Exact Mass: 785.55704

Exact Mass Matches: 785.55704

Found 500 metabolites which its exact mass value is equals to given mass value 785.55704, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PC(18:0/18:2(9Z,12Z))

trimethyl(2-{[(2R)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-3-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C44H84NO8P (785.5934234)


PC(18:0/18:2(9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:0/18:2(9Z,12Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the linoleic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:1(9Z)/18:1(9Z))

(R-(Z,Z))-(7-Oleoyl-4-oxido-10-oxo-3,5,9-trioxa-4-phosphaheptacos-18-enyl)trimethylammonium 4-oxide

C44H84NO8P (785.5934234)


PC(18:1(9Z)/18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(9Z)/18:1(9Z)), in particular, consists of two chains of oleic acid at the C-1 and C-2 positions. The oleic acid moieties are derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Dioleoylphosphatidylcholine is found in human platelets and red blood cells, in mitochondria from skeletal muscle, lung, umbilical artery and vein endothelial cells (PMID: 15351277, 7138900, 2351875, 4046747, 2755318).While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(14:0/22:2(13Z,16Z))

(2-{[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C44H84NO8P (785.5934234)


PC(14:0/22:2(13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/22:2(13Z,16Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(14:1(9Z)/22:1(13Z))

(2-{[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C44H84NO8P (785.5934234)


PC(14:1(9Z)/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:1(9Z)/22:1(13Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of erucic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(16:0/20:2(11Z,14Z))

(2-{[(2R)-3-(hexadecanoyloxy)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C44H84NO8P (785.5934234)


PC(16:0/20:2(11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/20:2(11Z,14Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(16:1(9Z)/20:1(11Z))

(2-{[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(11Z)-icos-11-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C44H84NO8P (785.5934234)


PC(16:1(9Z)/20:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:1(9Z)/20:1(11Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(16:1(9Z)/20:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:1(9Z)/20:1(11Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:1(11Z)/18:1(11Z))

(2-{[(2R)-2,3-bis[(11Z)-octadec-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H84NO8P (785.5934234)


PC(18:1(11Z)/18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(11Z)/18:1(11Z)), in particular, consists of two chains of vaccenic acid at the C-1 and C-2 positions. The vaccenic acid moieties are derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:1(11Z)/18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(11Z)/18:1(11Z)), in particular, consists of two chains of vaccenic acid at the C-1 and C-2 positions. The vaccenic acid moieties are derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:1(11Z)/18:1(9Z))

trimethyl(2-{[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propyl phosphonato]oxy}ethyl)azanium

C44H84NO8P (785.5934234)


PC(18:1(11Z)/18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(11Z)/18:1(9Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:1(11Z)/18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(11Z)/18:1(9Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:1(9Z)/18:1(11Z))

trimethyl(2-{[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propyl phosphonato]oxy}ethyl)azanium

C44H84NO8P (785.5934234)


PC(18:1(9Z)/18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(9Z)/18:1(11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:1(9Z)/18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(9Z)/18:1(11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:2(9Z,12Z)/18:0)

trimethyl(2-{[(2R)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-2-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C44H84NO8P (785.5934234)


PC(18:2(9Z,12Z)/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:2(9Z,12Z)/18:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of stearic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(20:1(11Z)/16:1(9Z))

(2-{[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(11Z)-icos-11-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C44H84NO8P (785.5934234)


PC(20:1(11Z)/16:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:1(11Z)/16:1(9Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:1(11Z)/16:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:1(11Z)/16:1(9Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:2(11Z,14Z)/16:0)

(2-{[(2R)-2-(hexadecanoyloxy)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C44H84NO8P (785.5934234)


PC(20:2(11Z,14Z)/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:2(11Z,14Z)/16:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:1(13Z)/14:1(9Z))

(2-{[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C44H84NO8P (785.5934234)


PC(22:1(13Z)/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:1(13Z)/14:1(9Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(22:1(13Z)/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:1(13Z)/14:1(9Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(22:2(13Z,16Z)/14:0)

(2-{[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C44H84NO8P (785.5934234)


PC(22:2(13Z,16Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:2(13Z,16Z)/14:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of myristic acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PE-NMe(14:1(9Z)/24:1(15Z))

[2-(methylamino)ethoxy]({2-[(15Z)-tetracos-15-enoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy})phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(14:1(9Z)/24:1(15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:1(9Z)/24:1(15Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:0/22:2(13Z,16Z))

{2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-(hexadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(16:0/22:2(13Z,16Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:0/22:2(13Z,16Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:1(9Z)/22:1(13Z))

{2-[(13Z)-docos-13-enoyloxy]-3-[(9Z)-hexadec-9-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(16:1(9Z)/22:1(13Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:1(9Z)/22:1(13Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:0/20:2(11Z,14Z))

{2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-(octadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(18:0/20:2(11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:0/20:2(11Z,14Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(11Z)/20:1(11Z))

{2-[(11Z)-icos-11-enoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(18:1(11Z)/20:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(11Z)/20:1(11Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(9Z)/20:1(11Z))

{2-[(11Z)-icos-11-enoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(18:1(9Z)/20:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(9Z)/20:1(11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:2(9Z,12Z)/20:0)

[2-(icosanoyloxy)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(18:2(9Z,12Z)/20:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:2(9Z,12Z)/20:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:0/18:2(9Z,12Z))

[3-(icosanoyloxy)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(20:0/18:2(9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:0/18:2(9Z,12Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:1(11Z)/18:1(11Z))

{3-[(11Z)-icos-11-enoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(20:1(11Z)/18:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:1(11Z)/18:1(11Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:1(11Z)/18:1(9Z))

{3-[(11Z)-icos-11-enoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(20:1(11Z)/18:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:1(11Z)/18:1(9Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of oleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:2(11Z,14Z)/18:0)

{3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-(octadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(20:2(11Z,14Z)/18:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:2(11Z,14Z)/18:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:1(13Z)/16:1(9Z))

{3-[(13Z)-docos-13-enoyloxy]-2-[(9Z)-hexadec-9-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(22:1(13Z)/16:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:1(13Z)/16:1(9Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:2(13Z,16Z)/16:0)

{3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-(hexadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(22:2(13Z,16Z)/16:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:2(13Z,16Z)/16:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(24:1(15Z)/14:1(9Z))

[2-(methylamino)ethoxy]({3-[(15Z)-tetracos-15-enoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy})phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe(24:1(15Z)/14:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(24:1(15Z)/14:1(9Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(15:0/22:2(13Z,16Z))

[2-(dimethylamino)ethoxy]({2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-(pentadecanoyloxy)propoxy})phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe2(15:0/22:2(13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(15:0/22:2(13Z,16Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:2(13Z,16Z)/15:0)

[2-(dimethylamino)ethoxy]({3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-(pentadecanoyloxy)propoxy})phosphinic acid

C44H84NO8P (785.5934234)


PE-NMe2(22:2(13Z,16Z)/15:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:2(13Z,16Z)/15:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE(18:0/20:3(6,8,11)-OH(5))

(2-aminoethoxy)[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(18:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:3(6,8,11)-OH(5)/18:0)

(2-aminoethoxy)[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(20:3(6,8,11)-OH(5)/18:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(6,8,11)-OH(5)/18:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:0/18:2(10E,12Z)+=O(9))

(2-aminoethoxy)[(2R)-3-(icosanoyloxy)-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(20:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:2(10E,12Z)+=O(9)/20:0)

(2-aminoethoxy)[(2R)-2-(icosanoyloxy)-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(18:2(10E,12Z)+=O(9)/20:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:2(10E,12Z)+=O(9)/20:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:0/18:2(9Z,11E)+=O(13))

(2-aminoethoxy)[(2R)-3-(icosanoyloxy)-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(20:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:2(9Z,11E)+=O(13)/20:0)

(2-aminoethoxy)[(2R)-2-(icosanoyloxy)-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(18:2(9Z,11E)+=O(13)/20:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:2(9Z,11E)+=O(13)/20:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:0/18:3(10,12,15)-OH(9))

(2-aminoethoxy)[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-(icosanoyloxy)propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(20:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:3(10,12,15)-OH(9)/20:0)

(2-aminoethoxy)[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-(icosanoyloxy)propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(18:3(10,12,15)-OH(9)/20:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:3(10,12,15)-OH(9)/20:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:0/18:3(9,11,15)-OH(13))

(2-aminoethoxy)[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-(icosanoyloxy)propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(20:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:3(9,11,15)-OH(13)/20:0)

(2-aminoethoxy)[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-(icosanoyloxy)propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(18:3(9,11,15)-OH(13)/20:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:3(9,11,15)-OH(13)/20:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:1(11Z)/18:1(12Z)-O(9S,10R))

(2-aminoethoxy)[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(20:1(11Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:1(11Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:1(12Z)-O(9S,10R)/20:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(18:1(12Z)-O(9S,10R)/20:1(11Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(12Z)-O(9S,10R)/20:1(11Z)), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:1(11Z)/18:1(9Z)-O(12,13))

(2-aminoethoxy)[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(20:1(11Z)/18:1(9Z)-O(12,13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:1(11Z)/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:1(9Z)-O(12,13)/20:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(18:1(9Z)-O(12,13)/20:1(11Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(9Z)-O(12,13)/20:1(11Z)), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(P-18:0/20:3(8Z,11Z,14Z)-2OH(5,6))

(2-aminoethoxy)[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(P-18:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(P-18:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:3(8Z,11Z,14Z)-2OH(5,6)/P-18:0)

(2-aminoethoxy)[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(1E)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C43H80NO9P (785.55704)


PE(20:3(8Z,11Z,14Z)-2OH(5,6)/P-18:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(8Z,11Z,14Z)-2OH(5,6)/P-18:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(15:0/20:3(6,8,11)-OH(5))

(2-{[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-(pentadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C43H80NO9P (785.55704)


PC(15:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(15:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(6,8,11)-OH(5)/15:0)

(2-{[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-(pentadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C43H80NO9P (785.55704)


PC(20:3(6,8,11)-OH(5)/15:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(6,8,11)-OH(5)/15:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(17:0/18:2(10E,12Z)+=O(9))

(2-{[(2R)-3-(heptadecanoyloxy)-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C43H80NO9P (785.55704)


PC(17:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(17:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one heptadecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:2(10E,12Z)+=O(9)/17:0)

(2-{[(2R)-2-(heptadecanoyloxy)-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C43H80NO9P (785.55704)


PC(18:2(10E,12Z)+=O(9)/17:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:2(10E,12Z)+=O(9)/17:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of heptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(17:0/18:2(9Z,11E)+=O(13))

(2-{[(2R)-3-(heptadecanoyloxy)-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C43H80NO9P (785.55704)


PC(17:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(17:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one heptadecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:2(9Z,11E)+=O(13)/17:0)

(2-{[(2R)-2-(heptadecanoyloxy)-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C43H80NO9P (785.55704)


PC(18:2(9Z,11E)+=O(13)/17:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:2(9Z,11E)+=O(13)/17:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of heptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(17:0/18:3(10,12,15)-OH(9))

(2-{[(2R)-3-(heptadecanoyloxy)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C43H80NO9P (785.55704)


PC(17:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(17:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one heptadecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:3(10,12,15)-OH(9)/17:0)

(2-{[(2R)-2-(heptadecanoyloxy)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C43H80NO9P (785.55704)


PC(18:3(10,12,15)-OH(9)/17:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:3(10,12,15)-OH(9)/17:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of heptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(17:0/18:3(9,11,15)-OH(13))

(2-{[(2R)-3-(heptadecanoyloxy)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C43H80NO9P (785.55704)


PC(17:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(17:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one heptadecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:3(9,11,15)-OH(13)/17:0)

(2-{[(2R)-2-(heptadecanoyloxy)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C43H80NO9P (785.55704)


PC(18:3(9,11,15)-OH(13)/17:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:3(9,11,15)-OH(13)/17:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of heptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/18:1(12Z)-O(9S,10R))

trimethyl(2-{[(2R)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)azanium

C44H84NO8P (785.5934234)


PC(P-18:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(12Z)-O(9S,10R)/P-18:0)

trimethyl(2-{[(2R)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-2-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)azanium

C44H84NO8P (785.5934234)


PC(18:1(12Z)-O(9S,10R)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(12Z)-O(9S,10R)/P-18:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/18:1(9Z)-O(12,13))

trimethyl(2-{[(2R)-3-[(1E)-octadec-1-en-1-yloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C44H84NO8P (785.5934234)


PC(P-18:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(9Z)-O(12,13)/P-18:0)

trimethyl(2-{[(2R)-2-[(1E)-octadec-1-en-1-yloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C44H84NO8P (785.5934234)


PC(18:1(9Z)-O(12,13)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(9Z)-O(12,13)/P-18:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

Phosphatidylcholine 18:0-18:2

Phosphatidylcholine 18:0-18:2

C44H84NO8P (785.5934234)


   

Phosphatidylcholine 18:1-18:1

Phosphatidylcholine 18:1-18:1

C44H84NO8P (785.5934234)


   

Phosphatidylserine 18:0-18:2

Phosphatidylserine 18:0-18:2

C43H80NO9P (785.55704)


PRECURSOR_TYPE [M-H]-/[M-Ser]-

   

Phosphatidylserine 18:1-18:1

Phosphatidylserine 18:1-18:1

C43H80NO9P (785.55704)


PRECURSOR_TYPE [M-H]-/[M-Ser]-

   
   
   
   

1-Hexadecylthio-1-deoxy-2-hexadecylphosphono-sn-glycero-3-phosphocholine

1-Hexadecylthio-1-deoxy-2-hexadecylphosphono-sn-glycero-3-phosphocholine

C40H85NO7P2S (785.552168)


   

PC(18:1(9Z)/18:1(9Z))

1,2-DIOLEOYL-SN-GLYCERO-3-PHOSPHOCHOLINE

C44H84NO8P (785.5934234)


   

trimethyl(2-{[3-[octadeca-9,12-dienoyloxy]-2-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

trimethyl(2-{[3-[octadeca-9,12-dienoyloxy]-2-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C44H84NO8P (785.5934234)


   

PC 36:2

Choline phosphate, 3-ester with L-1,2-diolein;Olein, 1,2-di-, L-, dihydrogen phosphate, monoester with choline hydroxide

C44H84NO8P (785.5934234)


Found in mouse brain; TwoDicalId=185; MgfFile=160720_brain_DHA_12_Neg; MgfId=1172 Found in mouse small intestine; TwoDicalId=38; MgfFile=160907_Small_Intestine_EPA_Neg_08; MgfId=1404

   

trimethyl(2-{[2-[octadeca-9.12-dienoyloxy]-3-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

trimethyl(2-{[2-[octadeca-9.12-dienoyloxy]-3-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C44H84NO8P (785.5934234)


   

PC(16:0/20:2)[U]

3,5,8-Trioxa-4-phosphaoctacosa-19,22-dien-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxohexadecyl)oxy]methyl]-, inner salt, 4-oxide

C44H84NO8P (785.5934234)


   

PC(18:0/18:2)

3,5,9-Trioxa-4-phosphaheptacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxo-10,12-octadecadienyl)oxy]-, inner salt, 4-oxide, [R-(Z,Z)]-

C44H84NO8P (785.5934234)


   

PC(18:0/18:2)[U]

3,5,9-Trioxa-4-phosphaheptacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxo-6,9-octadecadienyl)oxy]-, inner salt, 4-oxide, (Z,Z)-

C44H84NO8P (785.5934234)


   

PC(18:1/18:1)[U]

3,5,9-Trioxa-4-phosphaheptacos-20-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxo-11-octadecenyl)oxy]-, inner salt, 4-oxide, (Z,Z)-

C44H84NO8P (785.5934234)


   

PC(18:1/18:1)

3,5,9-Trioxa-4-phosphaheptacos-25-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxo-16-octadecenyl)oxy]-, inner salt, 4-oxide, [R-(Z,Z)]-

C44H84NO8P (785.5934234)


   

L-Dipetroselinoyl lecithin

1,2-di-(6Z-octadecenoyl)-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

PC(18:1/18:1)[S]

3,5,9-Trioxa-4-phosphaheptacos-18-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxo-9-octadecenyl)oxy]-, inner salt, 4-oxide, [S-(Z,Z)]-

C44H84NO8P (785.5934234)


   

1,2-Dioleoyllecithin

1-(9Z-octadecenoyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

PC(18:2/18:0)[U]

1-(9Z,12Z-octadecadienoyl)-2-octadecanoyl-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

GPCho(18:2(2E,4E)/O-18:0)[U]

GPCho(18:2(2E,4E)/O-18:0)[U]

C44H84NO8P (785.5934234)


   

1,2-Dioleoyl PC

1,2-dioleoyl-sn-glycero-3-phosphatidylcholinel

C44H84NO8P (785.5934234)


   

1-(6-[5]-ladderane-hexanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphocholine

1-(6-[5]-ladderane-hexanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphocholine

C46H76NO7P (785.5359116)


   

Dioleoylphosphatidylcholine

Dioleoylphosphatidylcholine

C44H84NO8P (785.5934234)


   

Lecithin

1-Docosadienoyl-2-myristoyl-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

PC(14:1(9Z)/22:1(11Z))

1-(9Z-tetradecenoyl)-2-(11Z-docosenoyl)-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

PC(17:1(9Z)/19:1(9Z))

1-(9Z-heptadecenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

PC(17:2(9Z,12Z)/19:0)

1-(9Z,12Z-heptadecadienoyl)-2-nonadecanoyl-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

PC(19:0/17:2(9Z,12Z))

1-nonadecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

PC(19:1(9Z)/17:1(9Z))

1-(9Z-nonadecenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

PC(22:1(11Z)/14:1(9Z))

1-(11Z-docosenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

PE(17:0/22:2(13Z,16Z))

1-heptadecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PE(17:1(9Z)/22:1(11Z))

1-(9Z-heptadecenoyl)-2-(11Z-docosenoyl)-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PE(17:2(9Z,12Z)/22:0)

1-(9Z,12Z-heptadecadienoyl)-2-docosanoyl-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PE(18:2(9Z,12Z)/21:0)

1-(9Z,12Z-octadecadienoyl)-2-heneicosanoyl-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PE(19:0/20:2(11Z,14Z))

1-nonadecanoyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PE(19:1(9Z)/20:1(11Z))

1-(9Z-nonadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PE(20:1(11Z)/19:1(9Z))

1-(11Z-eicosenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PE(20:2(11Z,14Z)/19:0)

1-(11Z,14Z-eicosadienoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PE(21:0/18:2(9Z,12Z))

1-heneicosanoyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PE(22:0/17:2(9Z,12Z))

1-docosanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PE(22:1(11Z)/17:1(9Z))

1-(11Z-docosenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PE(22:2(13Z,16Z)/17:0)

1-(13Z,16Z-docosadienoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PS(P-20:0/17:2(9Z,12Z))

1-(1Z-eicosenyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoserine

C43H80NO9P (785.55704)


   

PC O-38:9

1-(6-[5]-ladderane-hexanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphocholine

C46H76NO7P (785.5359116)


   

PE 39:2

1-heneicosanoyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphoethanolamine

C44H84NO8P (785.5934234)


   

PS O-37:3

1-(1Z-eicosenyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoserine

C43H80NO9P (785.55704)


   

1,2-di-[(11Z)-octadecenoyl]-sn-glycero-3-phosphocholine

1,2-di-[(11Z)-octadecenoyl]-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


A 1,2-di-octadecenoylsn-glycero-3-phosphocholine in which the acyl group specified at positions 1 and 2 is 11Z)-octadecenoyl .

   

1,2-di-[(6Z)-octadecenoyl]-sn-glycero-3-phosphocholine

1,2-di-[(6Z)-octadecenoyl]-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


A 1,2-di-octadecenoyl-sn-glycero-3-phosphocholine in which the acyl group specified at positions 1 and 2 is (6Z)-octadecenoyl.

   

Dioleoyl phosphatidylcholine

Dioleoyl phosphatidylcholine

C44H84NO8P (785.5934234)


   

1-octadecanoyl-2-[(10Z,12Z)-octadecadienoyl]-sn-glycero-3-phosphocholine

1-octadecanoyl-2-[(10Z,12Z)-octadecadienoyl]-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


A phosphatidylcholine 36:2 in which the acyl groups specified at positions 1 and 2 are octadecanoyl and (10Z,12Z)-octadecadienoyl respectively

   

1-octadecanoyl-2-[(2E,4E)-octadecadienoyl]-sn-glycero-3-phosphocholine

1-octadecanoyl-2-[(2E,4E)-octadecadienoyl]-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


A phosphatidylcholine 36:2 in which the acyl groups specified at positions 1 and 2 are octadecanoyl and (2E,4E)-octadecadienoyl respectively.

   

1-octadecanoyl-2-[(6Z,9Z)-octadecadienoyl]-sn-glycero-3-phosphocholine

1-octadecanoyl-2-[(6Z,9Z)-octadecadienoyl]-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


A phosphatidylcholine 36:2 in which the acyl groups specified at positions 1 and 2 are octadecanoyl and (6Z,9Z)-octadecadienoyl respectively.

   

[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

PC(P-18:0/18:1(12Z)-O(9S,10R))

PC(P-18:0/18:1(12Z)-O(9S,10R))

C44H84NO8P (785.5934234)


   

PC(18:1(12Z)-O(9S,10R)/P-18:0)

PC(18:1(12Z)-O(9S,10R)/P-18:0)

C44H84NO8P (785.5934234)


   

PE(20:0/18:2(10E,12Z)+=O(9))

PE(20:0/18:2(10E,12Z)+=O(9))

C43H80NO9P (785.55704)


   

PE(18:2(10E,12Z)+=O(9)/20:0)

PE(18:2(10E,12Z)+=O(9)/20:0)

C43H80NO9P (785.55704)


   

PE(20:0/18:2(9Z,11E)+=O(13))

PE(20:0/18:2(9Z,11E)+=O(13))

C43H80NO9P (785.55704)


   

PE(18:2(9Z,11E)+=O(13)/20:0)

PE(18:2(9Z,11E)+=O(13)/20:0)

C43H80NO9P (785.55704)


   

PC(17:0/18:2(10E,12Z)+=O(9))

PC(17:0/18:2(10E,12Z)+=O(9))

C43H80NO9P (785.55704)


   

PC(18:2(10E,12Z)+=O(9)/17:0)

PC(18:2(10E,12Z)+=O(9)/17:0)

C43H80NO9P (785.55704)


   

PC(17:0/18:2(9Z,11E)+=O(13))

PC(17:0/18:2(9Z,11E)+=O(13))

C43H80NO9P (785.55704)


   

PC(18:2(9Z,11E)+=O(13)/17:0)

PC(18:2(9Z,11E)+=O(13)/17:0)

C43H80NO9P (785.55704)


   

PC(P-18:0/18:1(9Z)-O(12,13))

PC(P-18:0/18:1(9Z)-O(12,13))

C44H84NO8P (785.5934234)


   

PC(18:1(9Z)-O(12,13)/P-18:0)

PC(18:1(9Z)-O(12,13)/P-18:0)

C44H84NO8P (785.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

C43H80NO9P (785.55704)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-octadecanoyloxypropyl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-octadecanoyloxypropyl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

C43H80NO9P (785.55704)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxypropyl] icosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxypropyl] icosanoate

C43H80NO9P (785.55704)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxypropan-2-yl] icosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxypropan-2-yl] icosanoate

C43H80NO9P (785.55704)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxypropyl] icosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxypropyl] icosanoate

C43H80NO9P (785.55704)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxypropan-2-yl] icosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxypropan-2-yl] icosanoate

C43H80NO9P (785.55704)


   

PE(20:1(11Z)/18:1(12Z)-O(9S,10R))

PE(20:1(11Z)/18:1(12Z)-O(9S,10R))

C43H80NO9P (785.55704)


   

PE(18:1(12Z)-O(9S,10R)/20:1(11Z))

PE(18:1(12Z)-O(9S,10R)/20:1(11Z))

C43H80NO9P (785.55704)


   

PE(20:1(11Z)/18:1(9Z)-O(12,13))

PE(20:1(11Z)/18:1(9Z)-O(12,13))

C43H80NO9P (785.55704)


   

PE(18:1(9Z)-O(12,13)/20:1(11Z))

PE(18:1(9Z)-O(12,13)/20:1(11Z))

C43H80NO9P (785.55704)


   

PE(P-18:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PE(P-18:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C43H80NO9P (785.55704)


   

PE(20:3(8Z,11Z,14Z)-2OH(5,6)/P-18:0)

PE(20:3(8Z,11Z,14Z)-2OH(5,6)/P-18:0)

C43H80NO9P (785.55704)


   

[(2R)-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO9P (785.55704)


   

[(2R)-3-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO9P (785.55704)


   

[(2R)-3-heptadecanoyloxy-2-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-heptadecanoyloxy-2-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO9P (785.55704)


   

[(2R)-2-heptadecanoyloxy-3-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-heptadecanoyloxy-3-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO9P (785.55704)


   

[(2R)-3-heptadecanoyloxy-2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-heptadecanoyloxy-2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO9P (785.55704)


   

[(2R)-2-heptadecanoyloxy-3-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-heptadecanoyloxy-3-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO9P (785.55704)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O9P+ (785.5444648)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O9P+ (785.5444648)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O9P+ (785.5444648)


   

2-[[(2S,3R,4E,8Z)-2-[[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S,3R,4E,8Z)-2-[[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H78N2O9P+ (785.5444648)


   

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoylamino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoylamino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O9P+ (785.5444648)


   

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoylamino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoylamino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O9P+ (785.5444648)


   

2-[[(2S,3R)-2-[[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]amino]-3-hydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S,3R)-2-[[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]amino]-3-hydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C43H82N2O8P+ (785.5808482000001)


   

2-[[(2S,3R)-2-[[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]amino]-3-hydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S,3R)-2-[[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]amino]-3-hydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C43H82N2O8P+ (785.5808482000001)


   

2-[[(2S,3R)-2-[[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]amino]-3-hydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S,3R)-2-[[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]amino]-3-hydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C43H82N2O8P+ (785.5808482000001)


   

2-[[(E,2S,3R)-2-[[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]amino]-3-hydroxyoctadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E,2S,3R)-2-[[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]amino]-3-hydroxyoctadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C43H82N2O8P+ (785.5808482000001)


   

N-butyryl-1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine

N-butyryl-1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine

C43H80NO9P (785.55704)


An N-acylphosphatidylethanolamine in which the N-acyl group is specified as butyryl while the phosphatidyl acyl groups at position 1 and 2 are specified as palmitoyl (hexadecanoyl) and linoleoyl (9Z,12Z-octadecadienoyl) respectively.

   

[3-hexadecanoyloxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecanoyloxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   
   
   

HexCer 23:2;2O/18:5

HexCer 23:2;2O/18:5

C47H79NO8 (785.5805374)


   

HexCer 19:1;2O/22:6

HexCer 19:1;2O/22:6

C47H79NO8 (785.5805374)


   

HexCer 15:3;2O/26:4

HexCer 15:3;2O/26:4

C47H79NO8 (785.5805374)


   

HexCer 13:1;2O/28:6

HexCer 13:1;2O/28:6

C47H79NO8 (785.5805374)


   

HexCer 15:0;2O/26:7

HexCer 15:0;2O/26:7

C47H79NO8 (785.5805374)


   

HexCer 19:3;2O/22:4

HexCer 19:3;2O/22:4

C47H79NO8 (785.5805374)


   

HexCer 11:0;2O/30:7

HexCer 11:0;2O/30:7

C47H79NO8 (785.5805374)


   

HexCer 25:3;2O/16:4

HexCer 25:3;2O/16:4

C47H79NO8 (785.5805374)


   

HexCer 15:2;2O/26:5

HexCer 15:2;2O/26:5

C47H79NO8 (785.5805374)


   

HexCer 21:3;2O/20:4

HexCer 21:3;2O/20:4

C47H79NO8 (785.5805374)


   

HexCer 17:2;2O/24:5

HexCer 17:2;2O/24:5

C47H79NO8 (785.5805374)


   

HexCer 17:1;2O/24:6

HexCer 17:1;2O/24:6

C47H79NO8 (785.5805374)


   

HexCer 21:2;2O/20:5

HexCer 21:2;2O/20:5

C47H79NO8 (785.5805374)


   

HexCer 13:0;2O/28:7

HexCer 13:0;2O/28:7

C47H79NO8 (785.5805374)


   

HexCer 11:1;2O/30:6

HexCer 11:1;2O/30:6

C47H79NO8 (785.5805374)


   

HexCer 13:2;2O/28:5

HexCer 13:2;2O/28:5

C47H79NO8 (785.5805374)


   

HexCer 17:3;2O/24:4

HexCer 17:3;2O/24:4

C47H79NO8 (785.5805374)


   

HexCer 19:2;2O/22:5

HexCer 19:2;2O/22:5

C47H79NO8 (785.5805374)


   

HexCer 15:1;2O/26:6

HexCer 15:1;2O/26:6

C47H79NO8 (785.5805374)


   

HexCer 23:3;2O/18:4

HexCer 23:3;2O/18:4

C47H79NO8 (785.5805374)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H76NO7P (785.5359116)


   

2-[3-nonanoyloxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-nonanoyloxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C47H79NO8 (785.5805374)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C47H79NO8 (785.5805374)


   

2-[2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C47H79NO8 (785.5805374)


   

2-[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C47H79NO8 (785.5805374)


   

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-pentadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-pentadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C47H79NO8 (785.5805374)


   

2-[3-[(Z)-nonadec-9-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(Z)-nonadec-9-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C47H79NO8 (785.5805374)


   

2-[2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C47H79NO8 (785.5805374)


   

2-[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C47H79NO8 (785.5805374)


   

2-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C47H79NO8 (785.5805374)


   

2-[3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C47H79NO8 (785.5805374)


   

2-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C47H79NO8 (785.5805374)


   

2-amino-3-[[3-[(Z)-henicos-11-enoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-henicos-11-enoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[3-heptadecoxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptadecoxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[2-henicosanoyloxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-henicosanoyloxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-icos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-icos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[2-heptadecanoyloxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-heptadecanoyloxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-hexadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-hexadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H76NO7P (785.5359116)


   

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[3-henicosoxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-henicosoxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[hydroxy-[2-nonadecanoyloxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-nonadecanoyloxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]phosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[hydroxy-[2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[hydroxy-[3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-pentadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-pentadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[hydroxy-[3-[(13Z,16Z)-tetracosa-13,16-dienoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(13Z,16Z)-tetracosa-13,16-dienoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[hydroxy-[2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[hydroxy-[3-nonadecoxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-nonadecoxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-undecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-undecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]phosphoryl]oxypropanoic acid

C43H80NO9P (785.55704)


   

2-[4-[12-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

2-[4-[12-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

C46H75NO7S (785.526396)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate

C44H84NO8P (785.5934234)


   
   

OxPE 38:3e+2O(1Cyc)

OxPE 38:3e+2O(1Cyc)

C43H80NO9P (785.55704)


   
   
   

[3-hexadecoxy-2-[(5Z,8Z,10Z)-12-hydroxyicosa-5,8,10-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecoxy-2-[(5Z,8Z,10Z)-12-hydroxyicosa-5,8,10-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H76NO7P (785.5359116)


   

[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H76NO7P (785.5359116)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H76NO7P (785.5359116)


   

[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H76NO7P (785.5359116)


   

[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H76NO7P (785.5359116)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H76NO7P (785.5359116)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoate

C43H80NO9P (785.55704)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (19Z,22Z)-triaconta-19,22-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (19Z,22Z)-triaconta-19,22-dienoate

C44H84NO8P (785.5934234)


   

[2-[(17Z,20Z)-octacosa-17,20-dienoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(17Z,20Z)-octacosa-17,20-dienoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] tricosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] tricosanoate

C44H84NO8P (785.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-tetracos-13-enoate

C44H84NO8P (785.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C44H84NO8P (785.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C44H84NO8P (785.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C44H84NO8P (785.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-hexacos-15-enoate

C44H84NO8P (785.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (Z)-henicos-11-enoate

C44H84NO8P (785.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C44H84NO8P (785.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (Z)-icos-11-enoate

C44H84NO8P (785.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C44H84NO8P (785.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] icosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] icosanoate

C44H84NO8P (785.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] docosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] docosanoate

C44H84NO8P (785.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] henicosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] henicosanoate

C44H84NO8P (785.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (Z)-docos-13-enoate

C44H84NO8P (785.5934234)


   

[3-[(2-amino-3-oxobutoxy)-hydroxyphosphoryl]oxy-2-[(Z)-octadec-4-enoyl]oxypropyl] (Z)-octadec-4-enoate

[3-[(2-amino-3-oxobutoxy)-hydroxyphosphoryl]oxy-2-[(Z)-octadec-4-enoyl]oxypropyl] (Z)-octadec-4-enoate

C43H80NO9P (785.55704)


   

[3-[(2-amino-3-oxobutoxy)-hydroxyphosphoryl]oxy-2-[(4Z,7Z)-octadeca-4,7-dienoyl]oxypropyl] octadecanoate

[3-[(2-amino-3-oxobutoxy)-hydroxyphosphoryl]oxy-2-[(4Z,7Z)-octadeca-4,7-dienoyl]oxypropyl] octadecanoate

C43H80NO9P (785.55704)


   

[3-dodecanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[3-decanoyloxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (6E,8E,10E,14E)-5,12-dihydroxyicosa-6,8,10,14-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (6E,8E,10E,14E)-5,12-dihydroxyicosa-6,8,10,14-tetraenoate

C43H80NO9P (785.55704)


   

[3-[(Z)-hexadec-9-enoyl]oxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-hexadec-9-enoyl]oxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[3-heptadecanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[2-[(9Z,11E)-13-hydroxyoctadeca-9,11-dienoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,11E)-13-hydroxyoctadeca-9,11-dienoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropan-2-yl] henicosanoate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2,3-bis[[(E)-octadec-4-enoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2,3-bis[[(E)-octadec-4-enoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2S)-3-[(E)-docos-13-enoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(E)-docos-13-enoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-nonadecanoyloxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-nonadecanoyloxypropyl] (5E,8E)-icosa-5,8-dienoate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-nonadecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-nonadecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-9-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-9-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2S)-2-decanoyloxy-3-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-decanoyloxy-3-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-7-enoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-7-enoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

C44H84NO8P (785.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropan-2-yl] henicosanoate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-7-enoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-7-enoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-hexadecanoyloxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-hexadecanoyloxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-hexadecanoyloxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-hexadecanoyloxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] henicosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] henicosanoate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] tricosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] tricosanoate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-decanoyloxy-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-decanoyloxy-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-7-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-7-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropan-2-yl] henicosanoate

C44H84NO8P (785.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-tetracos-15-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-tetracos-15-enoate

C44H84NO8P (785.5934234)


   

[(2R)-2,3-bis[[(E)-octadec-7-enoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2,3-bis[[(E)-octadec-7-enoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2S)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-9-enoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-9-enoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-11-enoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-11-enoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] henicosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] henicosanoate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-hexadecanoyloxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-hexadecanoyloxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-11-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-11-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] docosanoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] docosanoate

C44H84NO8P (785.5934234)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate

C44H84NO8P (785.5934234)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] henicosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] henicosanoate

C44H84NO8P (785.5934234)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] henicosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] henicosanoate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] docosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] docosanoate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-13-enoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-13-enoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (E)-docos-13-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (E)-docos-13-enoate

C44H84NO8P (785.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropan-2-yl] henicosanoate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-7-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-7-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (E)-docos-13-enoate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (5E,9E)-hexacosa-5,9-dienoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (5E,9E)-hexacosa-5,9-dienoate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-2,3-bis[[(E)-octadec-13-enoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2,3-bis[[(E)-octadec-13-enoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-9-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-9-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-hexadecanoyloxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-hexadecanoyloxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H84NO8P (785.5934234)


   

2-[[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]amino]-3-hydroxynonoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]amino]-3-hydroxynonoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H78N2O6P+ (785.5597198)


   

2-[[(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxypentadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxypentadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H78N2O6P+ (785.5597198)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]trideca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]trideca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C46H78N2O6P+ (785.5597198)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C46H78N2O6P+ (785.5597198)


   

2-[[(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H78N2O6P+ (785.5597198)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]undec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]undec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C46H78N2O6P+ (785.5597198)


   

2-[[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxynonadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxynonadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H78N2O6P+ (785.5597198)


   

2-[[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxynon-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxynon-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H78N2O6P+ (785.5597198)


   

1,2-DIOLEOYL-SN-GLYCERO-3-PHOSPHOCHOLINE

1,2-DIOLEOYL-SN-GLYCERO-3-PHOSPHOCHOLINE

C44H84NO8P (785.5934234)


A phosphatidylcholine 36:2 in which the phosphatidyl acyl groups at positions 1 and 2 are both oleoyl.

   

1-Stearoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine

1-Stearoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine

C44H84NO8P (785.5934234)


   

1-Linoleoyl-2-stearoyl-sn-glycero-3-phosphocholine

1-Linoleoyl-2-stearoyl-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

PC(14:0/22:2(13Z,16Z))

PC(14:0/22:2(13Z,16Z))

C44H84NO8P (785.5934234)


   

1-(9Z-hexadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphocholine

1-(9Z-hexadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

PC(20:1(11Z)/16:1(9Z))

PC(20:1(11Z)/16:1(9Z))

C44H84NO8P (785.5934234)


   

1-(11Z,14Z-eicosadienoyl)-2-hexadecanoyl-glycero-3-phosphocholine

1-(11Z,14Z-eicosadienoyl)-2-hexadecanoyl-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

1-(13Z,16Z-docosadienoyl)-2-tetradecanoyl-glycero-3-phosphocholine

1-(13Z,16Z-docosadienoyl)-2-tetradecanoyl-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

1-(9Z-tetradecenoyl)-2-(13Z-docosenoyl)-sn-glycero-3-phosphocholine

1-(9Z-tetradecenoyl)-2-(13Z-docosenoyl)-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

1-(11Z-octadecenoyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine

1-(11Z-octadecenoyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

PC(18:1(9Z)/18:1(11Z))

PC(18:1(9Z)/18:1(11Z))

C44H84NO8P (785.5934234)


   

1-(13Z-docosenoyl)-2-(9Z-tetradecenoyl)-sn-glycero-3-phosphocholine

1-(13Z-docosenoyl)-2-(9Z-tetradecenoyl)-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

1-palmitoyl-2-(11Z,14Z-eicosadienoyl)-sn-glycero-3-phosphocholine

1-palmitoyl-2-(11Z,14Z-eicosadienoyl)-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups specified at positions 1 and 2 are palmitoyl and (11Z,14Z)-eicosadienoyl respectively.

   

PE-NMe(18:2(9Z,12Z)/20:0)

PE-NMe(18:2(9Z,12Z)/20:0)

C44H84NO8P (785.5934234)


   

PE-NMe(20:0/18:2(9Z,12Z))

PE-NMe(20:0/18:2(9Z,12Z))

C44H84NO8P (785.5934234)


   

PE-NMe(14:1(9Z)/24:1(15Z))

PE-NMe(14:1(9Z)/24:1(15Z))

C44H84NO8P (785.5934234)


   

PE-NMe(16:0/22:2(13Z,16Z))

PE-NMe(16:0/22:2(13Z,16Z))

C44H84NO8P (785.5934234)


   

PE-NMe(16:1(9Z)/22:1(13Z))

PE-NMe(16:1(9Z)/22:1(13Z))

C44H84NO8P (785.5934234)


   

PE-NMe(18:0/20:2(11Z,14Z))

PE-NMe(18:0/20:2(11Z,14Z))

C44H84NO8P (785.5934234)


   

PE-NMe(18:1(9Z)/20:1(11Z))

PE-NMe(18:1(9Z)/20:1(11Z))

C44H84NO8P (785.5934234)


   

PE-NMe(20:1(11Z)/18:1(9Z))

PE-NMe(20:1(11Z)/18:1(9Z))

C44H84NO8P (785.5934234)


   

PE-NMe(20:2(11Z,14Z)/18:0)

PE-NMe(20:2(11Z,14Z)/18:0)

C44H84NO8P (785.5934234)


   

PE-NMe(22:1(13Z)/16:1(9Z))

PE-NMe(22:1(13Z)/16:1(9Z))

C44H84NO8P (785.5934234)


   

PE-NMe(22:2(13Z,16Z)/16:0)

PE-NMe(22:2(13Z,16Z)/16:0)

C44H84NO8P (785.5934234)


   

PE-NMe(24:1(15Z)/14:1(9Z))

PE-NMe(24:1(15Z)/14:1(9Z))

C44H84NO8P (785.5934234)


   

PE-NMe(18:1(11Z)/20:1(11Z))

PE-NMe(18:1(11Z)/20:1(11Z))

C44H84NO8P (785.5934234)


   

PE-NMe(20:1(11Z)/18:1(11Z))

PE-NMe(20:1(11Z)/18:1(11Z))

C44H84NO8P (785.5934234)


   

PE-NMe2(15:0/22:2(13Z,16Z))

PE-NMe2(15:0/22:2(13Z,16Z))

C44H84NO8P (785.5934234)


   

PE-NMe2(22:2(13Z,16Z)/15:0)

PE-NMe2(22:2(13Z,16Z)/15:0)

C44H84NO8P (785.5934234)


   

1,2-di-(5Z-octadecenoyl)-sn-glycero-3-phosphocholine

1,2-di-(5Z-octadecenoyl)-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

1,2-di-(15Z-octadecenoyl)-sn-glycero-3-phosphocholine

1,2-di-(15Z-octadecenoyl)-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

1,2-di-(17Z-octadecenoyl)-sn-glycero-3-phosphocholine

1,2-di-(17Z-octadecenoyl)-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


   

1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine

1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at position 1 and 2 are specified as stearoyl and linoleoyl respectively.

   

phosphatidylcholine (18:0/18:2)

phosphatidylcholine (18:0/18:2)

C44H84NO8P (785.5934234)


A phosphatidylcholine 36:2 in which the fatty acyl groups at positions 1 and 2 are specified as C18:0 and C18:2 respectively.

   

1,2-di-octadecenoyl-sn-glycero-3-phosphocholine

1,2-di-octadecenoyl-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


A phosphatidylcholine 36:2 in which the acyl group both at positions 1 and 2 is octadecenoyl with double bond at unspecified position.

   

phosphatidylcholine 36:2

phosphatidylcholine 36:2

C44H84NO8P (785.5934234)


A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 36 carbons in total and 2 double bonds.

   

PC(14:1(9Z)/22:1(13Z))

PC(14:1(9Z)/22:1(13Z))

C44H84NO8P (785.5934234)


   

PC(18:1(11Z)/18:1(9Z))

PC(18:1(11Z)/18:1(9Z))

C44H84NO8P (785.5934234)


   

PC(16:1(9Z)/20:1(11Z))

PC(16:1(9Z)/20:1(11Z))

C44H84NO8P (785.5934234)


   

1-octadecanoyl-2-[(9Z,12Z)-octadecadienoyl]-sn-glycero-3-phosphocholine

1-octadecanoyl-2-[(9Z,12Z)-octadecadienoyl]-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


A phosphatidylcholine 36:2 in which the acyl groups positions 1 and 2 are specified as octadecanoyl and (9Z,12Z)-octadecadienoyl respectively.

   

1-[(9Z,12Z)-octadecadienoyl]-2-octadecanoyl-sn-glycero-3-phosphocholine

1-[(9Z,12Z)-octadecadienoyl]-2-octadecanoyl-sn-glycero-3-phosphocholine

C44H84NO8P (785.5934234)


A phosphatidylcholine 36:2 in which the acyl groups specified at positions 1 and 2 are (9Z,12Z)-octadecadienoyl and octadecanoyl respectively.

   

PC(22:2(13Z,16Z)/14:0)

PC(22:2(13Z,16Z)/14:0)

C44H84NO8P (785.5934234)


   

PC(22:1(13Z)/14:1(9Z))

PC(22:1(13Z)/14:1(9Z))

C44H84NO8P (785.5934234)


   

PC(20:2(11Z,14Z)/16:0)

PC(20:2(11Z,14Z)/16:0)

C44H84NO8P (785.5934234)


   

MePC(35:2)

MePC(17:0_18:2)

C44H84NO8P (785.5934234)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PC(18:1_18:1)

PC(18:1_18:1)

C44H84NO8P (785.5934234)


PANOMIX internal lipid standards

   

PC(18:0-18:2)

PC(18:0-18:2)

C44H84NO8P (785.5934234)


PANOMIX internal lipid standards

   

dMePE(37:2)

dMePE(19:1_18:1)

C44H84NO8P (785.5934234)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   

PC P-38:8 or PC O-38:9

PC P-38:8 or PC O-38:9

C46H76NO7P (785.5359116)


   
   
   
   
   
   

PE O-18:0/20:4;O2

PE O-18:0/20:4;O2

C43H80NO9P (785.55704)


   
   

PE P-18:0/20:3;O2

PE P-18:0/20:3;O2

C43H80NO9P (785.55704)


   

PE P-20:1/18:2;O2

PE P-20:1/18:2;O2

C43H80NO9P (785.55704)


   
   
   
   
   
   
   
   
   
   
   
   

PS P-20:0/17:2 or PS O-20:1/17:2

PS P-20:0/17:2 or PS O-20:1/17:2

C43H80NO9P (785.55704)


   
   

PS P-20:1/17:1 or PS O-20:2/17:1

PS P-20:1/17:1 or PS O-20:2/17:1

C43H80NO9P (785.55704)


   
   

PS P-22:1/15:1 or PS O-22:2/15:1

PS P-22:1/15:1 or PS O-22:2/15:1

C43H80NO9P (785.55704)


   
   

PS P-37:2 or PS O-37:3

PS P-37:2 or PS O-37:3

C43H80NO9P (785.55704)


   

GalCer 19:1;O2/22:6

GalCer 19:1;O2/22:6

C47H79NO8 (785.5805374)


   

GalCer 19:2;O2/22:5

GalCer 19:2;O2/22:5

C47H79NO8 (785.5805374)


   

GalCer 21:2;O2/20:5

GalCer 21:2;O2/20:5

C47H79NO8 (785.5805374)


   
   

GlcCer 19:1;O2/22:6

GlcCer 19:1;O2/22:6

C47H79NO8 (785.5805374)


   

GlcCer 19:2;O2/22:5

GlcCer 19:2;O2/22:5

C47H79NO8 (785.5805374)


   

GlcCer 21:2;O2/20:5

GlcCer 21:2;O2/20:5

C47H79NO8 (785.5805374)


   
   

HexCer 19:1;O2/22:6

HexCer 19:1;O2/22:6

C47H79NO8 (785.5805374)


   

HexCer 19:2;O2/22:5

HexCer 19:2;O2/22:5

C47H79NO8 (785.5805374)


   

HexCer 21:2;O2/20:5

HexCer 21:2;O2/20:5

C47H79NO8 (785.5805374)