Exact Mass: 784.4526404

Exact Mass Matches: 784.4526404

Found 151 metabolites which its exact mass value is equals to given mass value 784.4526404, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Astragaloside IV

(2R,3R,4S,5S,6R)-2-(((2aR,3R,4S,5aS,5bS,7S,7aR,9S,11aR,12aS)-4-hydroxy-3-((2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-2a,5a,8,8-tetramethyl-9-(((2S,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)tetradecahydro-1H,12H-cyclopenta[a]cyclopropa[e]phenanthren-7-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C41H68O14 (784.4608828)


Astragaloside IV is a pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. It has a role as an EC 4.2.1.1 (carbonic anhydrase) inhibitor, an anti-inflammatory agent, a neuroprotective agent, an antioxidant, a pro-angiogenic agent and a plant metabolite. It is a triterpenoid saponin and a pentacyclic triterpenoid. It is functionally related to a cycloastragenol. Astragaloside IV is a natural product found in Euphorbia glareosa, Astragalus ernestii, and other organisms with data available. A pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.

   

Astragaloside

(2S,3R,4S,5S,6R)-2-(((2S,3R,4S,5R)-2-(((2aR,3R,4S,5aS,5bS,7S,7aR,9S,11aR,12aS)-4,7-dihydroxy-3-((2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-2a,5a,8,8-tetramethylhexadecahydrocyclopenta[a]cyclopropa[e]phenanthren-9-yl)oxy)-4,5-dihydroxytetrahydro-2H-pyran-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C41H68O14 (784.4608828)


Astragaloside III is a triterpenoid saponin that is cycloastragenol with a 2-O-beta-D-glucopyranosyl-beta-D-xylopyranosyl moiety attached at position 3 via a glycosidic linkage. It is a triterpenoid saponin and a disaccharide derivative. It is functionally related to a cycloastragenol. Astragaloside III is a natural product found in Astragalus hoantchy, Astragalus lehmannianus, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol with a 2-O-beta-D-glucopyranosyl-beta-D-xylopyranosyl moiety attached at position 3 via a glycosidic linkage. Astragaloside III is a natural product isolated from Astragalus. Astragaloside III is a natural product isolated from Astragalus.

   
   

Hoduloside VI

14-[(4E)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-2,6,6,10-tetramethyl-11-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-13-one

C41H68O14 (784.4608828)


Hoduloside VI is a constituent of Hovenia dulcis (raisin tree). Constituent of Hovenia dulcis (raisin tree)

   

Astragaloside A

2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.

   

Astragaloside III

2-{[2-({9,14-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

PA(18:3(6Z,9Z,12Z)/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C41H69O12P (784.4526404)


PA(18:3(6Z,9Z,12Z)/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(6Z,9Z,12Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/18:3(6Z,9Z,12Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C41H69O12P (784.4526404)


PA(6 keto-PGF1alpha/18:3(6Z,9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(6Z,9Z,12Z)/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C41H69O12P (784.4526404)


PA(18:3(6Z,9Z,12Z)/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(6Z,9Z,12Z)/TXB2), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/18:3(6Z,9Z,12Z))

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C41H69O12P (784.4526404)


PA(TXB2/18:3(6Z,9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(9Z,12Z,15Z)/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C41H69O12P (784.4526404)


PA(18:3(9Z,12Z,15Z)/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9Z,12Z,15Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/18:3(9Z,12Z,15Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C41H69O12P (784.4526404)


PA(6 keto-PGF1alpha/18:3(9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(9Z,12Z,15Z)/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C41H69O12P (784.4526404)


PA(18:3(9Z,12Z,15Z)/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9Z,12Z,15Z)/TXB2), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/18:3(9Z,12Z,15Z))

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C41H69O12P (784.4526404)


PA(TXB2/18:3(9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H69O12P (784.4526404)


PG(a-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-13:0)

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H69O12P (784.4526404)


PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-13:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H69O12P (784.4526404)


PG(a-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-13:0)

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H69O12P (784.4526404)


PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-13:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H69O12P (784.4526404)


PG(i-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-13:0)

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H69O12P (784.4526404)


PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-13:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H69O12P (784.4526404)


PG(i-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-13:0)

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H69O12P (784.4526404)


PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-13:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

Isoastragaloside IV

(2S,3R,4S,5S,6R)-2-[2-[(2S,5R)-5-[(1S,3R,6S,8R,9S,11S,12S,14S,15R,16R)-9,14-dihydroxy-7,7,12,16-tetramethyl-6-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-15-pentacyclo[9.7.0.01,3.03,8.012,16]octadecanyl]-5-methyloxolan-2-yl]propan-2-yloxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


Isoastragaloside IV is a natural product found in Astragalus mongholicus and Astragalus membranaceus with data available. Isoastragaloside IV is a triterpene oligoglycoside isolated from Astragali Radix. Isoastragaloside IV is a triterpene oligoglycoside isolated from Astragali Radix.

   

Linckoside D

3-O-(2-O-methyl-beta-D-xylopyranosyl)-29-O-(beta-D-xylopyranosyl)-28S-methyl-stigmasta-4,22E-ene-3beta,6beta,8,15alpha,16beta,28-hexaol

C41H68O14 (784.4608828)


   
   
   
   
   
   

20(R),25-epoxy-3-O-beta-D-xylopyranosyl-24-O-beta-D-glucopyranosyl-3beta,6alpha,16beta,24alpha-tetrahydroxycycloartane|3-O-(beta-D-Xylopyranosyl)-24-O-(beta-D-glucopyranosyl)-20,25-epoxycycloartane-3beta,6alpha,16beta,24alpha-tetrol

20(R),25-epoxy-3-O-beta-D-xylopyranosyl-24-O-beta-D-glucopyranosyl-3beta,6alpha,16beta,24alpha-tetrahydroxycycloartane|3-O-(beta-D-Xylopyranosyl)-24-O-(beta-D-glucopyranosyl)-20,25-epoxycycloartane-3beta,6alpha,16beta,24alpha-tetrol

C41H68O14 (784.4608828)


   
   

(22S)-16beta-[(6-O-acetyl-beta-D-glucopyranosyl)-oxy]-3beta,22-dihydroxy-5alpha-cholestan-1beta-yl alpha-L-rhamnopyranoside

(22S)-16beta-[(6-O-acetyl-beta-D-glucopyranosyl)-oxy]-3beta,22-dihydroxy-5alpha-cholestan-1beta-yl alpha-L-rhamnopyranoside

C41H68O14 (784.4608828)


   

(3R,5beta,16S,17R,20S,22R,24S,25S)-22,25-epoxy-16-hydroxystigmast-7-ene-3,27-diyl bis(betaD-glucopyranoside)|ajugasalicioside C

(3R,5beta,16S,17R,20S,22R,24S,25S)-22,25-epoxy-16-hydroxystigmast-7-ene-3,27-diyl bis(betaD-glucopyranoside)|ajugasalicioside C

C41H68O14 (784.4608828)


   

Astragaloside IV

2-[[(1S,3R,9S,12S,14S,16R)-14-hydroxy-15-[(2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-(3,4,5-trihydroxyoxan-2-yl)oxy-9-pentacyclo[9.7.0.01,3.03,8.012,16]octadecanyl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


Origin: Plant; SubCategory_DNP: Triterpenoids Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.

   

Astragaloside Iv_major

Astragaloside Iv_major

C41H68O14 (784.4608828)


   

Hoduloside VI

14-[(4E)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-2,6,6,10-tetramethyl-11-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-13-one

C41H68O14 (784.4608828)


   

Hesperuside A

7-O-(6-O-methyl-beta-D-galactofuranosyl)-16-O-(3-O-methyl-beta-D-galactopyranosyl)-cholest-8(14),22E-dien-3alpha,6beta,7beta,16alpha-tetrol

C41H68O14 (784.4608828)


   
   

[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl] 3-[(21S,22S)-11-ethyl-12-formyl-4-hydroxy-16-[(1R)-1-hydroxyethyl]-17,19,21,26-tetramethyl-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoate

[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl] 3-[(21S,22S)-11-ethyl-12-formyl-4-hydroxy-16-[(1R)-1-hydroxyethyl]-17,19,21,26-tetramethyl-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoate

C49H60N4O5 (784.4563469999999)


   

3-[18-(2-carboxyethyl)-13-ethenyl-8-[(1S,4E,8E)-1-hydroxy-5,9,13-trimethyltetradeca-4,8,12-trienyl]-3,7,12,17-tetramethyl-22,23-dihydroporphyrin-2-yl]propanoic acid

3-[18-(2-carboxyethyl)-13-ethenyl-8-[(1S,4E,8E)-1-hydroxy-5,9,13-trimethyltetradeca-4,8,12-trienyl]-3,7,12,17-tetramethyl-22,23-dihydroporphyrin-2-yl]propanoic acid

C49H60N4O5 (784.4563469999999)


   

PA(18:3(6Z,9Z,12Z)/TXB2)

PA(18:3(6Z,9Z,12Z)/TXB2)

C41H69O12P (784.4526404)


   

PA(TXB2/18:3(6Z,9Z,12Z))

PA(TXB2/18:3(6Z,9Z,12Z))

C41H69O12P (784.4526404)


   

PA(18:3(9Z,12Z,15Z)/TXB2)

PA(18:3(9Z,12Z,15Z)/TXB2)

C41H69O12P (784.4526404)


   

PA(TXB2/18:3(9Z,12Z,15Z))

PA(TXB2/18:3(9Z,12Z,15Z))

C41H69O12P (784.4526404)


   

PA(18:3(6Z,9Z,12Z)/6 keto-PGF1alpha)

PA(18:3(6Z,9Z,12Z)/6 keto-PGF1alpha)

C41H69O12P (784.4526404)


   

PA(6 keto-PGF1alpha/18:3(6Z,9Z,12Z))

PA(6 keto-PGF1alpha/18:3(6Z,9Z,12Z))

C41H69O12P (784.4526404)


   

PA(18:3(9Z,12Z,15Z)/6 keto-PGF1alpha)

PA(18:3(9Z,12Z,15Z)/6 keto-PGF1alpha)

C41H69O12P (784.4526404)


   

PA(6 keto-PGF1alpha/18:3(9Z,12Z,15Z))

PA(6 keto-PGF1alpha/18:3(9Z,12Z,15Z))

C41H69O12P (784.4526404)


   

PG(a-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PG(a-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C41H69O12P (784.4526404)


   

PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-13:0)

PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-13:0)

C41H69O12P (784.4526404)


   

PG(a-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PG(a-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C41H69O12P (784.4526404)


   

PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-13:0)

PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-13:0)

C41H69O12P (784.4526404)


   

PG(i-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PG(i-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C41H69O12P (784.4526404)


   

PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-13:0)

PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-13:0)

C41H69O12P (784.4526404)


   

PG(i-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PG(i-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C41H69O12P (784.4526404)


   

PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-13:0)

PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-13:0)

C41H69O12P (784.4526404)


   

3-[18-(2-carboxyethyl)-13-ethenyl-8-[(4E,8E)-1-hydroxy-5,9,13-trimethyltetradeca-4,8,12-trienyl]-3,7,12,17-tetramethyl-22,23-dihydroporphyrin-2-yl]propanoic acid

3-[18-(2-carboxyethyl)-13-ethenyl-8-[(4E,8E)-1-hydroxy-5,9,13-trimethyltetradeca-4,8,12-trienyl]-3,7,12,17-tetramethyl-22,23-dihydroporphyrin-2-yl]propanoic acid

C49H60N4O5 (784.4563469999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate

C41H69O12P (784.4526404)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C41H69O12P (784.4526404)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C41H69O12P (784.4526404)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C41H69O12P (784.4526404)


   

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C41H69O12P (784.4526404)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-tetradec-9-enoate

C41H69O12P (784.4526404)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C41H69O12P (784.4526404)


   

[3,4,5-trihydroxy-6-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[6-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[3,4,5-trihydroxy-6-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[6-[3-dodecanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-dodecanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2R,3R,6R)-6-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2R,3R,6R)-6-[3-hexadecanoyloxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[3-hexadecanoyloxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2R,3R,6R)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2R,3R,6R)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H68O12S (784.4431248000001)


   
   
   
   
   
   
   
   
   

1-(2,6-dihydroxy-6-methylhept-4-en-2-yl)-3b,6,6,9a-tetramethyl-3a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-dodecahydrocyclopenta[a]phenanthren-2-one

1-(2,6-dihydroxy-6-methylhept-4-en-2-yl)-3b,6,6,9a-tetramethyl-3a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-dodecahydrocyclopenta[a]phenanthren-2-one

C41H68O14 (784.4608828)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8s,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8s,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(3s,4r,6as,8s,8as,14r,14bs)-8,14-dihydroxy-4,8a-bis(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-2,3,4a,5,6,6b,7,8,9,10,12b,13,14,14a-tetradecahydro-1h-picen-3-yl]oxy}-3,5-dihydroxy-6-methyloxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(3s,4r,6as,8s,8as,14r,14bs)-8,14-dihydroxy-4,8a-bis(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-2,3,4a,5,6,6b,7,8,9,10,12b,13,14,14a-tetradecahydro-1h-picen-3-yl]oxy}-3,5-dihydroxy-6-methyloxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2r,4s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,4s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2s,3r,4s,5s,6r)-2-({2-[(2s,5r)-5-[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-5-methyloxolan-2-yl]propan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-({2-[(2s,5r)-5-[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-5-methyloxolan-2-yl]propan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2s)-2-{[3-carboxy-3-({[(1s)-1-carboxy-5-[(2e)-n-hydroxydec-2-enamido]pentyl]-c-hydroxycarbonimidoyl}methyl)-1,3-dihydroxypropylidene]amino}-6-[(2e)-n-hydroxydec-2-enamido]hexanoic acid

(2s)-2-{[3-carboxy-3-({[(1s)-1-carboxy-5-[(2e)-n-hydroxydec-2-enamido]pentyl]-c-hydroxycarbonimidoyl}methyl)-1,3-dihydroxypropylidene]amino}-6-[(2e)-n-hydroxydec-2-enamido]hexanoic acid

C38H64N4O13 (784.4469654)


   

(2s,3r,4s,5s,6r)-2-({2-[(2r,5s)-5-[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-5-methyloxolan-2-yl]propan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-({2-[(2r,5s)-5-[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-5-methyloxolan-2-yl]propan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2r,3r,4s,5s,6r)-2-{[(1r,2s,3ar,5ar,7r,9as,9br,11as)-1-[(1s)-1-[(2r,4s,5s)-4-ethyl-5-methyl-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]ethyl]-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,2s,3ar,5ar,7r,9as,9br,11as)-1-[(1s)-1-[(2r,4s,5s)-4-ethyl-5-methyl-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]ethyl]-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

3-o-β-d-xylopyranosyl-25-o-β-d-glucopyra-nosyl cycloastragenol

NA

C41H68O14 (784.4608828)


{"Ingredient_id": "HBIN009264","Ingredient_name": "3-o-\u03b2-d-xylopyranosyl-25-o-\u03b2-d-glucopyra-nosyl cycloastragenol","Alias": "NA","Ingredient_formula": "C41H68O14","Ingredient_Smile": "CC1(C(CCC23C1C(CC4C2(C3)CCC5(C4(CC(C5C6(CCC(O6)C(C)(C)O)C)O)C)C)OC7C(C(C(C(O7)CO)O)O)O)OC8C(C(C(CO8)O)O)O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "22808","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

Astragalosid

NA

C41H68O14 (784.4608828)


{"Ingredient_id": "HBIN017222","Ingredient_name": "Astragalosid","Alias": "NA","Ingredient_formula": "C41H68O14","Ingredient_Smile": "CC1(C(CCC23C1C(CC4C2(C3)CCC5(C4(CC(C5C6(CCC(O6)C(C)(C)O)C)O)C)C)OC7C(C(C(C(O7)CO)O)O)O)OC8C(C(C(CO8)O)O)O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "33093","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

astragaloside iii

NA

C41H68O14 (784.4608828)


{"Ingredient_id": "HBIN017227","Ingredient_name": "astragaloside iii","Alias": "NA","Ingredient_formula": "C41H68O14","Ingredient_Smile": "CC1(C(CCC23C1C(CC4C2(C3)CCC5(C4(CC(C5C6(CCC(O6)C(C)(C)O)C)O)C)C)O)OC7C(C(C(CO7)O)O)OC8C(C(C(C(O8)CO)O)O)O)C","Ingredient_weight": "785 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14407","TCMID_id": "1938","TCMSP_id": "NA","TCM_ID_id": "6530","PubChem_id": "71306916","DrugBank_id": "NA"}

   

astramembrannin i

AC1L3V2X; AN-36113

C41H68O14 (784.4608828)


{"Ingredient_id": "HBIN017246","Ingredient_name": "astramembrannin i","Alias": "AC1L3V2X; AN-36113","Ingredient_formula": "C41H68O14","Ingredient_Smile": "CC1(C(CCC23C1C(CC4C2(C3)CCC5(C4(CC(C5C6(CCC(O6)C(C)(C)O)C)O)C)C)OC7C(C(C(C(O7)CO)O)O)O)OC8C(C(C(CO8)O)O)O)C","Ingredient_weight": "785 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14413","TCMID_id": "1945","TCMSP_id": "NA","TCM_ID_id": "6519","PubChem_id": "124761773","DrugBank_id": "NA"}

   

astrasieversianin xiv

NA

C41H68O14 (784.4608828)


{"Ingredient_id": "HBIN017251","Ingredient_name": "astrasieversianin xiv","Alias": "NA","Ingredient_formula": "C41H68O14","Ingredient_Smile": "CC1(C(CCC23C1C(CC4C2(C3)CCC5(C4(CC(C5C6(CCC(O6)C(C)(C)O)C)O)C)C)OC7C(C(C(C(O7)CO)O)O)O)OC8C(C(C(CO8)O)O)O)C","Ingredient_weight": "785 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1948","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "46783816","DrugBank_id": "NA"}

   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,4s)-4-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,4s)-4-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

[(2r,3s,4s,5r,6r)-6-{[(1r,2s,3as,3bs,5as,7r,9r,9as,9bs,11as)-7-hydroxy-1-[(2s,3s)-3-hydroxy-6-methylhept-5-en-2-yl]-9a,11a-dimethyl-9-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-tetradecahydro-1h-cyclopenta[a]phenanthren-2-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1r,2s,3as,3bs,5as,7r,9r,9as,9bs,11as)-7-hydroxy-1-[(2s,3s)-3-hydroxy-6-methylhept-5-en-2-yl]-9a,11a-dimethyl-9-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-tetradecahydro-1h-cyclopenta[a]phenanthren-2-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C41H68O14 (784.4608828)


   

(2r,3r,4r,5s,6r)-2-{[(1s,3r,6s,8s,9r,11s,12s,14s,15r,16s)-14-hydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3s,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4r,5s,6r)-2-{[(1s,3r,6s,8s,9r,11s,12s,14s,15r,16s)-14-hydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3s,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

2-[(1-{1-[4-ethyl-5-methyl-5-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]ethyl}-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(1-{1-[4-ethyl-5-methyl-5-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]ethyl}-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

1-[(4e)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-3b,6,6,9a-tetramethyl-3a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-dodecahydrocyclopenta[a]phenanthren-2-one

1-[(4e)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-3b,6,6,9a-tetramethyl-3a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-dodecahydrocyclopenta[a]phenanthren-2-one

C41H68O14 (784.4608828)


   

2-({14-hydroxy-15-[4-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

2-({14-hydroxy-15-[4-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2s,3s,4r,5r,6s)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3s,4r,5r,6s)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2r,3s,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2r,3s,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,8s,9s,11r,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-5-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-2-(hydroxymethyl)oxane-3,4-diol

(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,8s,9s,11r,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-5-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-2-(hydroxymethyl)oxane-3,4-diol

C41H68O14 (784.4608828)


   

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r)-2-{[(1s,3r,6s,8s,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r)-2-{[(1s,3r,6s,8s,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2s,3r,4s,5s,6r)-2-{[(3s,6r)-6-[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2,2,6-trimethyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(3s,6r)-6-[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2,2,6-trimethyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2s,3r,4s,5s,6r)-2-{[(1s,3r,6s,8s,9s,11r,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(1s,3r,6s,8s,9s,11r,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

2-{[(1s,3r,8r,11r,12s,15s,16r)-14-hydroxy-15-[(2r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[(1s,3r,8r,11r,12s,15s,16r)-14-hydroxy-15-[(2r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3s,8s,9s,11s,12s,14s,15s,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3s,8s,9s,11s,12s,14s,15s,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

2-[(6-{9,14-dihydroxy-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl}-2,2,6-trimethyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(6-{9,14-dihydroxy-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl}-2,2,6-trimethyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-5-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-2-(hydroxymethyl)oxane-3,4-diol

(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-5-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-2-(hydroxymethyl)oxane-3,4-diol

C41H68O14 (784.4608828)


   

2-{[2-(5-{9,14-dihydroxy-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl}-5-methyloxolan-2-yl)propan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[2-(5-{9,14-dihydroxy-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl}-5-methyloxolan-2-yl)propan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

6-({9,14-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)-5-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-2-(hydroxymethyl)oxane-3,4-diol

6-({9,14-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)-5-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-2-(hydroxymethyl)oxane-3,4-diol

C41H68O14 (784.4608828)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5s)-5-hydroxy-2,6,6-trimethyloxan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5s)-5-hydroxy-2,6,6-trimethyloxan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

7-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-1-{5-isopropyl-6-methyl-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]hept-3-en-2-yl}-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,3,3b,5-tetrol

7-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-1-{5-isopropyl-6-methyl-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]hept-3-en-2-yl}-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,3,3b,5-tetrol

C41H68O14 (784.4608828)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2s,6r,7s,10s)-21-hydroxy-6,20-bis(hydroxymethyl)-1,2,6,10,17,17-hexamethyl-12-oxapentacyclo[12.8.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]docos-13-en-7-yl]oxy}-6-methyloxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2s,6r,7s,10s)-21-hydroxy-6,20-bis(hydroxymethyl)-1,2,6,10,17,17-hexamethyl-12-oxapentacyclo[12.8.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]docos-13-en-7-yl]oxy}-6-methyloxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(3,4,5-trihydroxy-6-{[7-hydroxy-1-(3-hydroxy-6-methylhept-5-en-2-yl)-9a,11a-dimethyl-9-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-tetradecahydro-1h-cyclopenta[a]phenanthren-2-yl]oxy}oxan-2-yl)methyl acetate

(3,4,5-trihydroxy-6-{[7-hydroxy-1-(3-hydroxy-6-methylhept-5-en-2-yl)-9a,11a-dimethyl-9-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-tetradecahydro-1h-cyclopenta[a]phenanthren-2-yl]oxy}oxan-2-yl)methyl acetate

C41H68O14 (784.4608828)


   

(1s,3as,3br,5ar,7s,9ar,9br,11ar)-1-[(2s,4e)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-3b,6,6,9a-tetramethyl-3a-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-7-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-2-one

(1s,3as,3br,5ar,7s,9ar,9br,11ar)-1-[(2s,4e)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-3b,6,6,9a-tetramethyl-3a-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-7-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-2-one

C41H68O14 (784.4608828)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8s,9s,11s,12s,14s,15s,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2r,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8s,9s,11s,12s,14s,15s,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2r,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

[(2s,3r,4r,5s,6s)-6-{[(1r,2s,3as,3bs,5as,7r,9r,9as,9bs,11as)-7-hydroxy-1-[(2s,3s)-3-hydroxy-6-methylhept-5-en-2-yl]-9a,11a-dimethyl-9-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-tetradecahydro-1h-cyclopenta[a]phenanthren-2-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2s,3r,4r,5s,6s)-6-{[(1r,2s,3as,3bs,5as,7r,9r,9as,9bs,11as)-7-hydroxy-1-[(2s,3s)-3-hydroxy-6-methylhept-5-en-2-yl]-9a,11a-dimethyl-9-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-tetradecahydro-1h-cyclopenta[a]phenanthren-2-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C41H68O14 (784.4608828)


   

(1r,2r,3r,3as,3bs,5r,7s,9ar,9br,11ar)-7-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-1-[(2r,3e,5r,6s)-5-isopropyl-6-methyl-7-{[(2r,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}hept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,3,3b,5-tetrol

(1r,2r,3r,3as,3bs,5r,7s,9ar,9br,11ar)-7-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-1-[(2r,3e,5r,6s)-5-isopropyl-6-methyl-7-{[(2r,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}hept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,3,3b,5-tetrol

C41H68O14 (784.4608828)


   

(2r,3r,4s,5r,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5r,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)