999)


   

(4E,8E,12E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxydocosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxydocosa-4,8,12-triene-1-sulfonic acid

C48H85NO5S (787.6148119999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (Z)-icos-11-enoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (Z)-octadec-9-enoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] (Z)-heptadec-9-enoate

C45H90NO7P (787.645456)


   

(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyhexacos-4-ene-1-sulfonic acid

(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyhexacos-4-ene-1-sulfonic acid

C48H85NO5S (787.6148119999999)


   

(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyhexacosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyhexacosa-4,8-diene-1-sulfonic acid

C48H85NO5S (787.6148119999999)


   

(4E,8E,12E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]tetracosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]tetracosa-4,8,12-triene-1-sulfonic acid

C48H85NO5S (787.6148119999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-henicos-11-enoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (Z)-octacos-17-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (Z)-octacos-17-enoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexacosoxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexacosoxypropan-2-yl] (Z)-tetradec-9-enoate

C45H90NO7P (787.645456)


   

3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tetracosane-1-sulfonic acid

3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tetracosane-1-sulfonic acid

C48H85NO5S (787.6148119999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentacosoxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentacosoxypropan-2-yl] (Z)-pentadec-9-enoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] hexadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] hexadecanoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octacos-17-enoxy]propan-2-yl] dodecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octacos-17-enoxy]propan-2-yl] dodecanoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptacosoxypropan-2-yl] (Z)-tridec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptacosoxypropan-2-yl] (Z)-tridec-9-enoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] tricosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] tricosanoate

C45H90NO7P (787.645456)


   

2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyhexacosane-1-sulfonic acid

2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyhexacosane-1-sulfonic acid

C48H85NO5S (787.6148119999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] heptacosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] heptacosanoate

C45H90NO7P (787.645456)


   

(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]tetracosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]tetracosa-4,8-diene-1-sulfonic acid

C48H85NO5S (787.6148119999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] octadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] octadecanoate

C45H90NO7P (787.645456)


   

(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]tetracos-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]tetracos-4-ene-1-sulfonic acid

C48H85NO5S (787.6148119999999)


   

2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxydocosane-1-sulfonic acid

2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxydocosane-1-sulfonic acid

C48H85NO5S (787.6148119999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] nonadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] nonadecanoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] pentacosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] pentacosanoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] henicosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] henicosanoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] icosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] icosanoate

C45H90NO7P (787.645456)


   

(4E,8E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxydocosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxydocosa-4,8-diene-1-sulfonic acid

C48H85NO5S (787.6148119999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] (Z)-hexadec-9-enoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (Z)-nonadec-9-enoate

C45H90NO7P (787.645456)


   

[2-tetracosanoyloxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-tetracosanoyloxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[2-[(Z)-tetracos-13-enoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-tetracos-13-enoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[3-nonadecoxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-nonadecoxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[3-docosoxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-docosoxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[3-heptadecoxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecoxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[2-docosanoyloxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-docosanoyloxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[3-henicosoxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-henicosoxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[3-[(Z)-tetracos-13-enoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-tetracos-13-enoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[3-[(Z)-henicos-11-enoxy]-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-henicos-11-enoxy]-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[2-[(Z)-docos-13-enoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-docos-13-enoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[3-[(Z)-heptadec-9-enoxy]-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-heptadec-9-enoxy]-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[3-[(Z)-docos-13-enoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-docos-13-enoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[2-[(Z)-tetradec-9-enoyl]oxy-3-tricosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-tetradec-9-enoyl]oxy-3-tricosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[2-heptadecanoyloxy-3-[(Z)-icos-11-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptadecanoyloxy-3-[(Z)-icos-11-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-icosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-icosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[2-[(Z)-hexacos-15-enoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexacos-15-enoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[3-[(Z)-hexacos-15-enoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-hexacos-15-enoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[3-[(Z)-nonadec-9-enoxy]-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-nonadec-9-enoxy]-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[3-tetracosoxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-tetracosoxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-octacos-17-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-octacos-17-enoate

C44H86NO8P (787.6090726)


   

Cer 16:0;2O/16:5;(3OH)(FA 19:5)

Cer 16:0;2O/16:5;(3OH)(FA 19:5)

C51H81NO5 (787.6114415999999)


   

Cer 16:0;2O/19:5;(3OH)(FA 16:5)

Cer 16:0;2O/19:5;(3OH)(FA 16:5)

C51H81NO5 (787.6114415999999)


   

Cer 19:0;2O/16:5;(3OH)(FA 16:5)

Cer 19:0;2O/16:5;(3OH)(FA 16:5)

C51H81NO5 (787.6114415999999)


   

Cer 15:0;2O/20:5;(3OH)(FA 16:5)

Cer 15:0;2O/20:5;(3OH)(FA 16:5)

C51H81NO5 (787.6114415999999)


   

Cer 15:0;2O/18:5;(3OH)(FA 18:5)

Cer 15:0;2O/18:5;(3OH)(FA 18:5)

C51H81NO5 (787.6114415999999)


   

Cer 14:0;2O/19:5;(3OH)(FA 18:5)

Cer 14:0;2O/19:5;(3OH)(FA 18:5)

C51H81NO5 (787.6114415999999)


   

Cer 15:0;2O/20:6;(3OH)(FA 16:4)

Cer 15:0;2O/20:6;(3OH)(FA 16:4)

C51H81NO5 (787.6114415999999)


   

Cer 17:0;2O/16:5;(3OH)(FA 18:5)

Cer 17:0;2O/16:5;(3OH)(FA 18:5)

C51H81NO5 (787.6114415999999)


   

Cer 14:0;2O/18:5;(3OH)(FA 19:5)

Cer 14:0;2O/18:5;(3OH)(FA 19:5)

C51H81NO5 (787.6114415999999)


   

Cer 17:0;2O/18:5;(3OH)(FA 16:5)

Cer 17:0;2O/18:5;(3OH)(FA 16:5)

C51H81NO5 (787.6114415999999)


   

Cer 14:0;2O/21:5;(3OH)(FA 16:5)

Cer 14:0;2O/21:5;(3OH)(FA 16:5)

C51H81NO5 (787.6114415999999)


   

Cer 15:0;2O/16:5;(3OH)(FA 20:5)

Cer 15:0;2O/16:5;(3OH)(FA 20:5)

C51H81NO5 (787.6114415999999)


   

Cer 14:0;2O/16:5;(3OH)(FA 21:5)

Cer 14:0;2O/16:5;(3OH)(FA 21:5)

C51H81NO5 (787.6114415999999)


   

Cer 15:0;2O/16:4;(3OH)(FA 20:6)

Cer 15:0;2O/16:4;(3OH)(FA 20:6)

C51H81NO5 (787.6114415999999)


   

4-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2,3-bis[[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

4-[2,3-bis[[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(Z)-icos-11-enoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(Z)-icos-11-enoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(Z)-docos-13-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(Z)-docos-13-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-dodecanoyloxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-dodecanoyloxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-docosanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-docosanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-icosanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-icosanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

HexCer 23:1;3O/15:0;(2OH)

HexCer 23:1;3O/15:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 22:1;3O/16:0;(2OH)

HexCer 22:1;3O/16:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 24:0;3O/14:1;(2OH)

HexCer 24:0;3O/14:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 17:0;3O/21:1;(2OH)

HexCer 17:0;3O/21:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 21:1;3O/17:0;(2OH)

HexCer 21:1;3O/17:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 15:1;3O/23:0;(2OH)

HexCer 15:1;3O/23:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 14:0;3O/24:1;(2OH)

HexCer 14:0;3O/24:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 26:0;3O/12:1;(2OH)

HexCer 26:0;3O/12:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 22:0;3O/16:1;(2OH)

HexCer 22:0;3O/16:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 14:1;3O/24:0;(2OH)

HexCer 14:1;3O/24:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 19:1;3O/19:0;(2OH)

HexCer 19:1;3O/19:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 20:1;3O/18:0;(2OH)

HexCer 20:1;3O/18:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 25:0;3O/13:1;(2OH)

HexCer 25:0;3O/13:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 24:1;3O/14:0;(2OH)

HexCer 24:1;3O/14:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 19:0;3O/19:1;(2OH)

HexCer 19:0;3O/19:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 18:0;3O/20:1;(2OH)

HexCer 18:0;3O/20:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 26:1;3O/12:0;(2OH)

HexCer 26:1;3O/12:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 17:1;3O/21:0;(2OH)

HexCer 17:1;3O/21:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 16:0;3O/22:1;(2OH)

HexCer 16:0;3O/22:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 23:0;3O/15:1;(2OH)

HexCer 23:0;3O/15:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 18:1;3O/20:0;(2OH)

HexCer 18:1;3O/20:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 16:1;3O/22:0;(2OH)

HexCer 16:1;3O/22:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 20:0;3O/18:1;(2OH)

HexCer 20:0;3O/18:1;(2OH)

C44H85NO10 (787.617315)


   

HexCer 25:1;3O/13:0;(2OH)

HexCer 25:1;3O/13:0;(2OH)

C44H85NO10 (787.617315)


   

HexCer 15:0;3O/23:1;(2OH)

HexCer 15:0;3O/23:1;(2OH)

C44H85NO10 (787.617315)


   

[2-henicosanoyloxy-3-[(Z)-hexadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-henicosanoyloxy-3-[(Z)-hexadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-tetracos-13-enoate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] tetracosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] tetracosanoate

C45H90NO7P (787.645456)


   

[2-[(Z)-nonadec-9-enoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-nonadec-9-enoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-hexacos-15-enoate

C45H90NO7P (787.645456)


   

[3-[(Z)-tetradec-9-enoxy]-2-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-tetradec-9-enoxy]-2-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] hexacosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] hexacosanoate

C45H90NO7P (787.645456)


   

[2-nonadecanoyloxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-nonadecanoyloxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[2-[(Z)-henicos-11-enoyl]oxy-3-hexadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-henicos-11-enoyl]oxy-3-hexadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-triacont-19-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-triacont-19-enoate

C44H86NO8P (787.6090726)


   

[2-[(Z)-octacos-17-enoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-octacos-17-enoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] hexacosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] hexacosanoate

C44H86NO8P (787.6090726)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] pentacosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] pentacosanoate

C44H86NO8P (787.6090726)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (Z)-icos-11-enoate

C44H86NO8P (787.6090726)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (Z)-docos-13-enoate

C44H86NO8P (787.6090726)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] tricosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] tricosanoate

C44H86NO8P (787.6090726)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] tetracosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] tetracosanoate

C44H86NO8P (787.6090726)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-heptadec-9-enoyl]oxypropyl] docosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-heptadec-9-enoyl]oxypropyl] docosanoate

C44H86NO8P (787.6090726)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

C44H86NO8P (787.6090726)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

C44H86NO8P (787.6090726)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] icosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] icosanoate

C44H86NO8P (787.6090726)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (Z)-henicos-11-enoate

C44H86NO8P (787.6090726)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] henicosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] henicosanoate

C44H86NO8P (787.6090726)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexadec-9-enoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[3-dodecanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[2-[(9Z,11E)-13-hydroxyoctadeca-9,11-dienoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,11E)-13-hydroxyoctadeca-9,11-dienoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[3-decanoyloxy-2-[(Z)-hexacos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(Z)-hexacos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[2-[(E)-10-hydroxyoctadec-12-enoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(E)-10-hydroxyoctadec-12-enoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[2-[10-(3-hexyloxiran-2-yl)decanoyloxy]-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[10-(3-hexyloxiran-2-yl)decanoyloxy]-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[2-[(Z)-docos-13-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-docos-13-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[3-octadecoxy-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-octadecoxy-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[3-tricosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-tricosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[3-docosanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-docosanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[2-[(Z)-henicos-11-enoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-henicos-11-enoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[3-heptadecanoyloxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecanoyloxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[3-henicosanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-henicosanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[(2R)-3-decanoyloxy-2-[(E)-hexacos-5-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-decanoyloxy-2-[(E)-hexacos-5-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,14E)-hexacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,14E)-hexacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2R)-2-octadecanoyloxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-octadecanoyloxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[(2R)-3-octadecanoyloxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-octadecanoyloxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] henicosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] henicosanoate

C44H86NO8P (787.6090726)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] pentacosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] pentacosanoate

C44H86NO8P (787.6090726)


   

4-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-tetracos-15-enoate

C44H86NO8P (787.6090726)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] docosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] docosanoate

C45H90NO7P (787.645456)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

4-[3-[(E)-dodec-5-enoyl]oxy-2-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-dodec-5-enoyl]oxy-2-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (E)-icos-11-enoate

C44H86NO8P (787.6090726)


   

[(2R)-2-octadecanoyloxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-octadecanoyloxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (E)-docos-13-enoate

C44H86NO8P (787.6090726)


   

4-[2-[(E)-pentadec-9-enoyl]oxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-pentadec-9-enoyl]oxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2R)-2-hexadecanoyloxy-3-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-hexadecanoyloxy-3-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

4-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(E)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(E)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(E)-tetracos-11-enoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-tetracos-11-enoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2R)-2-octadecanoyloxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-octadecanoyloxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

4-[2-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-nonadecanoyloxypropyl] (E)-icos-13-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-nonadecanoyloxypropyl] (E)-icos-13-enoate

C44H86NO8P (787.6090726)


   

4-[3-[(E)-docos-11-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-docos-11-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2R)-2-henicosanoyloxy-3-[(E)-hexadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-henicosanoyloxy-3-[(E)-hexadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

4-[3-icosanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-icosanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(E)-hexacos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(E)-hexacos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-tetracos-15-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-tetracos-15-enoate

C44H86NO8P (787.6090726)


   

4-[3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(9E,11E)-henicosa-9,11-dienoyl]oxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E)-henicosa-9,11-dienoyl]oxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2R)-2-heptadecanoyloxy-3-[(E)-icos-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-heptadecanoyloxy-3-[(E)-icos-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

4-[2-pentadecanoyloxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-pentadecanoyloxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-6-enoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-6-enoyl]oxypropan-2-yl] henicosanoate

C44H86NO8P (787.6090726)


   

[(2R)-2-octadecanoyloxy-3-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-octadecanoyloxy-3-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H86NO8P (787.6090726)


   

4-[3-[(E)-icos-11-enoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-icos-11-enoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(18E,21E)-tetracosa-18,21-dienoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(18E,21E)-tetracosa-18,21-dienoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] tricosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] tricosanoate

C44H86NO8P (787.6090726)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] tetracosanoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] tetracosanoate

C44H86NO8P (787.6090726)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] icosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] icosanoate

C45H90NO7P (787.645456)


   

4-[2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(E)-tetracos-11-enoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-tetracos-11-enoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(E)-dodec-5-enoyl]oxy-3-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-dodec-5-enoyl]oxy-3-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(E)-henicos-9-enoyl]oxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-henicos-9-enoyl]oxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-dodecanoyloxy-2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-dodecanoyloxy-2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxy-2-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxy-2-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(E)-pentadec-9-enoyl]oxy-2-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-pentadec-9-enoyl]oxy-2-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-pentadecanoyloxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-pentadecanoyloxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(18E,21E)-tetracosa-18,21-dienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(18E,21E)-tetracosa-18,21-dienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(E)-heptadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(E)-heptadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(E)-henicos-9-enoyl]oxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-henicos-9-enoyl]oxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(E)-hexacos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(E)-hexacos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(9E,11E)-henicosa-9,11-dienoyl]oxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E)-henicosa-9,11-dienoyl]oxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(E)-docos-11-enoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-docos-11-enoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-heptadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-heptadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-nonadecanoyloxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-nonadecanoyloxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-heptadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-heptadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-docosanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-docosanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2R)-2-nonadecanoyloxy-3-[(E)-octadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-nonadecanoyloxy-3-[(E)-octadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C45H90NO7P (787.645456)


   

4-[2-nonadecanoyloxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-nonadecanoyloxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(E)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(E)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(E)-heptadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(E)-heptadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-icosanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-icosanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-docosanoyloxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-docosanoyloxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-2-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-2-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2-[(E)-icos-11-enoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-icos-11-enoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] tetracosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] tetracosanoate

C45H90NO7P (787.645456)


   

4-[2-dodecanoyloxy-3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-dodecanoyloxy-3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[2,3-bis[[(7E,9E)-nonadeca-7,9-dienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

4-[2,3-bis[[(7E,9E)-nonadeca-7,9-dienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,14E)-hexacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,14E)-hexacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C48H85NO7 (787.63257)


   

2-[[2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3,4-dihydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3,4-dihydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H88N2O7P+ (787.6328808000001)


   

2-[[(E)-2-[[(Z)-henicos-11-enoyl]amino]-3,4-dihydroxyoctadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(Z)-henicos-11-enoyl]amino]-3,4-dihydroxyoctadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H88N2O7P+ (787.6328808000001)


   

2-[[(8E,12E)-2-(henicosanoylamino)-3,4-dihydroxyoctadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E)-2-(henicosanoylamino)-3,4-dihydroxyoctadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H88N2O7P+ (787.6328808000001)


   

MePC(36:1)

MePC(18:0(1)_18:1)

C45H90NO7P (787.645456)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Hex1Cer(39:0)

Hex1Cer(t17:0_22:0)

C45H89NO9 (787.6536984)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

CerP(45:1)

CerP(t20:0_25:1)

C45H90NO7P (787.645456)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Hex1Cer(42:5)

Hex1Cer(m22:1_20:4)

C48H85NO7 (787.63257)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(38:1)

dMePE(20:0(1)_18:1)

C45H90NO7P (787.645456)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   

PC P-14:0/23:0 or PC O-14:1/23:0

PC P-14:0/23:0 or PC O-14:1/23:0

C45H90NO7P (787.645456)


   
   

PC P-16:0/21:0 or PC O-16:1/21:0

PC P-16:0/21:0 or PC O-16:1/21:0

C45H90NO7P (787.645456)


   
   

PC P-18:0/19:0 or PC O-18:1/19:0

PC P-18:0/19:0 or PC O-18:1/19:0

C45H90NO7P (787.645456)


   
   

PC P-20:0/17:0 or PC O-20:1/17:0

PC P-20:0/17:0 or PC O-20:1/17:0

C45H90NO7P (787.645456)


   
   

PC P-22:0/15:0 or PC O-22:1/15:0

PC P-22:0/15:0 or PC O-22:1/15:0

C45H90NO7P (787.645456)


   
   

PC P-37:0 or PC O-37:1

PC P-37:0 or PC O-37:1

C45H90NO7P (787.645456)


   
   
   
   
   
   
   
   
   
   
   
   

PE P-14:0/26:0 or PE O-14:1/26:0

PE P-14:0/26:0 or PE O-14:1/26:0

C45H90NO7P (787.645456)


   
   

PE P-16:0/24:0 or PE O-16:1/24:0

PE P-16:0/24:0 or PE O-16:1/24:0

C45H90NO7P (787.645456)


   
   

PE P-18:0/22:0 or PE O-18:1/22:0

PE P-18:0/22:0 or PE O-18:1/22:0

C45H90NO7P (787.645456)


   
   

PE P-20:0/20:0 or PE O-20:1/20:0

PE P-20:0/20:0 or PE O-20:1/20:0

C45H90NO7P (787.645456)


   
   

PE P-22:0/18:0 or PE O-22:1/18:0

PE P-22:0/18:0 or PE O-22:1/18:0

C45H90NO7P (787.645456)


   
   

PE P-40:0 or PE O-40:1

PE P-40:0 or PE O-40:1

C45H90NO7P (787.645456)


   

CerP 19:1;O2/26:0;O

CerP 19:1;O2/26:0;O

C45H90NO7P (787.645456)


   

CerP 20:1;O2/25:0;O

CerP 20:1;O2/25:0;O

C45H90NO7P (787.645456)


   

CerP 21:0;O2/24:1;O

CerP 21:0;O2/24:1;O

C45H90NO7P (787.645456)


   

CerP 21:1;O2/24:0;O

CerP 21:1;O2/24:0;O

C45H90NO7P (787.645456)


   

CerP 22:1;O2/23:0;O

CerP 22:1;O2/23:0;O

C45H90NO7P (787.645456)


   
   

GalCer 14:0;O2/25:0;O

GalCer 14:0;O2/25:0;O

C45H89NO9 (787.6536984)


   

GalCer 14:0;O3/25:0

GalCer 14:0;O3/25:0

C45H89NO9 (787.6536984)


   

GalCer 15:0;O2/24:0;O

GalCer 15:0;O2/24:0;O

C45H89NO9 (787.6536984)


   

GalCer 15:0;O3/24:0

GalCer 15:0;O3/24:0

C45H89NO9 (787.6536984)


   

GalCer 16:0;O2/23:0;O

GalCer 16:0;O2/23:0;O

C45H89NO9 (787.6536984)


   

GalCer 16:0;O3/23:0

GalCer 16:0;O3/23:0

C45H89NO9 (787.6536984)


   

GalCer 17:0;O2/22:0;O

GalCer 17:0;O2/22:0;O

C45H89NO9 (787.6536984)


   

GalCer 17:0;O3/22:0

GalCer 17:0;O3/22:0

C45H89NO9 (787.6536984)


   

GalCer 18:0;O2/21:0;O

GalCer 18:0;O2/21:0;O

C45H89NO9 (787.6536984)


   

GalCer 18:0;O3/21:0

GalCer 18:0;O3/21:0

C45H89NO9 (787.6536984)


   

GalCer 19:0;O2/20:0;O

GalCer 19:0;O2/20:0;O

C45H89NO9 (787.6536984)


   

GalCer 19:0;O3/20:0

GalCer 19:0;O3/20:0

C45H89NO9 (787.6536984)


   

GalCer 20:0;O2/19:0;O

GalCer 20:0;O2/19:0;O

C45H89NO9 (787.6536984)


   

GalCer 20:0;O3/19:0

GalCer 20:0;O3/19:0

C45H89NO9 (787.6536984)


   

GalCer 21:0;O2/18:0;O

GalCer 21:0;O2/18:0;O

C45H89NO9 (787.6536984)


   

GalCer 21:0;O3/18:0

GalCer 21:0;O3/18:0

C45H89NO9 (787.6536984)


   

GalCer 22:0;O2/17:0;O

GalCer 22:0;O2/17:0;O

C45H89NO9 (787.6536984)


   

GalCer 22:0;O3/17:0

GalCer 22:0;O3/17:0

C45H89NO9 (787.6536984)


   
   
   

GlcCer 14:0;O2/25:0;O

GlcCer 14:0;O2/25:0;O

C45H89NO9 (787.6536984)


   

GlcCer 14:0;O3/25:0

GlcCer 14:0;O3/25:0

C45H89NO9 (787.6536984)


   

GlcCer 15:0;O2/24:0;O

GlcCer 15:0;O2/24:0;O

C45H89NO9 (787.6536984)


   

GlcCer 15:0;O3/24:0

GlcCer 15:0;O3/24:0

C45H89NO9 (787.6536984)


   

GlcCer 16:0;O2/23:0;O

GlcCer 16:0;O2/23:0;O

C45H89NO9 (787.6536984)


   

GlcCer 16:0;O3/23:0

GlcCer 16:0;O3/23:0

C45H89NO9 (787.6536984)


   

GlcCer 17:0;O2/22:0;O

GlcCer 17:0;O2/22:0;O

C45H89NO9 (787.6536984)


   

GlcCer 17:0;O3/22:0

GlcCer 17:0;O3/22:0

C45H89NO9 (787.6536984)


   

GlcCer 18:0;O2/21:0;O

GlcCer 18:0;O2/21:0;O

C45H89NO9 (787.6536984)


   

GlcCer 18:0;O3/21:0

GlcCer 18:0;O3/21:0

C45H89NO9 (787.6536984)


   

GlcCer 19:0;O2/20:0;O

GlcCer 19:0;O2/20:0;O

C45H89NO9 (787.6536984)


   

GlcCer 19:0;O3/20:0

GlcCer 19:0;O3/20:0

C45H89NO9 (787.6536984)


   

GlcCer 20:0;O2/19:0;O

GlcCer 20:0;O2/19:0;O

C45H89NO9 (787.6536984)


   

GlcCer 20:0;O3/19:0

GlcCer 20:0;O3/19:0

C45H89NO9 (787.6536984)


   

GlcCer 21:0;O2/18:0;O

GlcCer 21:0;O2/18:0;O

C45H89NO9 (787.6536984)


   

GlcCer 21:0;O3/18:0

GlcCer 21:0;O3/18:0

C45H89NO9 (787.6536984)


   

GlcCer 22:0;O2/17:0;O

GlcCer 22:0;O2/17:0;O

C45H89NO9 (787.6536984)


   

GlcCer 22:0;O3/17:0

GlcCer 22:0;O3/17:0

C45H89NO9 (787.6536984)


   
   
   

HexCer 14:0;O2/25:0;2OH

HexCer 14:0;O2/25:0;2OH

C45H89NO9 (787.6536984)


   

HexCer 14:0;O2/25:0;3OH

HexCer 14:0;O2/25:0;3OH

C45H89NO9 (787.6536984)


   

HexCer 14:0;O2/25:0;O

HexCer 14:0;O2/25:0;O

C45H89NO9 (787.6536984)


   

HexCer 14:0;O3/25:0

HexCer 14:0;O3/25:0

C45H89NO9 (787.6536984)


   

HexCer 15:0;O2/24:0;2OH

HexCer 15:0;O2/24:0;2OH

C45H89NO9 (787.6536984)


   

HexCer 15:0;O2/24:0;3OH

HexCer 15:0;O2/24:0;3OH

C45H89NO9 (787.6536984)


   

HexCer 15:0;O2/24:0;O

HexCer 15:0;O2/24:0;O

C45H89NO9 (787.6536984)


   

HexCer 15:0;O3/24:0

HexCer 15:0;O3/24:0

C45H89NO9 (787.6536984)


   

HexCer 16:0;O2/23:0;2OH

HexCer 16:0;O2/23:0;2OH

C45H89NO9 (787.6536984)


   

HexCer 16:0;O2/23:0;3OH

HexCer 16:0;O2/23:0;3OH

C45H89NO9 (787.6536984)


   

HexCer 16:0;O2/23:0;O

HexCer 16:0;O2/23:0;O

C45H89NO9 (787.6536984)


   

HexCer 16:0;O3/23:0

HexCer 16:0;O3/23:0

C45H89NO9 (787.6536984)


   

HexCer 17:0;O2/22:0;2OH

HexCer 17:0;O2/22:0;2OH

C45H89NO9 (787.6536984)


   

HexCer 17:0;O2/22:0;3OH

HexCer 17:0;O2/22:0;3OH

C45H89NO9 (787.6536984)


   

HexCer 17:0;O2/22:0;O

HexCer 17:0;O2/22:0;O

C45H89NO9 (787.6536984)


   

HexCer 17:0;O3/22:0

HexCer 17:0;O3/22:0

C45H89NO9 (787.6536984)


   

HexCer 18:0;O2/21:0;2OH

HexCer 18:0;O2/21:0;2OH

C45H89NO9 (787.6536984)


   

HexCer 18:0;O2/21:0;3OH

HexCer 18:0;O2/21:0;3OH

C45H89NO9 (787.6536984)


   

HexCer 18:0;O2/21:0;O

HexCer 18:0;O2/21:0;O

C45H89NO9 (787.6536984)


   

HexCer 18:0;O3/21:0

HexCer 18:0;O3/21:0

C45H89NO9 (787.6536984)


   

HexCer 19:0;O2/20:0;2OH

HexCer 19:0;O2/20:0;2OH

C45H89NO9 (787.6536984)


   

HexCer 19:0;O2/20:0;3OH

HexCer 19:0;O2/20:0;3OH

C45H89NO9 (787.6536984)


   

HexCer 19:0;O2/20:0;O

HexCer 19:0;O2/20:0;O

C45H89NO9 (787.6536984)


   

HexCer 19:0;O3/20:0

HexCer 19:0;O3/20:0

C45H89NO9 (787.6536984)


   

HexCer 20:0;O2/19:0;2OH

HexCer 20:0;O2/19:0;2OH

C45H89NO9 (787.6536984)


   

HexCer 20:0;O2/19:0;3OH

HexCer 20:0;O2/19:0;3OH

C45H89NO9 (787.6536984)


   

HexCer 20:0;O2/19:0;O

HexCer 20:0;O2/19:0;O

C45H89NO9 (787.6536984)


   

HexCer 20:0;O3/19:0

HexCer 20:0;O3/19:0

C45H89NO9 (787.6536984)


   

HexCer 21:0;O2/18:0;2OH

HexCer 21:0;O2/18:0;2OH

C45H89NO9 (787.6536984)


   

HexCer 21:0;O2/18:0;3OH

HexCer 21:0;O2/18:0;3OH

C45H89NO9 (787.6536984)


   

HexCer 21:0;O2/18:0;O

HexCer 21:0;O2/18:0;O

C45H89NO9 (787.6536984)


   

HexCer 21:0;O3/18:0

HexCer 21:0;O3/18:0

C45H89NO9 (787.6536984)


   

HexCer 22:0;O2/17:0;2OH

HexCer 22:0;O2/17:0;2OH

C45H89NO9 (787.6536984)


   

HexCer 22:0;O2/17:0;3OH

HexCer 22:0;O2/17:0;3OH

C45H89NO9 (787.6536984)


   

HexCer 22:0;O2/17:0;O

HexCer 22:0;O2/17:0;O

C45H89NO9 (787.6536984)


   

HexCer 22:0;O3/17:0

HexCer 22:0;O3/17:0

C45H89NO9 (787.6536984)


   
   
   
   

(2r)-n-[(2s,3s,4r,9z)-3,4-dihydroxy-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docos-9-en-2-yl]-2-hydroxyhexadecanimidic acid

(2r)-n-[(2s,3s,4r,9z)-3,4-dihydroxy-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docos-9-en-2-yl]-2-hydroxyhexadecanimidic acid

C44H85NO10 (787.617315)


   

(2s)-n-[(2r,3r,4s,9e)-3,4-dihydroxy-1-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docos-9-en-2-yl]-2-hydroxyhexadecanimidic acid

(2s)-n-[(2r,3r,4s,9e)-3,4-dihydroxy-1-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docos-9-en-2-yl]-2-hydroxyhexadecanimidic acid

C44H85NO10 (787.617315)


   

(2r)-n-[(2s,3s,4r,13z)-3,4-dihydroxy-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docos-13-en-2-yl]-2-hydroxyhexadecanimidic acid

(2r)-n-[(2s,3s,4r,13z)-3,4-dihydroxy-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docos-13-en-2-yl]-2-hydroxyhexadecanimidic acid

C44H85NO10 (787.617315)


   

n-[(13e)-3,4-dihydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docos-13-en-2-yl]-2-hydroxyhexadecanimidic acid

n-[(13e)-3,4-dihydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docos-13-en-2-yl]-2-hydroxyhexadecanimidic acid

C44H85NO10 (787.617315)


   

n-(3,4-dihydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docos-9-en-2-yl)-2-hydroxyhexadecanimidic acid

n-(3,4-dihydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docos-9-en-2-yl)-2-hydroxyhexadecanimidic acid

C44H85NO10 (787.617315)


   

n-(3,4-dihydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docos-13-en-2-yl)-2-hydroxyhexadecanimidic acid

n-(3,4-dihydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docos-13-en-2-yl)-2-hydroxyhexadecanimidic acid

C44H85NO10 (787.617315)