Exact Mass: 774.4918

Exact Mass Matches: 774.4918

Found 500 metabolites which its exact mass value is equals to given mass value 774.4918, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Oligomycin C

Oligomycin C

C45H74O10 (774.5282)


An oligomycin with formula C45H74O10 that is oligomycin A in which the hydroxy group that is alpha- to a macrolide keto group has been replaced by a hydrogen. It is an inhibitor of the mitochondrial F1F0 ATP synthase. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D009840 - Oligomycins

   

Panaxcerol C

1,2-Di-(9Z,12Z,15Z-octadecatrienoyl)-3-O-beta-D-galactosyl-sn-glycerol

C45H74O10 (774.5282)


   

PG(18:0/18:2(9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

C42H79O10P (774.5411)


PG(18:0/18:2(9Z,12Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:0/18:2(9Z,12Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the linoleic acid moiety is derived from seed oils. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:0/18:2(9Z,12Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:0/18:2(9Z,12Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the linoleic acid moiety is derived from seed oils. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PG(18:1(9Z)/18:1(9Z))

[(2R)-2,3-bis[(9Z)-octadec-9-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C42H79O10P (774.5411)


PG(18:1(9Z)/18:1(9Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:1(9Z)/18:1(9Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of oleic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:1(9Z)/18:1(9Z)) is a phosphatidylglycerol. Phosphatidylglycerols consist of a glycerol 3-phosphate backbone esterified to either saturated or unsaturated fatty acids on carbons 1 and 2. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PG(18:1(9Z)/18:1(9Z)), in particular, consists of two 9Z-octadecenoyl chains at positions C-1 and C-2. In E. coli glycerophospholipid metabolism, phosphatidylglycerol is formed from phosphatidic acid (1,2-diacyl-sn-glycerol 3-phosphate) by a sequence of enzymatic reactions that proceeds via two intermediates, cytidine diphosphate diacylglycerol (CDP-diacylglycerol) and phosphatidylglycerophosphate (PGP, a phosphorylated phosphatidylglycerol). Phosphatidylglycerols, along with CDP-diacylglycerol, also serve as precursor molecules for the synthesis of cardiolipin, a phospholipid found in membranes.

   

PG(18:1(11Z)/18:1(11Z))

[(2R)-2,3-bis[(11Z)-octadec-11-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C42H79O10P (774.5411)


PG(18:1(11Z)/18:1(11Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:1(11Z)/18:1(11Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:1(11Z)/18:1(11Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:1(11Z)/18:1(11Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PG(18:1(11Z)/18:1(9Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C42H79O10P (774.5411)


PG(18:1(11Z)/18:1(9Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:1(11Z)/18:1(9Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:1(11Z)/18:1(9Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:1(11Z)/18:1(9Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PG(18:1(9Z)/18:1(11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C42H79O10P (774.5411)


PG(18:1(9Z)/18:1(11Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:1(9Z)/18:1(11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:1(9Z)/18:1(11Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:1(9Z)/18:1(11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PG(18:2(9Z,12Z)/18:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-2-(octadecanoyloxy)propoxy]phosphinic acid

C42H79O10P (774.5411)


PG(18:2(9Z,12Z)/18:0) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:2(9Z,12Z)/18:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of stearic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:2(9Z,12Z)/18:0) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:2(9Z,12Z)/18:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of stearic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PA(20:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C45H75O8P (774.5199)


PA(20:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(5Z,8Z,11Z)/22:4(7Z,10Z,13Z,16Z))

[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C45H75O8P (774.5199)


PA(20:3(5Z,8Z,11Z)/22:4(7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(5Z,8Z,11Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of adrenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/22:2(13Z,16Z))

[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C45H75O8P (774.5199)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/22:2(13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:5(5Z,8Z,11Z,14Z,17Z)/22:2(13Z,16Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:2(13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z))

[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C45H75O8P (774.5199)


PA(22:2(13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:2(13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z))

[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C45H75O8P (774.5199)


PA(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of mead acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:1(11Z))

[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C45H75O8P (774.5199)


PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:1(11Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z))

[(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C45H75O8P (774.5199)


PA(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of osbond acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:2(11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z))

[(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C45H75O8P (774.5199)


PA(20:2(11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:2(11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of clupanodonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(8Z,11Z,14Z)/22:4(7Z,10Z,13Z,16Z))

[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C45H75O8P (774.5199)


PA(20:3(8Z,11Z,14Z)/22:4(7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(8Z,11Z,14Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z))

[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C45H75O8P (774.5199)


PA(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:2(11Z,14Z))

[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C45H75O8P (774.5199)


PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:2(11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:2(11Z,14Z)), in particular, consists of one chain of osbond acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:2(11Z,14Z))

[(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C45H75O8P (774.5199)


PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:2(11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:2(11Z,14Z)), in particular, consists of one chain of clupanodonic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PGP(a-13:0/a-17:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(10-methyldodecanoyl)oxy]-2-[(14-methylhexadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H72O13P2 (774.4448)


PGP(a-13:0/a-17:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(a-13:0/a-17:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.

   

PGP(a-13:0/i-17:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(10-methyldodecanoyl)oxy]-2-[(15-methylhexadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H72O13P2 (774.4448)


PGP(a-13:0/i-17:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(a-13:0/i-17:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.

   

PGP(i-12:0/i-18:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H72O13P2 (774.4448)


PGP(i-12:0/i-18:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-12:0/i-18:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isooctadecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.

   

PGP(i-13:0/a-17:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(11-methyldodecanoyl)oxy]-2-[(14-methylhexadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H72O13P2 (774.4448)


PGP(i-13:0/a-17:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-13:0/a-17:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.

   

PGP(i-13:0/i-17:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(11-methyldodecanoyl)oxy]-2-[(15-methylhexadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H72O13P2 (774.4448)


PGP(i-13:0/i-17:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-13:0/i-17:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.

   

PGP(i-14:0/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(14-methylpentadecanoyl)oxy]-3-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H72O13P2 (774.4448)


PGP(i-14:0/i-16:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-14:0/i-16:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of isohexadecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.

   

1,2-Dioleoyl-sn-glycero-3-phosphoglycerol

[2,3-bis(octadec-9-enoyloxy)propoxy](2,3-dihydroxypropoxy)phosphinic acid

C42H79O10P (774.5411)


   

Lipoteichoic acid

N-[5-Amino-2-({2-[3-(heptanoyloxy)-2-(pentadec-7-enoyloxy)propoxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl}oxy)-4-hydroxy-6-methyloxan-3-yl]ethanimidate

C39H70N2O13 (774.4878)


   

PA(18:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(18:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/PGF2alpha), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/18:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(PGF2alpha/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/18:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/PGE1)

[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(18:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/PGE1), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/18:0)

[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(PGE1/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/18:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/PGD1)

PA(18:0/PGD1)

C41H75O11P (774.5047)


PA(18:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/PGD1), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/18:0)

[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(PGD1/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/18:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(11Z)/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(18:1(11Z)/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(11Z)/PGF1alpha), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/18:1(11Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(PGF1alpha/18:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/18:1(11Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(18:1(9Z)/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)/PGF1alpha), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/18:1(9Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(PGF1alpha/18:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/18:1(9Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(6Z,9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(18:3(6Z,9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(6Z,9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(6Z,9Z,12Z))

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(6Z,9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(6Z,9Z,12Z))

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(6Z,9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(9Z,12Z,15Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(18:3(9Z,12Z,15Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9Z,12Z,15Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(9Z,12Z,15Z))

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(9Z,12Z,15Z))

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(19:2(10Z,13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C44H71O9P (774.4835)


PA(19:2(10Z,13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(19:2(10Z,13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 10Z,13Z-nonadecadienoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/19:2(10Z,13Z))

[(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C44H71O9P (774.4835)


PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/19:2(10Z,13Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/19:2(10Z,13Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10Z,13Z-nonadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(19:2(10Z,13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C44H71O9P (774.4835)


PA(19:2(10Z,13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(19:2(10Z,13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 10Z,13Z-nonadecadienoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/19:2(10Z,13Z))

[(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C44H71O9P (774.4835)


PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/19:2(10Z,13Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/19:2(10Z,13Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10Z,13Z-nonadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(19:2(10Z,13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C44H71O9P (774.4835)


PA(19:2(10Z,13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(19:2(10Z,13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 10Z,13Z-nonadecadienoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/19:2(10Z,13Z))

[(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C44H71O9P (774.4835)


PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/19:2(10Z,13Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/19:2(10Z,13Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10Z,13Z-nonadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(19:2(10Z,13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C44H71O9P (774.4835)


PA(19:2(10Z,13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(19:2(10Z,13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 10Z,13Z-nonadecadienoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/19:2(10Z,13Z))

[(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C44H71O9P (774.4835)


PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/19:2(10Z,13Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/19:2(10Z,13Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10Z,13Z-nonadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(19:2(10Z,13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2R)-3-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C44H71O9P (774.4835)


PA(19:2(10Z,13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(19:2(10Z,13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 10Z,13Z-nonadecadienoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/19:2(10Z,13Z))

[(2R)-2-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C44H71O9P (774.4835)


PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/19:2(10Z,13Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/19:2(10Z,13Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 10Z,13Z-nonadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-(icosanoyloxy)propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(20:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:0/5-iso PGF2VI), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/20:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-(icosanoyloxy)propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(5-iso PGF2VI/20:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/20:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)/PGJ2)

[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(20:4(5Z,8Z,11Z,14Z)/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)/PGJ2), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGJ2/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(PGJ2/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)/PGJ2)

[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(20:4(8Z,11Z,14Z,17Z)/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)/PGJ2), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGJ2/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(PGJ2/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:5(5Z,8Z,11Z,14Z,17Z))

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:5(5Z,8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:5(5Z,8Z,11Z,14Z,17Z))

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:5(5Z,8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:5(5Z,8Z,11Z,14Z,17Z))

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C43H67O10P (774.4472)


PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:5(5Z,8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(i-18:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/PGF2alpha), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/i-18:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(PGF2alpha/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/i-18:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/PGE1)

[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(i-18:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/PGE1), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/i-18:0)

[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(PGE1/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/i-18:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/PGD1)

[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(i-18:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/PGD1), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/i-18:0)

[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(PGD1/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/i-18:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-20:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(i-20:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-20:0/5-iso PGF2VI), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/i-20:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphonic acid

C41H75O11P (774.5047)


PA(5-iso PGF2VI/i-20:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/i-20:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-15:0/20:3(6,8,11)-OH(5))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(a-15:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-15:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(6,8,11)-OH(5)/a-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(20:3(6,8,11)-OH(5)/a-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(6,8,11)-OH(5)/a-15:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-17:0/18:2(10E,12Z)+=O(9))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(14-methylhexadecanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(a-17:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-17:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(10E,12Z)+=O(9)/a-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(14-methylhexadecanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(18:2(10E,12Z)+=O(9)/a-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(10E,12Z)+=O(9)/a-17:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-17:0/18:2(9Z,11E)+=O(13))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(14-methylhexadecanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(a-17:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-17:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,11E)+=O(13)/a-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(14-methylhexadecanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(18:2(9Z,11E)+=O(13)/a-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,11E)+=O(13)/a-17:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-17:0/18:3(10,12,15)-OH(9))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(14-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(a-17:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-17:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(10,12,15)-OH(9)/a-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(14-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(18:3(10,12,15)-OH(9)/a-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(10,12,15)-OH(9)/a-17:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-17:0/18:3(9,11,15)-OH(13))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(14-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(a-17:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-17:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(9,11,15)-OH(13)/a-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(14-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(18:3(9,11,15)-OH(13)/a-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(9,11,15)-OH(13)/a-17:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-14:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C40H71O12P (774.4683)


PG(i-14:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-14:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-14:0)

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C40H71O12P (774.4683)


PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-14:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-14:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-14:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C40H71O12P (774.4683)


PG(i-14:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-14:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-14:0)

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C40H71O12P (774.4683)


PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-14:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-14:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-14:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C40H71O12P (774.4683)


PG(i-14:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-14:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-14:0)

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C40H71O12P (774.4683)


PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-14:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-14:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-15:0/20:3(6,8,11)-OH(5))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(i-15:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-15:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(6,8,11)-OH(5)/i-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(20:3(6,8,11)-OH(5)/i-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(6,8,11)-OH(5)/i-15:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-17:0/18:2(10E,12Z)+=O(9))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(15-methylhexadecanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(i-17:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-17:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(10E,12Z)+=O(9)/i-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(15-methylhexadecanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(18:2(10E,12Z)+=O(9)/i-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(10E,12Z)+=O(9)/i-17:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-17:0/18:2(9Z,11E)+=O(13))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(15-methylhexadecanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(i-17:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-17:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,11E)+=O(13)/i-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(15-methylhexadecanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(18:2(9Z,11E)+=O(13)/i-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,11E)+=O(13)/i-17:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-17:0/18:3(10,12,15)-OH(9))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(15-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(i-17:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-17:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(10,12,15)-OH(9)/i-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(15-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(18:3(10,12,15)-OH(9)/i-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(10,12,15)-OH(9)/i-17:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-17:0/18:3(9,11,15)-OH(13))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(15-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(i-17:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-17:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(9,11,15)-OH(13)/i-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(15-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C41H75O11P (774.5047)


PG(18:3(9,11,15)-OH(13)/i-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(9,11,15)-OH(13)/i-17:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

SM(d17:2(4E,8Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C44H75N2O7P (774.5312)


SM(d17:2(4E,8Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) consists of a sphingosine backbone and a 4-hydroxy-docosahexaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C44H75N2O7P (774.5312)


SM(d17:2(4E,8Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) consists of a sphingosine backbone and a 7-hydroxy-docosahexaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C44H75N2O7P (774.5312)


SM(d17:2(4E,8Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) consists of a sphingosine backbone and a 14-hydroxy-docosahexaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C44H75N2O7P (774.5312)


SM(d17:2(4E,8Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) consists of a sphingosine backbone and a 17-hydroxy-docosahexaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C44H75N2O7P (774.5312)


SM(d17:2(4E,8Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) consists of a sphingosine backbone and a 16,17-epoxy-docosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

Arabidopside A

1-((1S,2S)-3-oxo-2-(2Z-pentenyl)cyclopent-4-eneoctanoyl)-2-(1S,2S)-3-oxo-2-(2Z-pentenyl)cyclopent-4-enehexanoyl)-3-O-beta-D-galactosyl-sn-glycerol

C43H66O12 (774.4554)


An arabidopside in which the glyceride moiety is acylated by cis-12-oxophytodienoyl and cis-dinor-oxyphytodienoyl groups at positions 1 and 2, respectively, and in which the carbohydrate moiety is a beta-D-galactopyranosyl group. The cyclopentenone moiety of both acyl groups is cis-disubstituted.

   

Phosphatidylglyceride 16:0-20:2

Phosphatidylglyceride 16:0-20:2

C42H79O10P (774.5411)


   

Phosphatidylglyceride 18:0-18:2

Phosphatidylglyceride 18:0-18:2

C42H79O10P (774.5411)


   

Phosphatidylglyceride 18:1-18:1

Phosphatidylglyceride 18:1-18:1

C42H79O10P (774.5411)


   

PG 36:2

9-Octadecenoic acid, 1-[[[(2,3-dihydroxypropoxy)hydroxyphosphinyl]oxy]methyl]-1,2-ethanediyl ester, [R-(E,E)]-

C42H79O10P (774.5411)


Found in mouse brain; TwoDicalId=225; MgfFile=160720_brain_AA_16_Neg; MgfId=745 Found in mouse spleen; TwoDicalId=162; MgfFile=160729_spleen_normal_02_Neg_never; MgfId=759 Found in mouse lung; TwoDicalId=97; MgfFile=160901_Lung_EPA_Neg_09; MgfId=645 Found in mouse heart; TwoDicalId=143; MgfFile=160902_Heart_Control_Neg_01_sute; MgfId=705 Found in mouse muscle; TwoDicalId=225; MgfFile=160824_Muscle_normal_Neg_01; MgfId=708 Found in mouse kidney; TwoDicalId=80; MgfFile=160827_Kidney_EPA_Neg_09; MgfId=986 Found in mouse spleen; TwoDicalId=76; MgfFile=160729_spleen_AA_17_Neg; MgfId=793

   

1,2-dilinolenyl-3-O-beta-galactopyranosyl-glycerol

1,2-dilinolenyl-3-O-beta-galactopyranosyl-glycerol

C45H74O10 (774.5282)


   

Culcitoside C3

Culcitoside C3

C40H70O14 (774.4765)


   

bionectriol A

bionectriol A

C40H70O14 (774.4765)


   
   
   

[2.3-dihydroxypropoxy][2-[octadeca-9.12-dienoyloxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

[2.3-dihydroxypropoxy][2-[octadeca-9.12-dienoyloxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

C42H79O10P (774.5411)


   

MGDG (18:3/18:3)_(2S)-1,2-bis-O-(9Z,12Z,15Z-octadecatrienoyl)-3-beta-D-galactopyranosyl-sn-glycerol

MGDG (18:3/18:3)_(2S)-1,2-bis-O-(9Z,12Z,15Z-octadecatrienoyl)-3-beta-D-galactopyranosyl-sn-glycerol

C45H74O10 (774.5282)


   

Dioleoylphosphatidylglycerol

1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PG(18:1/18:1)[U]

9-Octadecenoic acid, 1-[[[(2,3-dihydroxypropoxy)hydroxyphosphinyl]oxy]methyl]-1,2-ethanediyl ester, (E,E)-

C42H79O10P (774.5411)


   

PG(18:1/18:1)

9-Octadecenoic acid, 1-[[[(2,3-dihydroxypropoxy)hydroxyphosphinyl]oxy]methyl]-1,2-ethanediyl ester, [R-(E,E)]-

C42H79O10P (774.5411)


   

1-(6-[5]-ladderane-hexanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycero-3-phospho-(1-sn-glycerol)

1-(6-[5]-ladderane-hexanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C44H71O9P (774.4835)


   

PG(36:2)

1-(9Z,12Z-Octadecadienoyl)-2-octadecanoyl-sn-glycero-3-phospho-(1-glycerol)

C42H79O10P (774.5411)


   

MGDG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z))

1,2 di-(9Z,12Z,15Z-octadecatrienoyl)-3-O-Beta-D-galactosyl-sn-glycerol

C45H74O10 (774.5282)


   

PG(14:0/22:2(13Z,16Z))

1-tetradecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PG(14:1(9Z)/22:1(11Z))

1-(9Z-tetradecenoyl)-2-(11Z-docosenoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PG(16:0/20:2(11Z,14Z))

1-hexadecanoyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PG(16:1(9Z)/20:1(11Z))

1-(9Z-hexadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PG(17:1(9Z)/19:1(9Z))

1-(9Z-heptadecenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PG(17:2(9Z,12Z)/19:0)

1-(9Z,12Z-heptadecadienoyl)-2-nonadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PG(19:0/17:2(9Z,12Z))

1-nonadecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PG(19:1(9Z)/17:1(9Z))

1-(9Z-nonadecenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PG(20:1(11Z)/16:1(9Z))

1-(11Z-eicosenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PG(20:2(11Z,14Z)/16:0)

1-(11Z,14Z-eicosadienoyl)-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PG(22:1(11Z)/14:1(9Z))

1-(11Z-docosenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PG(22:2(13Z,16Z)/14:0)

1-(13Z,16Z-docosadienoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C42H79O10P (774.5411)


   

PA(20:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(11Z-eicosenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C45H75O8P (774.5199)


   

PA(20:3(8Z,11Z,14Z)/22:4(7Z,10Z,13Z,16Z))

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphate

C45H75O8P (774.5199)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/22:2(13Z,16Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphate

C45H75O8P (774.5199)


   

PA(22:2(13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(13Z,16Z-docosadienoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C45H75O8P (774.5199)


   

PA(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z))

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphate

C45H75O8P (774.5199)


   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:1(11Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphate

C45H75O8P (774.5199)


   

MGDG 36:6

1,2 di-(9Z,12Z,15E-octadecatrienoyl)-3-O-Beta-D-galactosyl-sn-glycerol

C45H74O10 (774.5282)


   

Linolipin E

1-(12-(1Z,3Z-hexadienyloxy)-9Z,11E-dodecadienoyl)-2-(10-(1Z,3Z-hexadienyloxy)-7Z,9E-decadienoyl)-3-O-beta-D-galactosyl-sn-glycerol

C43H66O12 (774.4554)


   

LBPA 36:2

Bis-[2-(9Z-octadecenoyl)-3-lyso-sn-glycero]-1-phosphate

C42H79O10P (774.5411)


   

PG O-38:9

1-(6-[5]-ladderane-hexanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C44H71O9P (774.4835)


   

PA 42:7

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphate

C45H75O8P (774.5199)


   

Myxol 2-dimethyl hexoside

(3R,2S)-2-(alpha-L-dimethyl-Hexosyl)-3,4-didehydro-1,2-dihydro-beta,psi-carotene-3,1-diol

C48H70O8 (774.507)


   

Lead(2+) dioctadecanoate

Lead(2+) dioctadecanoate

C36H70O4Pb (774.504)


   

lead stearate

lead stearate

C36H70O4Pb (774.504)


   

TETRAKIS[TRIS(DIMETHYLAMINO)PHOSPHORANYLIDENAMINO]PHOSPHONIUMCHLORIDE

TETRAKIS[TRIS(DIMETHYLAMINO)PHOSPHORANYLIDENAMINO]PHOSPHONIUMCHLORIDE

C24H72ClN16P5 (774.4502)


   

1,2-Di-O-alpha-linolenoyl-3-O-beta-galactopyranosyl-sn-glycerol

1,2-Di-O-alpha-linolenoyl-3-O-beta-galactopyranosyl-sn-glycerol

C45H74O10 (774.5282)


   

[1-[4-(3-acetamido-5-amino-4-hydroxy-6-methyloxan-2-yl)oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-heptanoyloxypropan-2-yl] (E)-pentadec-7-enoate

[1-[4-(3-acetamido-5-amino-4-hydroxy-6-methyloxan-2-yl)oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-heptanoyloxypropan-2-yl] (E)-pentadec-7-enoate

C39H70N2O13 (774.4878)


   

Dioleoyl phosphatidylglycerol

Dioleoyl phosphatidylglycerol

C42H79O10P (774.5411)


A phosphatidylglycerol in which the phosphatidyl acyl groups are both oleoyl.

   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C42H79O10P (774.5411)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] octadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] octadecanoate

C42H79O10P (774.5411)


   

[(2R)-3-[hydroxy-[(2S)-2-hydroxy-3-phosphonooxypropoxy]phosphoryl]oxy-2-tetradecanoyloxypropyl] hexadecanoate

[(2R)-3-[hydroxy-[(2S)-2-hydroxy-3-phosphonooxypropoxy]phosphoryl]oxy-2-tetradecanoyloxypropyl] hexadecanoate

C36H72O13P2 (774.4448)


   

PA(18:0/PGF2alpha)

PA(18:0/PGF2alpha)

C41H75O11P (774.5047)


   

PA(PGF2alpha/18:0)

PA(PGF2alpha/18:0)

C41H75O11P (774.5047)


   

PA(i-18:0/PGF2alpha)

PA(i-18:0/PGF2alpha)

C41H75O11P (774.5047)


   

PA(PGF2alpha/i-18:0)

PA(PGF2alpha/i-18:0)

C41H75O11P (774.5047)


   

PA(i-18:0/PGE1)

PA(i-18:0/PGE1)

C41H75O11P (774.5047)


   

PA(PGE1/i-18:0)

PA(PGE1/i-18:0)

C41H75O11P (774.5047)


   

PA(i-18:0/PGD1)

PA(i-18:0/PGD1)

C41H75O11P (774.5047)


   

PA(PGD1/i-18:0)

PA(PGD1/i-18:0)

C41H75O11P (774.5047)


   

PA(18:1(9Z)/PGF1alpha)

PA(18:1(9Z)/PGF1alpha)

C41H75O11P (774.5047)


   

PA(PGF1alpha/18:1(9Z))

PA(PGF1alpha/18:1(9Z))

C41H75O11P (774.5047)


   
   
   
   
   

PA(20:0/5-iso PGF2VI)

PA(20:0/5-iso PGF2VI)

C41H75O11P (774.5047)


   

PA(5-iso PGF2VI/20:0)

PA(5-iso PGF2VI/20:0)

C41H75O11P (774.5047)


   

PA(18:1(11Z)/PGF1alpha)

PA(18:1(11Z)/PGF1alpha)

C41H75O11P (774.5047)


   

PA(PGF1alpha/18:1(11Z))

PA(PGF1alpha/18:1(11Z))

C41H75O11P (774.5047)


   

PA(i-20:0/5-iso PGF2VI)

PA(i-20:0/5-iso PGF2VI)

C41H75O11P (774.5047)


   

PA(5-iso PGF2VI/i-20:0)

PA(5-iso PGF2VI/i-20:0)

C41H75O11P (774.5047)


   

PA(20:4(5Z,8Z,11Z,14Z)/PGJ2)

PA(20:4(5Z,8Z,11Z,14Z)/PGJ2)

C43H67O10P (774.4472)


   

PA(PGJ2/20:4(5Z,8Z,11Z,14Z))

PA(PGJ2/20:4(5Z,8Z,11Z,14Z))

C43H67O10P (774.4472)


   

PA(20:4(8Z,11Z,14Z,17Z)/PGJ2)

PA(20:4(8Z,11Z,14Z,17Z)/PGJ2)

C43H67O10P (774.4472)


   

PA(PGJ2/20:4(8Z,11Z,14Z,17Z))

PA(PGJ2/20:4(8Z,11Z,14Z,17Z))

C43H67O10P (774.4472)


   

PG(a-15:0/20:3(6,8,11)-OH(5))

PG(a-15:0/20:3(6,8,11)-OH(5))

C41H75O11P (774.5047)


   

PG(20:3(6,8,11)-OH(5)/a-15:0)

PG(20:3(6,8,11)-OH(5)/a-15:0)

C41H75O11P (774.5047)


   

PG(a-17:0/18:2(10E,12Z)+=O(9))

PG(a-17:0/18:2(10E,12Z)+=O(9))

C41H75O11P (774.5047)


   

PG(18:2(10E,12Z)+=O(9)/a-17:0)

PG(18:2(10E,12Z)+=O(9)/a-17:0)

C41H75O11P (774.5047)


   

PG(a-17:0/18:2(9Z,11E)+=O(13))

PG(a-17:0/18:2(9Z,11E)+=O(13))

C41H75O11P (774.5047)


   

PG(18:2(9Z,11E)+=O(13)/a-17:0)

PG(18:2(9Z,11E)+=O(13)/a-17:0)

C41H75O11P (774.5047)


   

PG(i-15:0/20:3(6,8,11)-OH(5))

PG(i-15:0/20:3(6,8,11)-OH(5))

C41H75O11P (774.5047)


   

PG(20:3(6,8,11)-OH(5)/i-15:0)

PG(20:3(6,8,11)-OH(5)/i-15:0)

C41H75O11P (774.5047)


   

PG(i-17:0/18:2(10E,12Z)+=O(9))

PG(i-17:0/18:2(10E,12Z)+=O(9))

C41H75O11P (774.5047)


   

PG(18:2(10E,12Z)+=O(9)/i-17:0)

PG(18:2(10E,12Z)+=O(9)/i-17:0)

C41H75O11P (774.5047)


   

PG(i-17:0/18:2(9Z,11E)+=O(13))

PG(i-17:0/18:2(9Z,11E)+=O(13))

C41H75O11P (774.5047)


   

PG(18:2(9Z,11E)+=O(13)/i-17:0)

PG(18:2(9Z,11E)+=O(13)/i-17:0)

C41H75O11P (774.5047)


   

PG(a-17:0/18:3(10,12,15)-OH(9))

PG(a-17:0/18:3(10,12,15)-OH(9))

C41H75O11P (774.5047)


   

PG(18:3(10,12,15)-OH(9)/a-17:0)

PG(18:3(10,12,15)-OH(9)/a-17:0)

C41H75O11P (774.5047)


   

PG(a-17:0/18:3(9,11,15)-OH(13))

PG(a-17:0/18:3(9,11,15)-OH(13))

C41H75O11P (774.5047)


   

PG(18:3(9,11,15)-OH(13)/a-17:0)

PG(18:3(9,11,15)-OH(13)/a-17:0)

C41H75O11P (774.5047)


   

PG(i-17:0/18:3(10,12,15)-OH(9))

PG(i-17:0/18:3(10,12,15)-OH(9))

C41H75O11P (774.5047)


   

PG(18:3(10,12,15)-OH(9)/i-17:0)

PG(18:3(10,12,15)-OH(9)/i-17:0)

C41H75O11P (774.5047)


   

PG(i-17:0/18:3(9,11,15)-OH(13))

PG(i-17:0/18:3(9,11,15)-OH(13))

C41H75O11P (774.5047)


   

PG(18:3(9,11,15)-OH(13)/i-17:0)

PG(18:3(9,11,15)-OH(13)/i-17:0)

C41H75O11P (774.5047)


   

PG(i-14:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PG(i-14:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C40H71O12P (774.4683)


   

PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-14:0)

PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-14:0)

C40H71O12P (774.4683)


   

PG(i-14:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PG(i-14:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C40H71O12P (774.4683)


   

PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-14:0)

PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-14:0)

C40H71O12P (774.4683)


   

PG(i-14:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PG(i-14:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C40H71O12P (774.4683)


   

PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-14:0)

PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-14:0)

C40H71O12P (774.4683)


   

PA(18:3(6Z,9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PA(18:3(6Z,9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C43H67O10P (774.4472)


   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(6Z,9Z,12Z))

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(6Z,9Z,12Z))

C43H67O10P (774.4472)


   

PA(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PA(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C43H67O10P (774.4472)


   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(6Z,9Z,12Z))

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(6Z,9Z,12Z))

C43H67O10P (774.4472)


   

PA(18:3(9Z,12Z,15Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PA(18:3(9Z,12Z,15Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C43H67O10P (774.4472)


   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(9Z,12Z,15Z))

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(9Z,12Z,15Z))

C43H67O10P (774.4472)


   

PA(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PA(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C43H67O10P (774.4472)


   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(9Z,12Z,15Z))

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(9Z,12Z,15Z))

C43H67O10P (774.4472)


   

PA(19:2(10Z,13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PA(19:2(10Z,13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C44H71O9P (774.4835)


   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/19:2(10Z,13Z))

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/19:2(10Z,13Z))

C44H71O9P (774.4835)


   

PA(19:2(10Z,13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PA(19:2(10Z,13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C44H71O9P (774.4835)


   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/19:2(10Z,13Z))

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/19:2(10Z,13Z))

C44H71O9P (774.4835)


   

PA(19:2(10Z,13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PA(19:2(10Z,13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C44H71O9P (774.4835)


   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/19:2(10Z,13Z))

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/19:2(10Z,13Z))

C44H71O9P (774.4835)


   

PA(19:2(10Z,13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PA(19:2(10Z,13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C44H71O9P (774.4835)


   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/19:2(10Z,13Z))

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/19:2(10Z,13Z))

C44H71O9P (774.4835)


   

PA(19:2(10Z,13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PA(19:2(10Z,13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C44H71O9P (774.4835)


   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/19:2(10Z,13Z))

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/19:2(10Z,13Z))

C44H71O9P (774.4835)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C43H67O10P (774.4472)


   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:5(5Z,8Z,11Z,14Z,17Z))

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:5(5Z,8Z,11Z,14Z,17Z))

C43H67O10P (774.4472)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C43H67O10P (774.4472)


   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:5(5Z,8Z,11Z,14Z,17Z))

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:5(5Z,8Z,11Z,14Z,17Z))

C43H67O10P (774.4472)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C43H67O10P (774.4472)


   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:5(5Z,8Z,11Z,14Z,17Z))

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:5(5Z,8Z,11Z,14Z,17Z))

C43H67O10P (774.4472)


   

SM(d17:2(4E,8Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

SM(d17:2(4E,8Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C44H75N2O7P (774.5312)


   

SM(d17:2(4E,8Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

SM(d17:2(4E,8Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C44H75N2O7P (774.5312)


   

SM(d17:2(4E,8Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

SM(d17:2(4E,8Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C44H75N2O7P (774.5312)


   

SM(d17:2(4E,8Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

SM(d17:2(4E,8Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C44H75N2O7P (774.5312)


   

SM(d17:2(4E,8Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

SM(d17:2(4E,8Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C44H75N2O7P (774.5312)


   

2-[[(2R)-2,3-bis[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2,3-bis[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

2-[[(2R)-2-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H73NO11P+ (774.4921)


   

2-[[(2R)-3-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H73NO11P+ (774.4921)


   

1,2-Di-(9Z,12Z,15Z-octadecatrienoyl)-3-O-beta-D-galactosyl-sn-glycerol

1,2-Di-(9Z,12Z,15Z-octadecatrienoyl)-3-O-beta-D-galactosyl-sn-glycerol

C45H74O10 (774.5282)


   

(1S,4E,5R,6R,6R,7S,8R,10S,11R,12R,14R,15R,16S,18E,20Z,22S,25R,27S,28R,29S)-22-ethyl-7,11,15-trihydroxy-6-[(2S)-2-hydroxypropyl]-5,6,8,10,12,14,16,28,29-nonamethylspiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2-oxane]-3,9,13-trione

(1S,4E,5R,6R,6R,7S,8R,10S,11R,12R,14R,15R,16S,18E,20Z,22S,25R,27S,28R,29S)-22-ethyl-7,11,15-trihydroxy-6-[(2S)-2-hydroxypropyl]-5,6,8,10,12,14,16,28,29-nonamethylspiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2-oxane]-3,9,13-trione

C45H74O10 (774.5282)


   

NAGlySer 26:7/16:3

NAGlySer 26:7/16:3

C47H70N2O7 (774.5183)


   

NAGlySer 22:6/20:4

NAGlySer 22:6/20:4

C47H70N2O7 (774.5183)


   

NAGlySer 20:5/22:5

NAGlySer 20:5/22:5

C47H70N2O7 (774.5183)


   

Smgdg O-22:4_9:0

Smgdg O-22:4_9:0

C40H70O12S (774.4588)


   

Smgdg O-26:4_5:0

Smgdg O-26:4_5:0

C40H70O12S (774.4588)


   

Smgdg O-24:4_7:0

Smgdg O-24:4_7:0

C40H70O12S (774.4588)


   

Smgdg O-9:0_22:4

Smgdg O-9:0_22:4

C40H70O12S (774.4588)


   

Smgdg O-28:4_3:0

Smgdg O-28:4_3:0

C40H70O12S (774.4588)


   

Dgdg O-22:3_3:0

Dgdg O-22:3_3:0

C40H70O14 (774.4765)


   

Dgdg O-18:3_7:0

Dgdg O-18:3_7:0

C40H70O14 (774.4765)


   

Dgdg O-16:3_9:0

Dgdg O-16:3_9:0

C40H70O14 (774.4765)


   

Dgdg O-20:3_5:0

Dgdg O-20:3_5:0

C40H70O14 (774.4765)


   

Dgdg O-9:0_16:3

Dgdg O-9:0_16:3

C40H70O14 (774.4765)


   

Smgdg O-16:3_15:1

Smgdg O-16:3_15:1

C40H70O12S (774.4588)


   

Smgdg O-15:0_16:4

Smgdg O-15:0_16:4

C40H70O12S (774.4588)


   

Smgdg O-18:3_13:1

Smgdg O-18:3_13:1

C40H70O12S (774.4588)


   

Smgdg O-18:4_13:0

Smgdg O-18:4_13:0

C40H70O12S (774.4588)


   

Smgdg O-20:4_11:0

Smgdg O-20:4_11:0

C40H70O12S (774.4588)


   

Smgdg O-16:4_15:0

Smgdg O-16:4_15:0

C40H70O12S (774.4588)


   

Smgdg O-13:0_18:4

Smgdg O-13:0_18:4

C40H70O12S (774.4588)


   

Smgdg O-11:0_20:4

Smgdg O-11:0_20:4

C40H70O12S (774.4588)


   

Smgdg O-15:1_16:3

Smgdg O-15:1_16:3

C40H70O12S (774.4588)


   

Smgdg O-13:1_18:3

Smgdg O-13:1_18:3

C40H70O12S (774.4588)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C44H71O9P (774.4835)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C40H71O12P (774.4683)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C44H71O9P (774.4835)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentadecanoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentadecanoate

C40H71O12P (774.4683)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C44H71O9P (774.4835)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C40H71O12P (774.4683)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C40H71O12P (774.4683)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C44H71O9P (774.4835)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] undecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] undecanoate

C40H71O12P (774.4683)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C44H71O9P (774.4835)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] tridecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] tridecanoate

C40H71O12P (774.4683)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C44H71O9P (774.4835)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (Z)-tridec-9-enoate

C40H71O12P (774.4683)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C40H71O12P (774.4683)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C44H71O9P (774.4835)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C44H71O9P (774.4835)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C40H71O12P (774.4683)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C40H71O12P (774.4683)


   

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C45H74O10 (774.5282)


   

PEtOH 22:2_18:5

PEtOH 22:2_18:5

C45H75O8P (774.5199)


   

PEtOH 16:3_24:4

PEtOH 16:3_24:4

C45H75O8P (774.5199)


   

PEtOH 22:3_18:4

PEtOH 22:3_18:4

C45H75O8P (774.5199)


   

PEtOH 18:3_22:4

PEtOH 18:3_22:4

C45H75O8P (774.5199)


   

PMeOH 19:1_22:6

PMeOH 19:1_22:6

C45H75O8P (774.5199)


   

PEtOH 20:3_20:4

PEtOH 20:3_20:4

C45H75O8P (774.5199)


   

PMeOH 21:2_20:5

PMeOH 21:2_20:5

C45H75O8P (774.5199)


   

PMeOH 19:2_22:5

PMeOH 19:2_22:5

C45H75O8P (774.5199)


   

PEtOH 20:2_20:5

PEtOH 20:2_20:5

C45H75O8P (774.5199)


   

PEtOH 18:1_22:6

PEtOH 18:1_22:6

C45H75O8P (774.5199)


   

PEtOH 18:2_22:5

PEtOH 18:2_22:5

C45H75O8P (774.5199)


   

6-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C44H70O11 (774.4918)


   

6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C44H70O11 (774.4918)


   

[3,4,5-trihydroxy-6-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

C45H74O10 (774.5282)


   

6-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C44H70O11 (774.4918)


   

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H74O10 (774.5282)


   

3,4,5-trihydroxy-6-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

C44H70O11 (774.4918)


   

[6-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H74O10 (774.5282)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-octadec-9-enoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-octadec-9-enoate

C45H74O10 (774.5282)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C45H74O10 (774.5282)


   

6-[2-[(Z)-heptadec-9-enoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-[(Z)-heptadec-9-enoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C44H70O11 (774.4918)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C45H74O10 (774.5282)


   

6-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C44H70O11 (774.4918)


   

[6-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C45H74O10 (774.5282)


   

[6-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[3,4,5-trihydroxy-6-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

C45H74O10 (774.5282)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

C45H75O8P (774.5199)


   

[1-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C45H75O8P (774.5199)


   

[1-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C45H75O8P (774.5199)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] (13Z,16Z)-docosa-13,16-dienoate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] (13Z,16Z)-docosa-13,16-dienoate

C45H75O8P (774.5199)


   

[1-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H75O8P (774.5199)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C45H75O8P (774.5199)


   

[1-[(Z)-icos-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(Z)-icos-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H75O8P (774.5199)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-phosphonooxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-phosphonooxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C45H75O8P (774.5199)


   

2-[[(2R)-2,3-bis[[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2,3-bis[[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C48H72NO7+ (774.5309)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C45H74O10 (774.5282)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (11E,14E)-hexacosa-11,14-dienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (11E,14E)-hexacosa-11,14-dienoate

C45H75O8P (774.5199)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C45H74O10 (774.5282)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoate

C45H75O8P (774.5199)


   

[(2R)-2-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H75O8P (774.5199)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C45H74O10 (774.5282)


   

[(2R)-1-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C45H75O8P (774.5199)


   

2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H74O10 (774.5282)


   

2-[hydroxy-[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C45H74O10 (774.5282)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C45H74O10 (774.5282)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C45H74O10 (774.5282)


   

2-[hydroxy-[(2R)-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-icos-11-enoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-icos-11-enoate

C45H74O10 (774.5282)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C45H74O10 (774.5282)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (17E,20E,23E)-hexacosa-17,20,23-trienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (17E,20E,23E)-hexacosa-17,20,23-trienoate

C45H75O8P (774.5199)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C45H75O8P (774.5199)


   

2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C45H75O8P (774.5199)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C45H74O10 (774.5282)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C45H74O10 (774.5282)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C45H75O8P (774.5199)


   

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H75O8P (774.5199)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C45H74O10 (774.5282)


   

[(2R)-1-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C45H75O8P (774.5199)


   

[(2S,3S,6S)-6-[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C45H74O10 (774.5282)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H72NO7+ (774.5309)


   

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H74O10 (774.5282)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C45H75O8P (774.5199)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate

C43H67O10P (774.4472)


   

[(2S,3S,6S)-6-[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H74O10 (774.5282)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C45H74O10 (774.5282)


   

[(2R)-2-[(E)-icos-11-enoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(E)-icos-11-enoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H75O8P (774.5199)


   

[(2S)-1-[(E)-hexadec-7-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-1-[(E)-hexadec-7-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C45H74O10 (774.5282)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C45H74O10 (774.5282)


   

[(2R)-1-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C45H75O8P (774.5199)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C45H75O8P (774.5199)


   

[(2R)-1-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H75O8P (774.5199)


   

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate

C45H75O8P (774.5199)


   

CID 134752063

CID 134752063

C45H74O10 (774.5282)


   

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C45H74O10 (774.5282)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C45H74O10 (774.5282)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C45H74O10 (774.5282)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

C45H75O8P (774.5199)


   

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H72NO7+ (774.5309)


   

[(2R)-1-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H75O8P (774.5199)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C45H74O10 (774.5282)


   

CID 134761027

CID 134761027

C45H74O10 (774.5282)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C45H74O10 (774.5282)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H72NO7+ (774.5309)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

C45H74O10 (774.5282)


   

2-[[(2R)-2,3-bis[[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2,3-bis[[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C45H74O10 (774.5282)


   

[(2R)-1-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C45H75O8P (774.5199)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C45H74O10 (774.5282)


   

[(2R)-1-[(E)-icos-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[(E)-icos-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H75O8P (774.5199)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoate

C43H67O10P (774.4472)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C45H75O8P (774.5199)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C45H74O10 (774.5282)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C45H74O10 (774.5282)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C45H74O10 (774.5282)


   

CID 134770601

CID 134770601

C45H74O10 (774.5282)


   

CID 134771494

CID 134771494

C45H74O10 (774.5282)


   

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C45H75O8P (774.5199)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H72NO7+ (774.5309)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C48H72NO7+ (774.5309)


   

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C45H74O10 (774.5282)


   

[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H74O10 (774.5282)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C45H74O10 (774.5282)


   

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C45H75O8P (774.5199)


   

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C45H75O8P (774.5199)


   

[(2R)-1-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H75O8P (774.5199)


   

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C45H74O10 (774.5282)


   

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H75O8P (774.5199)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C45H74O10 (774.5282)


   

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C40H70O12S (774.4588)


   

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

2-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

2-[2,3-bis[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy]propoxy-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[2,3-bis[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy]propoxy-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H73NO8P+ (774.5074)


   

1,2 di-(9Z,12Z,15Z-octadecatrienoyl)-3-O-Beta-D-galactosyl-sn-glycerol

1,2 di-(9Z,12Z,15Z-octadecatrienoyl)-3-O-Beta-D-galactosyl-sn-glycerol

C45H74O10 (774.5282)


   

BisMePA(40:7)

BisMePA(18:3_22:4)

C45H75O8P (774.5199)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG 14:0_22:6

MGDG 14:0_22:6

C45H74O10 (774.5282)


   

MGDG 14:1_22:5

MGDG 14:1_22:5

C45H74O10 (774.5282)


   

MGDG 16:1_20:5

MGDG 16:1_20:5

C45H74O10 (774.5282)


   

MGDG 18:2_18:4

MGDG 18:2_18:4

C45H74O10 (774.5282)


   

MGDG 18:3/0:0/18:3

MGDG 18:3/0:0/18:3

C45H74O10 (774.5282)


   

MGDG 18:3_18:3

MGDG 18:3_18:3

C45H74O10 (774.5282)


   
   

MGDG O-36:7;O

MGDG O-36:7;O

C45H74O10 (774.5282)


   
   
   
   
   
   
   
   
   

PA P-18:0/20:3;O4

PA P-18:0/20:3;O4

C41H75O11P (774.5047)


   

PA P-20:0/22:7;O

PA P-20:0/22:7;O

C45H75O8P (774.5199)


   

PA P-20:1/22:6;O

PA P-20:1/22:6;O

C45H75O8P (774.5199)


   

PA 18:0/20:3;O3

PA 18:0/20:3;O3

C41H75O11P (774.5047)


   

PA 18:3/22:6;O2

PA 18:3/22:6;O2

C43H67O10P (774.4472)


   

PA 18:4/22:5;O2

PA 18:4/22:5;O2

C43H67O10P (774.4472)


   

PA 20:3/20:6;O2

PA 20:3/20:6;O2

C43H67O10P (774.4472)


   

PA 20:4/20:5;O2

PA 20:4/20:5;O2

C43H67O10P (774.4472)


   

PA 20:5/20:4;O2

PA 20:5/20:4;O2

C43H67O10P (774.4472)


   
   
   
   
   
   
   
   
   
   
   
   

PG 14:0/20:4;O2

PG 14:0/20:4;O2

C40H71O12P (774.4683)


   

PG 14:1/20:3;O2

PG 14:1/20:3;O2

C40H71O12P (774.4683)


   
   

PG 22:1/12:3;O2

PG 22:1/12:3;O2

C40H71O12P (774.4683)


   

PG 22:2/12:2;O2

PG 22:2/12:2;O2

C40H71O12P (774.4683)


   
   
   
   
   
   
   
   

PEt(40:7)

PEt(18:1_22:6)

C45H75O8P (774.5199)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

(2r)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2r)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

C45H74O10 (774.5282)


   

(2s)-2-({6-[(1r,5r)-4-oxo-5-[(2z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]hexanoyl}oxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl 8-[(1r,5r)-4-oxo-5-[(2z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]octanoate

(2s)-2-({6-[(1r,5r)-4-oxo-5-[(2z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]hexanoyl}oxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl 8-[(1r,5r)-4-oxo-5-[(2z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]octanoate

C43H66O12 (774.4554)


   

(2r,3s,4r)-1,3,4,5-tetrahydroxypentan-2-yl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

(2r,3s,4r)-1,3,4,5-tetrahydroxypentan-2-yl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C40H70O14 (774.4765)


   

(2s)-2-({6-[(1r,5r)-4-oxo-5-(pent-2-en-1-yl)cyclopent-2-en-1-yl]hexanoyl}oxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl 8-[(1r,5r)-4-oxo-5-(pent-2-en-1-yl)cyclopent-2-en-1-yl]octanoate

(2s)-2-({6-[(1r,5r)-4-oxo-5-(pent-2-en-1-yl)cyclopent-2-en-1-yl]hexanoyl}oxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl 8-[(1r,5r)-4-oxo-5-(pent-2-en-1-yl)cyclopent-2-en-1-yl]octanoate

C43H66O12 (774.4554)


   

1-{5-[2-({3-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)ethyl]-6-methylheptan-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,6,7-pentol

1-{5-[2-({3-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)ethyl]-6-methylheptan-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,6,7-pentol

C40H70O14 (774.4765)


   

(2r,3s,4r)-2,3,4,5-tetrahydroxypentyl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

(2r,3s,4r)-2,3,4,5-tetrahydroxypentyl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C40H70O14 (774.4765)


   

1-{5-[({4-hydroxy-3-[(4-hydroxy-3,5-dimethoxyoxan-2-yl)oxy]-5-(hydroxymethyl)oxolan-2-yl}oxy)methyl]-6-methylheptan-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,7-pentol

1-{5-[({4-hydroxy-3-[(4-hydroxy-3,5-dimethoxyoxan-2-yl)oxy]-5-(hydroxymethyl)oxolan-2-yl}oxy)methyl]-6-methylheptan-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,7-pentol

C40H70O14 (774.4765)


   

(2s)-1,2-di-o-[(9z,12z,15z)-octadeca-9,12,15-trienoyl]-3-o-β-d-galactopyranosyl glycerol

NA

C45H74O10 (774.5282)


{"Ingredient_id": "HBIN006562","Ingredient_name": "(2s)-1,2-di-o-[(9z,12z,15z)-octadeca-9,12,15-trienoyl]-3-o-\u03b2-d-galactopyranosyl glycerol","Alias": "NA","Ingredient_formula": "C45H74O10","Ingredient_Smile": "CCC=CCC=CCC=CCCCCCCCC(=O)OCC(COC1C(C(C(C(O1)CO)O)O)O)OC(=O)CCCCCCCC=CCC=CCC=CCC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "6427","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

1-(octadeca-9,12,15-trienoyloxy)-3-{[2,3,5-trihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

1-(octadeca-9,12,15-trienoyloxy)-3-{[2,3,5-trihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

C45H74O10 (774.5282)


   

2-({6-[4-oxo-5-(pent-2-en-1-yl)cyclopent-2-en-1-yl]hexanoyl}oxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl 8-[4-oxo-5-(pent-2-en-1-yl)cyclopent-2-en-1-yl]octanoate

2-({6-[4-oxo-5-(pent-2-en-1-yl)cyclopent-2-en-1-yl]hexanoyl}oxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl 8-[4-oxo-5-(pent-2-en-1-yl)cyclopent-2-en-1-yl]octanoate

C43H66O12 (774.4554)


   

(2r,4r)-1,2,4,5-tetrahydroxypentan-3-yl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

(2r,4r)-1,2,4,5-tetrahydroxypentan-3-yl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C40H70O14 (774.4765)


   

(1s,4e,5'r,6r,6'r,7s,8r,10s,11r,12r,14r,15r,16s,18e,20e,22s,25s,27s,28r,29s)-22-ethyl-7,11,15-trihydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,9,13-trione

(1s,4e,5'r,6r,6'r,7s,8r,10s,11r,12r,14r,15r,16s,18e,20e,22s,25s,27s,28r,29s)-22-ethyl-7,11,15-trihydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,9,13-trione

C45H74O10 (774.5282)


   

n-[(2s,3r,4s,5r,6r)-5-amino-2-{[(2s,3r,4s,5r,6r)-2-[(2s)-3-(heptanoyloxy)-2-[(7e)-pentadec-7-enoyloxy]propoxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-4-hydroxy-6-methyloxan-3-yl]ethanimidic acid

n-[(2s,3r,4s,5r,6r)-5-amino-2-{[(2s,3r,4s,5r,6r)-2-[(2s)-3-(heptanoyloxy)-2-[(7e)-pentadec-7-enoyloxy]propoxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-4-hydroxy-6-methyloxan-3-yl]ethanimidic acid

C39H70N2O13 (774.4878)


   

(2r,3r,4r)-1,3,4,5-tetrahydroxypentan-2-yl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

(2r,3r,4r)-1,3,4,5-tetrahydroxypentan-2-yl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C40H70O14 (774.4765)


   

(2r)-2-({6-[(1r,5s)-4-oxo-5-[(2e)-pent-2-en-1-yl]cyclopent-2-en-1-yl]hexanoyl}oxy)-3-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl 8-[(1r,5s)-4-oxo-5-[(2e)-pent-2-en-1-yl]cyclopent-2-en-1-yl]octanoate

(2r)-2-({6-[(1r,5s)-4-oxo-5-[(2e)-pent-2-en-1-yl]cyclopent-2-en-1-yl]hexanoyl}oxy)-3-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl 8-[(1r,5s)-4-oxo-5-[(2e)-pent-2-en-1-yl]cyclopent-2-en-1-yl]octanoate

C43H66O12 (774.4554)


   

(1r,2r,3s,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5r)-5-({[(2r,3r,4s,5s)-4-hydroxy-3-{[(2s,3r,4s,5r)-4-hydroxy-3,5-dimethoxyoxan-2-yl]oxy}-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,7-pentol

(1r,2r,3s,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5r)-5-({[(2r,3r,4s,5s)-4-hydroxy-3-{[(2s,3r,4s,5r)-4-hydroxy-3,5-dimethoxyoxan-2-yl]oxy}-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,7-pentol

C40H70O14 (774.4765)


   

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5s,6r)-2,3,5-trihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5s,6r)-2,3,5-trihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

C45H74O10 (774.5282)


   

(1r,2r,3s,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4s,5r)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,7-pentol

(1r,2r,3s,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4s,5r)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,7-pentol

C40H70O14 (774.4765)


   

1,2,4,5-tetrahydroxypentan-3-yl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

1,2,4,5-tetrahydroxypentan-3-yl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C40H70O14 (774.4765)


   

2,3,4,5-tetrahydroxypentyl (2e,6e,10e,14e)-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

2,3,4,5-tetrahydroxypentyl (2e,6e,10e,14e)-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C40H70O14 (774.4765)


   

(1r,3r,3as,3bs,5s,5as,6r,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4s,5r)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,6,7-pentol

(1r,3r,3as,3bs,5s,5as,6r,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4s,5r)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,6,7-pentol

C40H70O14 (774.4765)


   

1-(octadeca-9,12,15-trienoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

1-(octadeca-9,12,15-trienoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

C45H74O10 (774.5282)


   

(2s)-2-({6-[(1s,5s)-4-oxo-5-[(2z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]hexanoyl}oxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl 8-[(1s,5s)-4-oxo-5-[(2z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]octanoate

(2s)-2-({6-[(1s,5s)-4-oxo-5-[(2z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]hexanoyl}oxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl 8-[(1s,5s)-4-oxo-5-[(2z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]octanoate

C43H66O12 (774.4554)


   

(2r,3r,4r)-2,3,4,5-tetrahydroxypentyl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

(2r,3r,4r)-2,3,4,5-tetrahydroxypentyl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C40H70O14 (774.4765)


   

(2s,3r,4r)-2,3,4,5-tetrahydroxypentyl (2e,4s,5r,6e,8s,9r,10e,12s,13r,14e,16r,18s)-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

(2s,3r,4r)-2,3,4,5-tetrahydroxypentyl (2e,4s,5r,6e,8s,9r,10e,12s,13r,14e,16r,18s)-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C40H70O14 (774.4765)


   

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

C45H74O10 (774.5282)


   

1,3,4,5-tetrahydroxypentan-2-yl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

1,3,4,5-tetrahydroxypentan-2-yl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C40H70O14 (774.4765)


   

2,3,4,5-tetrahydroxypentyl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

2,3,4,5-tetrahydroxypentyl 5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethyl-13-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-2,6,10,14-tetraenoate

C40H70O14 (774.4765)


   

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

C45H74O10 (774.5282)


   

(2s)-2-({6-[(1r,5s)-4-oxo-5-[(2z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]hexanoyl}oxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl 8-[(1r,5s)-4-oxo-5-[(2z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]octanoate

(2s)-2-({6-[(1r,5s)-4-oxo-5-[(2z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]hexanoyl}oxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl 8-[(1r,5s)-4-oxo-5-[(2z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]octanoate

C43H66O12 (774.4554)