PC 36:1 (BioDeep_00000410754)
LipidSearch
代谢物信息卡片
化学式: C44H86NO8P (787.6090726)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 45.83%
分子结构信息
SMILES: CCCCCCCCCCCCCC(=O)OC(COC(=O)CCCCCCCCCCCC=CCCCCCCCC)COP(=O)([O-])OCC[N+](C)(C)C
InChI: InChI=1S/C44H86NO8P/c1-6-8-10-12-14-16-18-19-20-21-22-23-24-25-27-28-30-32-34-36-43(46)50-40-42(41-52-54(48,49)51-39-38-45(3,4)5)53-44(47)37-35-33-31-29-26-17-15-13-11-9-7-2/h19-20,42H,6-18,21-41H2,1-5H3/b20-19-/t42-/m1/s1
描述信息
Found in mouse brain; TwoDicalId=66; MgfFile=160720_brain_EPA_08_Neg; MgfId=1487
同义名列表
73 个代谢物同义名
1-(13Z-docosenoyl)-2-tetradecanoyl-sn-glycero-3-phosphocholine; PC(22:1(13Z)/14:0); PC(14:0_22:1); PC(36:1); PC 36:1; 1-tetradecanoyl-2-(13Z-docosenoyl)-sn-glycero-3-phosphocholine; PC(14:0/22:1(13Z)); 1-(11Z-docosenoyl)-2-tetradecanoyl-glycero-3-phosphocholine; PC(22:1(11Z)/14:0); 1-docosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine; PC(22:0/14:1(9Z)); PC(14:1_22:0); 1-heneicosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine; PC(21:0/15:1(9Z)); PC(15:1_21:0); 1-(11Z-eicosenoyl)-2-hexadecanoyl-glycero-3-phosphocholine; PC(20:1(11Z)/16:0); PC(16:0_20:1); 1-eicosanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphocholine; PC(20:0/16:1(9Z)); PC(16:1_20:0); 1-(9Z-nonadecenoyl)-2-heptadecanoyl-glycero-3-phosphocholine; PC(19:1(9Z)/17:0); PC(17:0_19:1); 1-nonadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine; PC(19:0/17:1(9Z)); PC(17:1_19:0); 1-(9Z-heptadecenoyl)-2-nonadecanoyl-glycero-3-phosphocholine; PC(17:1(9Z)/19:0); 1-heptadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphocholine; PC(17:0/19:1(9Z)); 1-(9Z-hexadecenoyl)-2-eicosanoyl-glycero-3-phosphocholine; PC(16:1(9Z)/20:0); 1-hexadecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphocholine; PC(16:0/20:1(11Z)); 1-(9Z-pentadecenoyl)-2-heneicosanoyl-glycero-3-phosphocholine; PC(15:1(9Z)/21:0); 1-(9Z-tetradecenoyl)-2-docosanoyl-glycero-3-phosphocholine; PC(14:1(9Z)/22:0); 1-tetradecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphocholine; PC(14:0/22:1(11Z)); 1-(9Z-octadecenoyl)-2-octadecanoyl-sn-glycero-3-phosphocholine; Choline phosphate, 3-ester with L-1-oleo-2-stearin; L-1-Oleoyl-2-stearoyl-3-phosphatidylcholine; L-1-Oleoyl-2-stearoyl lecithin; PC(18:1(9Z)/18:0); PC(18:1/18:0); PC(18:0_18:1); OSPC; 1-(11Z-octadecenoyl)-2-octadecanoyl-sn-glycero-3-phosphocholine; PC(18:1(11Z)/18:0); 1-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine; Choline phosphate, 3-ester with L-2-oleo-1-stearin; 1-Stearoyl-2-oleoyl-sn-glycero-3-phosphocholine; L-alpha-1-Stearoyl-2-oleoylphosphatidylcholine; L-alpha-1-Stearoyl-2-oleoyl lecithin; PC(18:0/18:1(9Z)); PC(18:0/18:1); SOPC; 1-octadecanoyl-2-(9E-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:0/18:1(9E)); 1-octadecanoyl-2-(7Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:0/18:1(7Z)); 1-octadecanoyl-2-(6Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:0/18:1(6Z)); 1-octadecanoyl-2-(16Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:0/18:1(16Z)); 1-octadecanoyl-2-(13Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:0/18:1(13Z)); 1-octadecanoyl-2-(12Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:0/18:1(12Z)); 1-octadecanoyl-2-(11Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:0/18:1(11Z))
数据库引用编号
62 个数据库交叉引用编号
- ChEBI: CHEBI:88745
- ChEBI: CHEBI:89516
- ChEBI: CHEBI:89063
- ChEBI: CHEBI:89409
- ChEBI: CHEBI:89350
- ChEBI: CHEBI:89736
- ChEBI: CHEBI:88920
- ChEBI: CHEBI:75034
- ChEBI: CHEBI:177008
- PubChem: 53479165
- PubChem: 53478609
- PubChem: 52923489
- PubChem: 52923437
- PubChem: 52923391
- PubChem: 52923101
- PubChem: 52923059
- PubChem: 52923007
- PubChem: 52922951
- PubChem: 52922553
- PubChem: 52922499
- PubChem: 52922458
- PubChem: 52922394
- PubChem: 52922290
- PubChem: 52922234
- PubChem: 24778825
- PubChem: 24778824
- PubChem: 24778823
- PubChem: 24778821
- PubChem: 24778819
- PubChem: 24778818
- PubChem: 24778816
- LipidMAPS: LMGP01012218
- LipidMAPS: LMGP01012129
- LipidMAPS: LMGP01012006
- LipidMAPS: LMGP01011980
- LipidMAPS: LMGP01011957
- LipidMAPS: LMGP01011811
- LipidMAPS: LMGP01011790
- LipidMAPS: LMGP01011764
- LipidMAPS: LMGP01011736
- LipidMAPS: LMGP01011537
- LipidMAPS: LMGP01011510
- LipidMAPS: LMGP01011488
- LipidMAPS: LMGP01011468
- LipidMAPS: LMGP01011456
- LipidMAPS: LMGP01011404
- LipidMAPS: LMGP01011376
- LipidMAPS: LMGP01010888
- LipidMAPS: LMGP01010840
- LipidMAPS: LMGP01010761
- LipidMAPS: LMGP01010759
- LipidMAPS: LMGP01010758
- LipidMAPS: LMGP01010756
- LipidMAPS: LMGP01010754
- LipidMAPS: LMGP01010753
- LipidMAPS: LMGP01010751
- LipidMAPS: LMGP01010750
- CAS: 56421-10-4
- MoNA: LQB00517
- MoNA: LQB00131
- PANOMIX LipidSearch: LIPID32
- RefMet: PC 36:1
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
24 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(24)
- Phosphatidylcholine Biosynthesis PC(14:1(9Z)/22:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(14:1(9Z)/22:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(14:1(9Z)/22:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(14:1(9Z)/22:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Array:
L-Serine + PC(14:1(9Z)/22:0) ⟶ Choline + PS(14:1(9Z)/22:0)
- Phosphatidylcholine Biosynthesis PC(16:1(9Z)/20:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(16:1(9Z)/20:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(16:1(9Z)/20:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(16:1(9Z)/20:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Array:
L-Serine + PC(16:1(9Z)/20:0) ⟶ Choline + PS(16:1(9Z)/20:0)
- Phosphatidylcholine Biosynthesis PC(22:0/14:1(9Z)):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(20:0/16:1(9Z)):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(20:1(11Z)/16:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylethanolamine Biosynthesis PE(14:1(9Z)/22:0):
L-Serine + PC(14:1(9Z)/22:0) ⟶ Choline + PS(14:1(9Z)/22:0)
- Phosphatidylethanolamine Biosynthesis PE(16:1(9Z)/20:0):
L-Serine + PC(16:1(9Z)/20:0) ⟶ Choline + PS(16:1(9Z)/20:0)
- Phosphatidylethanolamine Biosynthesis PE(20:0/16:1(9Z)):
L-Serine + PC(20:0/16:1(9Z)) ⟶ Choline + PS(20:0/16:1(9Z))
- Phosphatidylethanolamine Biosynthesis PE(20:1(11Z)/16:0):
L-Serine + PC(20:1(11Z)/16:0) ⟶ Choline + PS(20:1(11Z)/16:0)
- Phosphatidylethanolamine Biosynthesis PE(22:0/14:1(9Z)):
L-Serine + PC(22:0/14:1(9Z)) ⟶ Choline + PS(22:0/14:1(9Z))
- Phosphatidylethanolamine Biosynthesis PE(14:1(9Z)/22:0):
L-Serine + PC(14:1(9Z)/22:0) ⟶ Choline + PS(14:1(9Z)/22:0)
- Phosphatidylethanolamine Biosynthesis PE(16:1(9Z)/20:0):
L-Serine + PC(16:1(9Z)/20:0) ⟶ Choline + PS(16:1(9Z)/20:0)
- Phosphatidylethanolamine Biosynthesis PE(14:1(9Z)/22:0):
L-Serine + PC(14:1(9Z)/22:0) ⟶ Choline + PS(14:1(9Z)/22:0)
- Phosphatidylethanolamine Biosynthesis PE(16:1(9Z)/20:0):
L-Serine + PC(16:1(9Z)/20:0) ⟶ Choline + PS(16:1(9Z)/20:0)
- Phosphatidylethanolamine Biosynthesis PE(14:1(9Z)/22:0):
L-Serine + PC(14:1(9Z)/22:0) ⟶ Choline + PS(14:1(9Z)/22:0)
- Phosphatidylethanolamine Biosynthesis PE(16:1(9Z)/20:0):
L-Serine + PC(16:1(9Z)/20:0) ⟶ Choline + PS(16:1(9Z)/20:0)
PharmGKB(0)
2 个相关的物种来源信息
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Poornima Budime Santhosh, Tihomir Tenev, Luka Šturm, Nataša Poklar Ulrih, Julia Genova. Effects of Hydrophobic Gold Nanoparticles on Structure and Fluidity of SOPC Lipid Membranes.
International journal of molecular sciences.
2023 Jun; 24(12):. doi:
10.3390/ijms241210226
. [PMID: 37373371] - Shea Foley, Elizabeth Miller, Samuel Braziel, Sunghee Lee. Molecular organization in mixed SOPC and SDPC model membranes: Water permeability studies of polyunsaturated lipid bilayers.
Biochimica et biophysica acta. Biomembranes.
2020 09; 1862(9):183365. doi:
10.1016/j.bbamem.2020.183365
. [PMID: 32454009] - Xiaoling Leng, Fangqiang Zhu, Stephen R Wassall. Vitamin E Has Reduced Affinity for a Polyunsaturated Phospholipid: An Umbrella Sampling Molecular Dynamics Simulations Study.
The journal of physical chemistry. B.
2018 09; 122(35):8351-8358. doi:
10.1021/acs.jpcb.8b05016
. [PMID: 30111105] - Hung-Hsun Lee, Martynas Gavutis, Živilė Ruželė, Ramu Nas Valiokas, Bo Liedberg. Mixed Self-Assembled Monolayers with Terminal Deuterated Anchors: Characterization and Probing of Model Lipid Membrane Formation.
The journal of physical chemistry. B.
2018 08; 122(34):8201-8210. doi:
10.1021/acs.jpcb.8b05097
. [PMID: 30085662] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Soohyung Park, Wonpil Im. Quantitative Characterization of Cholesterol Partitioning between Binary Bilayers.
Journal of chemical theory and computation.
2018 Jun; 14(6):2829-2833. doi:
10.1021/acs.jctc.8b00140
. [PMID: 29733641] - Julien Massiot, Ali Makky, Florent Di Meo, David Chapron, Patrick Trouillas, Véronique Rosilio. Impact of lipid composition and photosensitizer hydrophobicity on the efficiency of light-triggered liposomal release.
Physical chemistry chemical physics : PCCP.
2017 May; 19(18):11460-11473. doi:
10.1039/c7cp00983f
. [PMID: 28425533] - Sara Capponi, J Alfredo Freites, Douglas J Tobias, Stephen H White. Interleaflet mixing and coupling in liquid-disordered phospholipid bilayers.
Biochimica et biophysica acta.
2016 Feb; 1858(2):354-62. doi:
10.1016/j.bbamem.2015.11.024
. [PMID: 26657692] - K Antonova, V Vitkova, C Meyer. Membrane tubulation from giant lipid vesicles in alternating electric fields.
Physical review. E.
2016 Jan; 93(1):012413. doi:
10.1103/physreve.93.012413
. [PMID: 26871107] - Guo-Hua Li. Geometric rules of channel gating inferred from computational models of the P2X receptor transmembrane domain.
Journal of molecular graphics & modelling.
2015 Sep; 61(?):107-14. doi:
10.1016/j.jmgm.2015.06.015
. [PMID: 26209765] - Hao Yu, Irena Yzeiri, Binyang Hou, Chiu-Hao Chen, Wei Bu, Petr Vanysek, Yu-Sheng Chen, Binhua Lin, Petr Král, Mark L Schlossman. Electric Field Effect on Phospholipid Monolayers at an Aqueous-Organic Liquid-Liquid Interface.
The journal of physical chemistry. B.
2015 Jul; 119(29):9319-34. doi:
10.1021/jp5098525
. [PMID: 25289837] - Fernanda F Rossetti, Emanuel Schneck, Giovanna Fragneto, Oleg V Konovalov, Motomu Tanaka. Generic Role of Polymer Supports in the Fine Adjustment of Interfacial Interactions between Solid Substrates and Model Cell Membranes.
Langmuir : the ACS journal of surfaces and colloids.
2015 Apr; 31(15):4473-80. doi:
10.1021/la504253p
. [PMID: 25794040] - Tanja Pott, Claire Gerbeaud, Nina Barbier, Philippe Méléard. Melittin modifies bending elasticity in an unexpected way.
Chemistry and physics of lipids.
2015 Jan; 185(?):99-108. doi:
10.1016/j.chemphyslip.2014.05.004
. [PMID: 24875586] - Poornima Budime Santhosh, Aljaž Velikonja, Šarka Perutkova, Ekaterina Gongadze, Mukta Kulkarni, Julia Genova, Kristina Eleršič, Aleš Iglič, Veronika Kralj-Iglič, Nataša Poklar Ulrih. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity.
Chemistry and physics of lipids.
2014 Feb; 178(?):52-62. doi:
10.1016/j.chemphyslip.2013.11.009
. [PMID: 24309194] - Julia Genova, Victoria Vitkova, Isak Bivas. Registration and analysis of the shape fluctuations of nearly spherical lipid vesicles.
Physical review. E, Statistical, nonlinear, and soft matter physics.
2013 Aug; 88(2):022707. doi:
10.1103/physreve.88.022707
. [PMID: 24032864] - E Evans, W Rawicz, B A Smith. Back to the future: mechanics and thermodynamics of lipid biomembranes.
Faraday discussions.
2013; 161(?):591-611. doi:
10.1039/c2fd20127e
. [PMID: 23805759] - Trang T Nguyen, John C Conboy. High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging.
Analytical chemistry.
2011 Aug; 83(15):5979-88. doi:
10.1021/ac2009614
. [PMID: 21696170] - Kathryn A Smith, John C Conboy. Using micropatterned lipid bilayer arrays to measure the effect of membrane composition on merocyanine 540 binding.
Biochimica et biophysica acta.
2011 Jun; 1808(6):1611-7. doi:
10.1016/j.bbamem.2011.02.017
. [PMID: 21376014] - Yen Sun, Chang-Chun Lee, Huey W Huang. Adhesion and merging of lipid bilayers: a method for measuring the free energy of adhesion and hemifusion.
Biophysical journal.
2011 Feb; 100(4):987-95. doi:
10.1016/j.bpj.2011.01.013
. [PMID: 21320443] - Frederick A Heberle, Jing Wu, Shih Lin Goh, Robin S Petruzielo, Gerald W Feigenson. Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains.
Biophysical journal.
2010 Nov; 99(10):3309-18. doi:
10.1016/j.bpj.2010.09.064
. [PMID: 21081079] - Chiu-Hao Chen, Sárka Málková, Sai Venkatesh Pingali, Fei Long, Shekhar Garde, Wonhwa Cho, Mark L Schlossman. Configuration of PKCalpha-C2 domain bound to mixed SOPC/SOPS lipid monolayers.
Biophysical journal.
2009 Nov; 97(10):2794-802. doi:
10.1016/j.bpj.2009.08.037
. [PMID: 19917234] - Agnieszka Broniec, Masaki Goto, Hitoshi Matsuki. A peculiar phase transition of plasmalogen bilayer membrane under high pressure.
Langmuir : the ACS journal of surfaces and colloids.
2009 Oct; 25(19):11265-8. doi:
10.1021/la902503n
. [PMID: 19697955] - Hector Martinez-Seara, Tomasz Róg, Mikko Karttunen, Ilpo Vattulainen, Ramon Reigada. Why is the sn-2 chain of monounsaturated glycerophospholipids usually unsaturated whereas the sn-1 chain is saturated? Studies of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (SOPC) and 1-oleoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (OSPC) membranes with and without cholesterol.
The journal of physical chemistry. B.
2009 Jun; 113(24):8347-56. doi:
10.1021/jp902131b
. [PMID: 19469492] - Kaori Tada, Eri Miyazaki, Masaki Goto, Nobutake Tamai, Hitoshi Matsuki, Shoji Kaneshina. Barotropic and thermotropic bilayer phase behavior of positional isomers of unsaturated mixed-chain phosphatidylcholines.
Biochimica et biophysica acta.
2009 May; 1788(5):1056-63. doi:
10.1016/j.bbamem.2009.02.008
. [PMID: 19233121] - Jianjun Pan, Thalia T Mills, Stephanie Tristram-Nagle, John F Nagle. Cholesterol perturbs lipid bilayers nonuniversally.
Physical review letters.
2008 May; 100(19):198103. doi:
10.1103/physrevlett.100.198103
. [PMID: 18518492] - Rohit Sood, Yegor Domanov, Milla Pietiäinen, Vesa P Kontinen, Paavo K J Kinnunen. Binding of LL-37 to model biomembranes: insight into target vs host cell recognition.
Biochimica et biophysica acta.
2008 Apr; 1778(4):983-96. doi:
10.1016/j.bbamem.2007.11.016
. [PMID: 18166145] - Alexander I Greenwood, Jianjun Pan, Thalia T Mills, John F Nagle, Richard M Epand, Stephanie Tristram-Nagle. CRAC motif peptide of the HIV-1 gp41 protein thins SOPC membranes and interacts with cholesterol.
Biochimica et biophysica acta.
2008 Apr; 1778(4):1120-30. doi:
10.1016/j.bbamem.2008.01.008
. [PMID: 18262490] - Gary J Dever, Robert Benson, Cherry L Wainwright, Simon Kennedy, Corinne M Spickett. Phospholipid chlorohydrin induces leukocyte adhesion to ApoE-/- mouse arteries via upregulation of P-selectin.
Free radical biology & medicine.
2008 Feb; 44(3):452-63. doi:
10.1016/j.freeradbiomed.2007.10.038
. [PMID: 18005671] - T G Van Thienen, K Raemdonck, J Demeester, S C De Smedt. Protein release from biodegradable dextran nanogels.
Langmuir : the ACS journal of surfaces and colloids.
2007 Sep; 23(19):9794-801. doi:
10.1021/la700736v
. [PMID: 17696367] - Sumit Garg, Jürgen Rühe, Karin Lüdtke, Rainer Jordan, Christoph A Naumann. Domain registration in raft-mimicking lipid mixtures studied using polymer-tethered lipid bilayers.
Biophysical journal.
2007 Feb; 92(4):1263-70. doi:
10.1529/biophysj.106.091082
. [PMID: 17114215] - Valeriya M Ioffe, Galyna P Gorbenko, P K J Kinnunen, Anatoliy L Tatarets, Olga S Kolosova, Leonid D Patsenker, Ewald A Terpetschnig. Tracing lysozyme-lipid interactions with long-wavelength squaraine dyes.
Journal of fluorescence.
2007 Jan; 17(1):65-72. doi:
10.1007/s10895-006-0142-4
. [PMID: 17192821] - Ivan V Polozov, Klaus Gawrisch. NMR detection of lipid domains.
Methods in molecular biology (Clifton, N.J.).
2007; 398(?):107-26. doi:
10.1007/978-1-59745-513-8_9
. [PMID: 18214377] - Sárka Málková, Robert V Stahelin, Sai V Pingali, Wonhwa Cho, Mark L Schlossman. Orientation and penetration depth of monolayer-bound p40phox-PX.
Biochemistry.
2006 Nov; 45(45):13566-75. doi:
10.1021/bi061133l
. [PMID: 17087510] - Feng Gao, Erwen Mei, Manho Lim, Robin M Hochstrasser. Probing lipid vesicles by bimolecular association and dissociation trajectories of single molecules.
Journal of the American Chemical Society.
2006 Apr; 128(14):4814-22. doi:
10.1021/ja058098a
. [PMID: 16594718] - Y Gambin, R Lopez-Esparza, M Reffay, E Sierecki, N S Gov, M Genest, R S Hodges, W Urbach. Lateral mobility of proteins in liquid membranes revisited.
Proceedings of the National Academy of Sciences of the United States of America.
2006 Feb; 103(7):2098-102. doi:
10.1073/pnas.0511026103
. [PMID: 16461891] - Sárka Málková, Fei Long, Robert V Stahelin, Sai V Pingali, Diana Murray, Wonhwa Cho, Mark L Schlossman. X-ray reflectivity studies of cPLA2{alpha}-C2 domains adsorbed onto Langmuir monolayers of SOPC.
Biophysical journal.
2005 Sep; 89(3):1861-73. doi:
10.1529/biophysj.105.061515
. [PMID: 15994899] - Yong Zhou, Robert M Raphael. Effect of salicylate on the elasticity, bending stiffness, and strength of SOPC membranes.
Biophysical journal.
2005 Sep; 89(3):1789-801. doi:
10.1529/biophysj.104.054510
. [PMID: 15951377] - M A Deverall, E Gindl, E-K Sinner, H Besir, J Ruehe, M J Saxton, C A Naumann. Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level.
Biophysical journal.
2005 Mar; 88(3):1875-86. doi:
10.1529/biophysj.104.050559
. [PMID: 15613633] - Oliver Purrucker, Anton Förtig, Karin Lüdtke, Rainer Jordan, Motomu Tanaka. Confinement of transmembrane cell receptors in tunable stripe micropatterns.
Journal of the American Chemical Society.
2005 Feb; 127(4):1258-64. doi:
10.1021/ja045713m
. [PMID: 15669865] - Danielle Keller, Niels B Larsen, Ian M Møller, Ole G Mouritsen. Decoupled phase transitions and grain-boundary melting in supported phospholipid bilayers.
Physical review letters.
2005 Jan; 94(2):025701. doi:
10.1103/physrevlett.94.025701
. [PMID: 15698195] - Victoria Vitkova, Julia Genova, Isak Bivas. Permeability and the hidden area of lipid bilayers.
European biophysics journal : EBJ.
2004 Dec; 33(8):706-14. doi:
10.1007/s00249-004-0415-2
. [PMID: 15164236] - Richard M Epand, Raquel F Epand. Non-raft forming sphingomyelin-cholesterol mixtures.
Chemistry and physics of lipids.
2004 Nov; 132(1):37-46. doi:
10.1016/j.chemphyslip.2004.09.012
. [PMID: 15530446] - Anna Wisniewska, Agnieszka Wolnicka-Glubisz. ESR studies on the effect of cholesterol on chlorpromazine interaction with saturated and unsaturated liposome membranes.
Biophysical chemistry.
2004 Sep; 111(1):43-52. doi:
10.1016/j.bpc.2004.04.001
. [PMID: 15450374] - Ivan V Polozov, Klaus Gawrisch. Domains in binary SOPC/POPE lipid mixtures studied by pulsed field gradient 1H MAS NMR.
Biophysical journal.
2004 Sep; 87(3):1741-51. doi:
10.1529/biophysj.104.040725
. [PMID: 15345553] - Hongxia Zhao, Shambhunath Bose, Esa K J Tuominen, Paavo K J Kinnunen. Interactions of histone H1 with phospholipids and comparison of its binding to giant liposomes and human leukemic T cells.
Biochemistry.
2004 Aug; 43(31):10192-202. doi:
10.1021/bi049758b
. [PMID: 15287747] - Hung V Ly, Marjorie L Longo. The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers.
Biophysical journal.
2004 Aug; 87(2):1013-33. doi:
10.1529/biophysj.103.034280
. [PMID: 15298907] - J R Henriksen, J H Ipsen. Measurement of membrane elasticity by micro-pipette aspiration.
The European physical journal. E, Soft matter.
2004 Jun; 14(2):149-67. doi:
10.1140/epje/i2003-10146-y
. [PMID: 15254835] - Stephanie Nichols-Smith, Shia-Yen Teh, Tonya L Kuhl. Thermodynamic and mechanical properties of model mitochondrial membranes.
Biochimica et biophysica acta.
2004 May; 1663(1-2):82-8. doi:
10.1016/j.bbamem.2004.02.002
. [PMID: 15157610] - J Pécréaux, H-G Döbereiner, J Prost, J-F Joanny, P Bassereau. Refined contour analysis of giant unilamellar vesicles.
The European physical journal. E, Soft matter.
2004 Mar; 13(3):277-90. doi:
10.1140/epje/i2004-10001-9
. [PMID: 15103522] - Richard M Epand, Brian G Sayer, Raquel F Epand. Peptide-induced formation of cholesterol-rich domains.
Biochemistry.
2003 Dec; 42(49):14677-89. doi:
10.1021/bi035587j
. [PMID: 14661981] - Karin A Riske, Hans-Günther Döbereiner. Diacylglycerol-rich domain formation in giant stearoyl-oleoyl phosphatidylcholine vesicles driven by phospholipase C activity.
Biophysical journal.
2003 Oct; 85(4):2351-62. doi:
10.1016/s0006-3495(03)74659-1
. [PMID: 14507699] - Ilan Tsafrir, Yaron Caspi, Marie-Alice Guedeau-Boudeville, Tamar Arzi, Joel Stavans. Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules.
Physical review letters.
2003 Sep; 91(13):138102. doi:
10.1103/physrevlett.91.138102
. [PMID: 14525338] - Fredric M Menger, Jason S Keiper, Kevin L Caran. Depth-profiling with giant vesicle membranes.
Journal of the American Chemical Society.
2002 Oct; 124(40):11842-3. doi:
10.1021/ja020838h
. [PMID: 12358515] - I P Sugar, N K Mizuno, M M Momsen, H L Brockman. Lipid lateral organization in fluid interfaces controls the rate of colipase association.
Biophysical journal.
2001 Dec; 81(6):3387-97. doi:
10.1016/s0006-3495(01)75971-1
. [PMID: 11721001] - V S Malinin, M E Haque, B R Lentz. The rate of lipid transfer during fusion depends on the structure of fluorescent lipid probes: a new chain-labeled lipid transfer probe pair.
Biochemistry.
2001 Jul; 40(28):8292-9. doi:
10.1021/bi010570r
. [PMID: 11444975] - F Pincet, T Le Bouar, Y Zhang, J Esnault, J M Mallet, E Perez, P Sinaÿ. Ultraweak sugar-sugar interactions for transient cell adhesion.
Biophysical journal.
2001 Mar; 80(3):1354-8. doi:
10.1016/s0006-3495(01)76108-5
. [PMID: 11222296] - I Tsafrir, D Sagi, T Arzi, M A Guedeau-Boudeville, V Frette, D Kandel, J Stavans. Pearling instabilities of membrane tubes with anchored polymers.
Physical review letters.
2001 Feb; 86(6):1138-41. doi:
10.1103/physrevlett.86.1138
. [PMID: 11178029] - J Davidsen, C Vermehren, S Frøkjaer, O G Mouritsen, K Jørgensen. Enzymatic degradation of polymer covered SOPC-liposomes in relation to drug delivery.
Advances in colloid and interface science.
2001 Jan; 89-90(?):303-11. doi:
10.1016/s0001-8686(00)00058-0
. [PMID: 11215800] - J M Holopainen, O P Medina, A J Metso, P K Kinnunen. Sphingomyelinase activity associated with human plasma low density lipoprotein.
The Journal of biological chemistry.
2000 Jun; 275(22):16484-9. doi:
10.1074/jbc.275.22.16484
. [PMID: 10828058] - H Brockman, G Graff, J Spellman, J Yanni. A comparison of the effects of olopatadine and ketotifen on model membranes.
Acta ophthalmologica Scandinavica. Supplement.
2000; ?(230):10-5. doi:
10.1034/j.1600-0420.2000.078s230010.x
. [PMID: 11057342] - A Iglic, V Kralj-Iglic, J Majhenc. Cylindrical shapes of closed lipid bilayer structures correspond to an extreme area difference between the two monolayers of the bilayer.
Journal of biomechanics.
1999 Dec; 32(12):1343-7. doi:
10.1016/s0021-9290(99)00136-0
. [PMID: 10569713] - E I Pécheur, J Sainte-Marie, A Bienvenüe, D Hoekstra. Lipid headgroup spacing and peptide penetration, but not peptide oligomerization, modulate peptide-induced fusion.
Biochemistry.
1999 Jan; 38(1):364-73. doi:
10.1021/bi981389u
. [PMID: 9890918] - Z Kóta, M Debreczeny, B Szalontai. Separable contributions of ordered and disordered lipid fatty acyl chain segments to nuCH2 bands in model and biological membranes: a Fourier transform infrared spectroscopic study.
Biospectroscopy.
1999; 5(3):169-78. doi:
10.1002/(sici)1520-6343(1999)5:3<169::aid-bspy6>3.0.co;2-#
. [PMID: 10380083] - S Kaneshina, H Ichimori, T Hata, H Matsuki. Barotropic phase transitions of dioleoylphosphatidylcholine and stearoyl-oleoylphosphatidylcholine bilayer membranes.
Biochimica et biophysica acta.
1998 Sep; 1374(1-2):1-8. doi:
10.1016/s0005-2736(98)00122-9
. [PMID: 9814847] - M Dahim, H Brockman. How colipase-fatty acid interactions mediate adsorption of pancreatic lipase to interfaces.
Biochemistry.
1998 Jun; 37(23):8369-77. doi:
10.1021/bi973015r
. [PMID: 9622488] - E Breukink, C van Kraaij, A van Dalen, R A Demel, R J Siezen, B de Kruijff, O P Kuipers. The orientation of nisin in membranes.
Biochemistry.
1998 Jun; 37(22):8153-62. doi:
10.1021/bi972797l
. [PMID: 9609711] - D G Hunter, B J Frisken. Effect of extrusion pressure and lipid properties on the size and polydispersity of lipid vesicles.
Biophysical journal.
1998 Jun; 74(6):2996-3002. doi:
10.1016/s0006-3495(98)78006-3
. [PMID: 9635753] - D Needham, N Stoicheva, D V Zhelev. Exchange of monooleoylphosphatidylcholine as monomer and micelle with membranes containing poly(ethylene glycol)-lipid.
Biophysical journal.
1997 Nov; 73(5):2615-29. doi:
10.1016/s0006-3495(97)78291-2
. [PMID: 9370456] - B W Koenig, H H Strey, K Gawrisch. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation.
Biophysical journal.
1997 Oct; 73(4):1954-66. doi:
10.1016/s0006-3495(97)78226-2
. [PMID: 9336191] - M L Longo, A J Waring, D A Hammer. Interaction of the influenza hemagglutinin fusion peptide with lipid bilayers: area expansion and permeation.
Biophysical journal.
1997 Sep; 73(3):1430-9. doi:
10.1016/s0006-3495(97)78175-x
. [PMID: 9284310] - M M Momsen, M Dahim, H L Brockman. Lateral packing of the pancreatic lipase cofactor, colipase, with phosphatidylcholine and substrates.
Biochemistry.
1997 Aug; 36(33):10073-81. doi:
10.1021/bi9703857
. [PMID: 9254602] - C Vilchèze, T P McMullen, R N McElhaney, R Bittman. The effect of side-chain analogues of cholesterol on the thermotropic phase behavior of 1-stearoyl-2-oleoylphosphatidylcholine bilayers: a differential scanning calorimetric study.
Biochimica et biophysica acta.
1996 Mar; 1279(2):235-42. doi:
10.1016/0005-2736(95)00258-8
. [PMID: 8603092] - T D Osborn, P Yager. Modeling success and failure of Langmuir-Blodgett transfer of phospholipid bilayers to silicon dioxide.
Biophysical journal.
1995 Apr; 68(4):1364-73. doi:
10.1016/s0006-3495(95)80309-7
. [PMID: 7540429] - D V Zhelev, D Needham, R M Hochmuth. A novel micropipet method for measuring the bending modulus of vesicle membranes.
Biophysical journal.
1994 Aug; 67(2):720-7. doi:
10.1016/s0006-3495(94)80530-2
. [PMID: 7948685] - J M Smaby, J M Muderhwa, H L Brockman. Is lateral phase separation required for fatty acid to stimulate lipases in a phosphatidylcholine interface?.
Biochemistry.
1994 Feb; 33(7):1915-22. doi:
10.1021/bi00173a039
. [PMID: 8110796] - J Song, R E Waugh. Bending rigidity of SOPC membranes containing cholesterol.
Biophysical journal.
1993 Jun; 64(6):1967-70. doi:
10.1016/s0006-3495(93)81566-2
. [PMID: 8369417] - M R Morrow, D Singh, D Lu, C W Grant. Glycosphingolipid acyl chain orientational order in unsaturated phosphatidylcholine bilayers.
Biophysical journal.
1993 Mar; 64(3):654-64. doi:
10.1016/s0006-3495(93)81424-3
. [PMID: 8471718] - D Lu, D Singh, M R Morrow, C W Grant. Effect of glycosphingolipid fatty acid chain length on behavior in unsaturated phosphatidylcholine bilayers: a 2H NMR study.
Biochemistry.
1993 Jan; 32(1):290-7. doi:
10.1021/bi00052a037
. [PMID: 8418849] - D Needham. Measurement of interbilayer adhesion energies.
Methods in enzymology.
1993; 220(?):111-29. doi:
10.1016/0076-6879(93)20078-h
. [PMID: 8350749] - T G Redgrave, V Rakic, B C Mortimer, J C Mamo. Effects of sphingomyelin and phosphatidylcholine acyl chains on the clearance of triacylglycerol-rich lipoproteins from plasma. Studies with lipid emulsions in rats.
Biochimica et biophysica acta.
1992 Jun; 1126(1):65-72. doi:
10.1016/0005-2760(92)90218-k
. [PMID: 1606176] - M C Dai, H B Chiche, N Düzgüneş, E Ayanoglu, C Djerassi. Phospholipid studies of marine organisms: 26. Interactions of some marine sterols with 1-stearoyl-2-oleoyl phosphatidylcholine (SOPC) in model membranes.
Chemistry and physics of lipids.
1991 Oct; 59(3):245-53. doi:
10.1016/0009-3084(91)90024-6
. [PMID: 1804568] - J Song, R E Waugh. Bilayer membrane bending stiffness by tether formation from mixed PC-PS lipid vesicles.
Journal of biomechanical engineering.
1990 Aug; 112(3):235-40. doi:
10.1115/1.2891178
. [PMID: 2214704] - D Needham, R M Hochmuth. Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility.
Biophysical journal.
1989 May; 55(5):1001-9. doi:
10.1016/s0006-3495(89)82898-x
. [PMID: 2720075] - L Bo, R E Waugh. Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles.
Biophysical journal.
1989 Mar; 55(3):509-17. doi:
10.1016/s0006-3495(89)82844-9
. [PMID: 2930831] - B A Cunningham, T Tsujita, H L Brockman. Enzymatic and physical characterization of diacylglycerol-phosphatidylcholine interactions in bilayers and monolayers.
Biochemistry.
1989 Jan; 28(1):32-40. doi:
10.1021/bi00427a006
. [PMID: 2706255] - R P Rand, N Fuller, V A Parsegian, D C Rau. Variation in hydration forces between neutral phospholipid bilayers: evidence for hydration attraction.
Biochemistry.
1988 Oct; 27(20):7711-22. doi:
10.1021/bi00420a021
. [PMID: 3207702] - M Jaworsky, R Mendelsohn. Fourier-transform infrared studies of CaATPase partitioning in phospholipid mixtures of 1,2-dipalmitoylphosphatidylcholine-d62 with 1-palmitoyl-2-oleoylphosphatidylethanolamine and 1-stearoyl-2-oleoylphosphatidylcholine.
Biochemistry.
1985 Jul; 24(14):3422-8. doi:
10.1021/bi00335a005
. [PMID: 2931112]