[1-[4-(3-acetamido-5-amino-4-hydroxy-6-methyloxan-2-yl)oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-heptanoyloxypropan-2-yl] (E)-pentadec-7-enoate (BioDeep_00000843328)

   


代谢物信息卡片


[1-[4-(3-acetamido-5-amino-4-hydroxy-6-methyloxan-2-yl)oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-heptanoyloxypropan-2-yl] (E)-pentadec-7-enoate

化学式: C39H70N2O13 (774.4877650000001)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCCCCCC=CCCCCCC(=O)OC(COC1C(C(C(C(O1)CO)O)OC2C(C(C(C(O2)C)N)O)NC(=O)C)O)COC(=O)CCCCCC
InChI: InChI=1S/C39H70N2O13/c1-5-7-9-11-12-13-14-15-16-17-18-20-22-31(45)52-28(24-49-30(44)21-19-10-8-6-2)25-50-39-36(48)37(34(46)29(23-42)53-39)54-38-33(41-27(4)43)35(47)32(40)26(3)51-38/h14-15,26,28-29,32-39,42,46-48H,5-13,16-25,40H2,1-4H3,(H,41,43)/b15-14+



数据库引用编号

2 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Amany M Ibrahim, Muhammad S Azam, Olaf Schneewind, Dominique Missiakas. Processing of LtaS restricts LTA assembly and YSIRK preprotein trafficking into Staphylococcus aureus cross-walls. mBio. 2024 Feb; 15(2):e0285223. doi: 10.1128/mbio.02852-23. [PMID: 38174934]
  • Charlotte Millership, Angelika Gründling. Type I Lipoteichoic Acid (LTA) Detection by Western Blot. Methods in molecular biology (Clifton, N.J.). 2024; 2727(?):95-106. doi: 10.1007/978-1-0716-3491-2_8. [PMID: 37815711]
  • Xiaoya Wang, Zhiping Peng, Lei Wang, Jingyan Zhang, Kang Zhang, Zhiting Guo, Guowei Xu, Jianxi Li. Cordyceps militaris Solid Medium Extract Alleviates Lipoteichoic Acid-Induced MH-S Inflammation by Inhibiting TLR2/NF-κB/NLRP3 Pathways. International journal of molecular sciences. 2023 Oct; 24(21):. doi: 10.3390/ijms242115519. [PMID: 37958501]
  • Troy A Burtchett, John C Shook, Laura E Hesse, Philip C Delekta, Robert S Brzozowski, Alhakam Nouri, Alexa J Calas, Catherine M Spanoudis, Prahathees J Eswara, Neal D Hammer. Crucial Role for Lipoteichoic Acid Assembly in the Metabolic Versatility and Antibiotic Resistance of Staphylococcus aureus. Infection and immunity. 2023 07; 91(7):e0055022. doi: 10.1128/iai.00550-22. [PMID: 37347167]
  • Sachiko Watanabe, Kosuke Zenke, Masashi Muroi. Lipoteichoic Acid Inhibits Lipopolysaccharide-Induced TLR4 Signaling by Forming an Inactive TLR4/MD-2 Complex Dimer. Journal of immunology (Baltimore, Md. : 1950). 2023 Mar; ?(?):. doi: 10.4049/jimmunol.2200872. [PMID: 36897262]
  • Laura Miek, Paul M Jordan, Kerstin Günther, Simona Pace, Timo Beyer, David Kowalak, Verena Hoerr, Bettina Löffler, Lorena Tuchscherr, Charles N Serhan, Jana Gerstmeier, Oliver Werz. Staphylococcus aureus controls eicosanoid and specialized pro-resolving mediator production via lipoteichoic acid. Immunology. 2022 05; 166(1):47-67. doi: 10.1111/imm.13449. [PMID: 35143048]
  • Niluni M Wijesundara, Song F Lee, Ross Davidson, Zhenyu Cheng, H P Vasantha Rupasinghe. Carvacrol Suppresses Inflammatory Biomarkers Production by Lipoteichoic Acid- and Peptidoglycan-Stimulated Human Tonsil Epithelial Cells. Nutrients. 2022 Jan; 14(3):. doi: 10.3390/nu14030503. [PMID: 35276864]
  • Xuhui Zheng, Gerben Marsman, Keenan A Lacey, Jessica R Chapman, Christian Goosmann, Beatrix M Ueberheide, Victor J Torres. The cell envelope of Staphylococcus aureus selectively controls the sorting of virulence factors. Nature communications. 2021 10; 12(1):6193. doi: 10.1038/s41467-021-26517-z. [PMID: 34702812]
  • Yusaku Tsugami, Haruka Wakasa, Manabu Kawahara, Takanori Nishimura, Ken Kobayashi. Lipopolysaccharide and lipoteichoic acid influence milk production ability via different early responses in bovine mammary epithelial cells. Experimental cell research. 2021 03; 400(2):112472. doi: 10.1016/j.yexcr.2021.112472. [PMID: 33450209]
  • Bhavesh Bharatiya, Gang Wang, Sarah E Rogers, Jan Skov Pedersen, Stephen Mann, Wuge H Briscoe. Mixed liposomes containing gram-positive bacteria lipids: Lipoteichoic acid (LTA) induced structural changes. Colloids and surfaces. B, Biointerfaces. 2021 Mar; 199(?):111551. doi: 10.1016/j.colsurfb.2020.111551. [PMID: 33387794]
  • Shousheng Ni, Yang Zhou, Lili Song, Yan Chen, Xia Wang, Xiaoyuan Du, Shicui Zhang. ELAVL1a is an immunocompetent protein that protects zebrafish embryos from bacterial infection. Communications biology. 2021 02; 4(1):251. doi: 10.1038/s42003-021-01777-z. [PMID: 33637956]
  • Anthony R Hesser, Kaitlin Schaefer, Wonsik Lee, Suzanne Walker. Lipoteichoic acid polymer length is determined by competition between free starter units. Proceedings of the National Academy of Sciences of the United States of America. 2020 11; 117(47):29669-29676. doi: 10.1073/pnas.2008929117. [PMID: 33172991]
  • Yongjiang Wu, Yawang Sun, Zhu Zhang, Juncai Chen, Guozhong Dong. Effects of Peptidoglycan, Lipoteichoic Acid and Lipopolysaccharide on Inflammation, Proliferation and Milk Fat Synthesis in Bovine Mammary Epithelial Cells. Toxins. 2020 08; 12(8):. doi: 10.3390/toxins12080497. [PMID: 32748871]
  • Bing Zhang, Xue Liu, Elisabeth Lambert, Guillaume Mas, Sebastian Hiller, Jan-Willem Veening, Camilo Perez. Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis. Nature structural & molecular biology. 2020 06; 27(6):561-569. doi: 10.1038/s41594-020-0425-5. [PMID: 32367070]
  • Todd E Alexander, Ian M Smith, Zachary W Lipsky, Lindsay D Lozeau, Terri A Camesano. Role of lipopolysaccharides and lipoteichoic acids on C-Chrysophsin-1 interactions with model Gram-positive and Gram-negative bacterial membranes. Biointerphases. 2020 05; 15(3):031007. doi: 10.1116/1.5130774. [PMID: 32456440]
  • Axel Walter, Sandra Unsleber, Jeanine Rismondo, Ana Maria Jorge, Andreas Peschel, Angelika Gründling, Christoph Mayer. Phosphoglycerol-type wall and lipoteichoic acids are enantiomeric polymers differentiated by the stereospecific glycerophosphodiesterase GlpQ. The Journal of biological chemistry. 2020 03; 295(12):4024-4034. doi: 10.1074/jbc.ra120.012566. [PMID: 32047114]
  • Jitka Petrlova, Ganna Petruk, Roland G Huber, Eilish W McBurnie, Mariena J A van der Plas, Peter J Bond, Manoj Puthia, Artur Schmidtchen. Thrombin-derived C-terminal fragments aggregate and scavenge bacteria and their proinflammatory products. The Journal of biological chemistry. 2020 03; 295(11):3417-3430. doi: 10.1074/jbc.ra120.012741. [PMID: 32034093]
  • Hyeogsun Kwon, Yunlong Yang, Sunil Kumar, Dae-Weon Lee, Prati Bajracharya, Travis L Calkins, Yonggyun Kim, Patricia V Pietrantonio. Characterization of the first insect prostaglandin (PGE2) receptor: MansePGE2R is expressed in oenocytoids and lipoteichoic acid (LTA) increases transcript expression. Insect biochemistry and molecular biology. 2020 02; 117(?):103290. doi: 10.1016/j.ibmb.2019.103290. [PMID: 31790798]
  • Balasaheb K Ghotekar, Ananda Rao Podilapu, Suvarn S Kulkarni. Total Synthesis of the Lipid-Anchor-Attached Core Trisaccharides of Lipoteichoic Acids of Streptococcus pneumoniae and Streptococcus oralis Uo5. Organic letters. 2020 01; 22(2):537-541. doi: 10.1021/acs.orglett.9b04264. [PMID: 31887057]
  • Bing Zhang, Camilo Perez. Stabilization and Crystallization of a Membrane Protein Involved in Lipid Transport. Methods in molecular biology (Clifton, N.J.). 2020; 2127(?):283-292. doi: 10.1007/978-1-0716-0373-4_19. [PMID: 32112329]
  • Hiroya Mizuno, Lorena Arce, Kae Tomotsune, Leonardo Albarracin, Ryutaro Funabashi, Daniela Vera, Md Aminul Islam, Maria Guadalupe Vizoso-Pinto, Hideki Takahashi, Yasuko Sasaki, Haruki Kitazawa, Julio Villena. Lipoteichoic Acid Is Involved in the Ability of the Immunobiotic Strain Lactobacillus plantarum CRL1506 to Modulate the Intestinal Antiviral Innate Immunity Triggered by TLR3 Activation. Frontiers in immunology. 2020; 11(?):571. doi: 10.3389/fimmu.2020.00571. [PMID: 32328062]
  • Zhendong Qin, V Sarath Babu, Hanzuo Lin, Yunjia Dai, Hongyan Kou, Liehuan Chen, Jun Li, Lijuan Zhao, Li Lin. The immune function of prophenoloxidase from red swamp crayfish (Procambarus clarkii) in response to bacterial infection. Fish & shellfish immunology. 2019 Sep; 92(?):83-90. doi: 10.1016/j.fsi.2019.05.005. [PMID: 31059813]
  • Kangfeng Jiang, Shuai Guo, Jing Yang, Junfeng Liu, Aftab Shaukat, Gan Zhao, Haichong Wu, Ganzhen Deng. Matrine alleviates Staphylococcus aureus lipoteichoic acid-induced endometritis via suppression of TLR2-mediated NF-κB activation. International immunopharmacology. 2019 May; 70(?):201-207. doi: 10.1016/j.intimp.2019.02.033. [PMID: 30822611]
  • Motoharu Tanaka, Shigeru Abe. Different activities of antitumor immunomodulators to induce neutrophil adherence response. Drug discoveries & therapeutics. 2019; 13(6):299-305. doi: 10.5582/ddt.2019.01065. [PMID: 31956227]
  • Dan Ma, Zhizhi Wang, Christopher N Merrikh, Kevin S Lang, Peilong Lu, Xin Li, Houra Merrikh, Zihe Rao, Wenqing Xu. Crystal structure of a membrane-bound O-acyltransferase. Nature. 2018 10; 562(7726):286-290. doi: 10.1038/s41586-018-0568-2. [PMID: 30283133]
  • Young Ji Lee, Ji-Hee Kim, YoungHee Kim. Dendrobium moniliforme Stem Extract Inhibits Lipoteichoic Acid-Induced Inflammatory Responses by Upregulation of Heme Oxygenase-1. Journal of microbiology and biotechnology. 2018 Aug; 28(8):1310-1317. doi: 10.4014/jmb.1807.07024. [PMID: 30111072]
  • Peter M Grin, Dhruva J Dwivedi, Kevin M Chathely, Bernardo L Trigatti, Annik Prat, Nabil G Seidah, Patricia C Liaw, Alison E Fox-Robichaud. Low-density lipoprotein (LDL)-dependent uptake of Gram-positive lipoteichoic acid and Gram-negative lipopolysaccharide occurs through LDL receptor. Scientific reports. 2018 Jul; 8(1):10496. doi: 10.1038/s41598-018-28777-0. [PMID: 30002483]
  • Gan Zhao, Kangfeng Jiang, Haichong Wu, Changwei Qiu, Ganzhen Deng, Xiuli Peng. Polydatin reduces Staphylococcus aureus lipoteichoic acid-induced injury by attenuating reactive oxygen species generation and TLR2-NFκB signalling. Journal of cellular and molecular medicine. 2017 Nov; 21(11):2796-2808. doi: 10.1111/jcmm.13194. [PMID: 28524642]
  • Tu Thi Ngoc Nguyen, Eunjeong Seo, Juyong Choi, Oanh Thi Tu Le, Ji Yun Kim, Ilo Jou, Sang Yoon Lee. Phosphatidylinositol 4-phosphate 5-kinase α contributes to Toll-like receptor 2-mediated immune responses in microglial cells stimulated with lipoteichoic acid. Cellular signalling. 2017 10; 38(?):159-170. doi: 10.1016/j.cellsig.2017.07.009. [PMID: 28711717]
  • Evgeny Vinogradov, Annie Aubry, Susan M Logan. Structural characterization of wall and lipidated polysaccharides from Clostridium perfringens ATCC 13124. Carbohydrate research. 2017 Aug; 448(?):88-94. doi: 10.1016/j.carres.2017.06.003. [PMID: 28628892]
  • George K Auer, Douglas B Weibel. Bacterial Cell Mechanics. Biochemistry. 2017 07; 56(29):3710-3724. doi: 10.1021/acs.biochem.7b00346. [PMID: 28666084]
  • Tze Mun Loo, Fumitaka Kamachi, Yoshihiro Watanabe, Shin Yoshimoto, Hiroaki Kanda, Yuriko Arai, Yaeko Nakajima-Takagi, Atsushi Iwama, Tomoaki Koga, Yukihiko Sugimoto, Takayuki Ozawa, Masaru Nakamura, Miho Kumagai, Koichi Watashi, Makoto M Taketo, Tomohiro Aoki, Shuh Narumiya, Masanobu Oshima, Makoto Arita, Eiji Hara, Naoko Ohtani. Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity. Cancer discovery. 2017 05; 7(5):522-538. doi: 10.1158/2159-8290.cd-16-0932. [PMID: 28202625]
  • Ming-Shun Wu, Chih-Chiang Chien, Kur-Ta Cheng, Gottumukkala V Subbaraju, Yen-Chou Chen. Hispolon Suppresses LPS- or LTA-Induced iNOS/NO Production and Apoptosis in BV-2 Microglial Cells. The American journal of Chinese medicine. 2017; 45(8):1649-1666. doi: 10.1142/s0192415x17500896. [PMID: 29121802]
  • Katarzyna A Duda, Sandra Petersen, Otto Holst. Structural characterization of the lipoteichoic acid isolated from Staphylococcus sciuri W620. Carbohydrate research. 2016 Jul; 430(?):44-47. doi: 10.1016/j.carres.2016.04.026. [PMID: 27196311]
  • Yasuko Sekita, Keiji Murakami, Hiromichi Yumoto, Hiroyuki Mizuguchi, Takashi Amoh, Satoshi Ogino, Takashi Matsuo, Yoichiro Miyake, Hiroyuki Fukui, Yoshiki Kashiwada. Anti-bacterial and anti-inflammatory effects of ethanol extract from Houttuynia cordata poultice. Bioscience, biotechnology, and biochemistry. 2016 Jun; 80(6):1205-13. doi: 10.1080/09168451.2016.1151339. [PMID: 27023331]
  • Paulina Schmitt, Rafael D Rosa, Delphine Destoumieux-Garzón. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Biochimica et biophysica acta. 2016 May; 1858(5):958-70. doi: 10.1016/j.bbamem.2015.10.011. [PMID: 26498397]
  • Sun Young Park, Young Hun Kim, Geuntae Park. Anti-neuro-inflammatory effects of Nardostachys chinensis in lipopolysaccharide-and lipoteichoic acid-stimulated microglial cells. Chinese journal of natural medicines. 2016 May; 14(5):343-53. doi: 10.3724/sp.j.1009.2016.00343. [PMID: 27478097]
  • Martin Malmsten. Interactions of Antimicrobial Peptides with Bacterial Membranes and Membrane Components. Current topics in medicinal chemistry. 2016; 16(1):16-24. doi: 10.2174/1568026615666150703121518. [PMID: 26139113]
  • Pramod K Gupta, Anil K Jaiswal, Shalini Asthana, Anuradha Dube, Prabhat R Mishra. Antigen presenting cells targeting and stimulation potential of lipoteichoic acid functionalized lipo-polymerosome: a chemo-immunotherapeutic approach against intracellular infectious disease. Biomacromolecules. 2015 Apr; 16(4):1073-87. doi: 10.1021/bm5015156. [PMID: 25671728]
  • Ning Liu, Jiang-Feng Lan, Jie-Jie Sun, Wen-Ming Jia, Xiao-Fan Zhao, Jin-Xing Wang. A novel crustin from Marsupenaeus japonicus promotes hemocyte phagocytosis. Developmental and comparative immunology. 2015 Apr; 49(2):313-22. doi: 10.1016/j.dci.2014.11.021. [PMID: 25479014]
  • Su Young Noh, Seok-Seong Kang, Cheol-Heui Yun, Seung Hyun Han. Lipoteichoic acid from Lactobacillus plantarum inhibits Pam2CSK4-induced IL-8 production in human intestinal epithelial cells. Molecular immunology. 2015 Mar; 64(1):183-9. doi: 10.1016/j.molimm.2014.11.014. [PMID: 25481370]
  • Sun Woong Hong, Jung Eun Baik, Seok-Seong Kang, Cheol-Heui Yun, Deog-Gyu Seo, Seung Hyun Han. Lipoteichoic acid of Streptococcus mutans interacts with Toll-like receptor 2 through the lipid moiety for induction of inflammatory mediators in murine macrophages. Molecular immunology. 2014 Feb; 57(2):284-91. doi: 10.1016/j.molimm.2013.10.004. [PMID: 24216318]
  • Yun Jeong Kim, Eun Byul Jung, Min Sung Lee, Seong Jun Seo, Manh Heun Kim, Min Won Lee, Chung Soo Lee. Rotundarpene inhibits toll-like receptor 2 activation-induced production of inflammatory mediators in keratinocytes by suppressing the Akt and NF-κB pathways. International immunopharmacology. 2014 Feb; 18(2):325-32. doi: 10.1016/j.intimp.2013.12.016. [PMID: 24378401]
  • Maria Mercedes Palomino, Mariana C Allievi, Angelika Gründling, Carmen Sanchez-Rivas, Sandra M Ruzal. Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid. Microbiology (Reading, England). 2013 Nov; 159(Pt 11):2416-2426. doi: 10.1099/mic.0.070607-0. [PMID: 24014660]
  • Taly Vaisid, Nechama S Kosower. Calpastatin is upregulated in non-immune neuronal cells via toll-like receptor 2 (TLR2) pathways by lipid-containing agonists. Biochimica et biophysica acta. 2013 Oct; 1833(10):2369-77. doi: 10.1016/j.bbamcr.2013.06.006. [PMID: 23773963]
  • Sunil A Nankar, Abhay H Pande. Physicochemical properties of bacterial pro-inflammatory lipids influence their interaction with apolipoprotein-derived peptides. Biochimica et biophysica acta. 2013 Apr; 1831(4):853-62. doi: 10.1016/j.bbalip.2013.01.006. [PMID: 23333883]
  • Thomas Alava, Jason A Mann, Cécile Théodore, Jaime J Benitez, William R Dichtel, Jeevak M Parpia, Harold G Craighead. Control of the graphene-protein interface is required to preserve adsorbed protein function. Analytical chemistry. 2013 Mar; 85(5):2754-9. doi: 10.1021/ac303268z. [PMID: 23363062]
  • Inês M Torcato, Yen-Hua Huang, Henri G Franquelim, Diana Gaspar, David J Craik, Miguel A R B Castanho, Sónia Troeira Henriques. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochimica et biophysica acta. 2013 Mar; 1828(3):944-55. doi: 10.1016/j.bbamem.2012.12.002. [PMID: 23246973]
  • Aurélie Ray, Marlène Cot, Germain Puzo, Martine Gilleron, Jérôme Nigou. Bacterial cell wall macroamphiphiles: pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie. 2013 Jan; 95(1):33-42. doi: 10.1016/j.biochi.2012.06.007. [PMID: 22706280]
  • Ingmar J J Claes, Marijke E Segers, Tine L A Verhoeven, Michiel Dusselier, Bert F Sels, Sigrid C J De Keersmaecker, Jos Vanderleyden, Sarah Lebeer. Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG. Microbial cell factories. 2012 Dec; 11(?):161. doi: 10.1186/1475-2859-11-161. [PMID: 23241240]
  • Preetha Anand, Silvia Cermelli, Zhihuan Li, Adam Kassan, Marta Bosch, Robilyn Sigua, Lan Huang, Andre J Ouellette, Albert Pol, Michael A Welte, Steven P Gross. A novel role for lipid droplets in the organismal antibacterial response. eLife. 2012 Nov; 1(?):e00003. doi: 10.7554/elife.00003. [PMID: 23150794]
  • Janelle Sauvageau, Amy J Foster, Ashna A Khan, Stephanie H Chee, Ian M Sims, Mattie S M Timmer, Bridget L Stocker. Synthesis and biological activity of the lipoteichoic acid anchor from Streptococcus sp. DSM 8747. Chembiochem : a European journal of chemical biology. 2012 Nov; 13(16):2416-24. doi: 10.1002/cbic.201200468. [PMID: 23060132]
  • Anna Czabańska, Olga Neiwert, Buko Lindner, James Leigh, Otto Holst, Katarzyna A Duda. Structural analysis of the lipoteichoic acids isolated from bovine mastitis Streptococcus uberis 233, Streptococcus dysgalactiae 2023 and Streptococcus agalactiae 0250. Carbohydrate research. 2012 Nov; 361(?):200-5. doi: 10.1016/j.carres.2012.09.007. [PMID: 23036931]
  • Xiu-Zhen Shi, Xue Zhong, Xiao-Qiang Yu. Drosophila melanogaster NPC2 proteins bind bacterial cell wall components and may function in immune signal pathways. Insect biochemistry and molecular biology. 2012 Aug; 42(8):545-56. doi: 10.1016/j.ibmb.2012.04.002. [PMID: 22580186]
  • Sarah Lebeer, Ingmar J J Claes, Jos Vanderleyden. Anti-inflammatory potential of probiotics: lipoteichoic acid makes a difference. Trends in microbiology. 2012 Jan; 20(1):5-10. doi: 10.1016/j.tim.2011.09.004. [PMID: 22030243]
  • Kathleen Fischer, Karina Stein, Artur J Ulmer, Buko Lindner, Holger Heine, Otto Holst. Cytokine-inducing lipoteichoic acids of the allergy-protective bacterium Lactococcus lactis G121 do not activate via Toll-like receptor 2. Glycobiology. 2011 Dec; 21(12):1588-95. doi: 10.1093/glycob/cwr071. [PMID: 21666273]
  • Jung Eun Baik, Kyoung-Soon Jang, Seok-Seong Kang, Cheol-Heui Yun, Kangseok Lee, Byung-Gee Kim, Kee-Yeon Kum, Seung Hyun Han. Calcium hydroxide inactivates lipoteichoic acid from Enterococcus faecalis through deacylation of the lipid moiety. Journal of endodontics. 2011 Feb; 37(2):191-6. doi: 10.1016/j.joen.2010.11.007. [PMID: 21238801]
  • Satoshi Matsuoka, Michihiro Hashimoto, Yusuke Kamiya, Takeshi Miyazawa, Kazuki Ishikawa, Hiroshi Hara, Kouji Matsumoto. The Bacillus subtilis essential gene dgkB is dispensable in mutants with defective lipoteichoic acid synthesis. Genes & genetic systems. 2011; 86(6):365-76. doi: 10.1266/ggs.86.365. [PMID: 22451476]
  • I J J Claes, Sarah Lebeer, C Shen, T L A Verhoeven, E Dilissen, G De Hertogh, D M A Bullens, J L Ceuppens, G Van Assche, S Vermeire, P Rutgeerts, J Vanderleyden, S C J De Keersmaecker. Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clinical and experimental immunology. 2010 Nov; 162(2):306-14. doi: 10.1111/j.1365-2249.2010.04228.x. [PMID: 20731672]
  • Xiang-Jun Rao, Xiao-Qiang Yu. Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression in the tobacco hornworm Manduca sexta. Developmental and comparative immunology. 2010 Oct; 34(10):1119-28. doi: 10.1016/j.dci.2010.06.007. [PMID: 20600279]
  • Maria Karatsa-Dodgson, Mirka E Wörmann, Angelika Gründling. In vitro analysis of the Staphylococcus aureus lipoteichoic acid synthase enzyme using fluorescently labeled lipids. Journal of bacteriology. 2010 Oct; 192(20):5341-9. doi: 10.1128/jb.00453-10. [PMID: 20709894]
  • Jin Young Kang, Xuehua Nan, Mi Sun Jin, Suk-Jun Youn, Young Hee Ryu, Shinjee Mah, Seung Hyun Han, Hayyoung Lee, Sang-Gi Paik, Jie-Oh Lee. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity. 2009 Dec; 31(6):873-84. doi: 10.1016/j.immuni.2009.09.018. [PMID: 19931471]
  • Slava Epelman, Byron Berenger, Danuta Stack, Graham G Neely, Ling Ling Ma, Christopher H Mody. Microbial products activate monocytic cells through detergent-resistant membrane microdomains. American journal of respiratory cell and molecular biology. 2008 Dec; 39(6):657-65. doi: 10.1165/rcmb.2007-0390oc. [PMID: 18539953]
  • Naomi E Kramer, Hester E Hasper, Patrick T C van den Bogaard, Siegfried Morath, Ben de Kruijff, Thomas Hartung, Eddy J Smid, Eefjan Breukink, Jan Kok, Oscar P Kuipers. Increased D-alanylation of lipoteichoic acid and a thickened septum are main determinants in the nisin resistance mechanism of Lactococcus lactis. Microbiology (Reading, England). 2008 Jun; 154(Pt 6):1755-1762. doi: 10.1099/mic.0.2007/015412-0. [PMID: 18524930]
  • Ho Seong Seo, Robert T Cartee, David G Pritchard, Moon H Nahm. A new model of pneumococcal lipoteichoic acid structure resolves biochemical, biosynthetic, and serologic inconsistencies of the current model. Journal of bacteriology. 2008 Apr; 190(7):2379-87. doi: 10.1128/jb.01795-07. [PMID: 18245291]
  • Paschalis Giannoulis, Cory L Brooks, Gary B Dunphy, Donald F Niven, Craig A Mandato. Surface antigens of Xenorhabdus nematophila (F. Enterobacteriaceae) and Bacillus subtilis (F. Bacillaceae) react with antibacterial factors of Malacosoma disstria (C. Insecta: O. Lepidoptera) hemolymph. Journal of invertebrate pathology. 2008 Mar; 97(3):211-22. doi: 10.1016/j.jip.2007.10.009. [PMID: 18048054]
  • Christian Draing, Stefanie Sigel, Susanne Deininger, Stephanie Traub, Rebekka Munke, Christoph Mayer, Lars Hareng, Thomas Hartung, Sonja von Aulock, Corinna Hermann. Cytokine induction by Gram-positive bacteria. Immunobiology. 2008; 213(3-4):285-96. doi: 10.1016/j.imbio.2007.12.001. [PMID: 18406374]
  • Sarah Lebeer, Tine L A Verhoeven, Mónica Perea Vélez, Jos Vanderleyden, Sigrid C J De Keersmaecker. Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Applied and environmental microbiology. 2007 Nov; 73(21):6768-75. doi: 10.1128/aem.01393-07. [PMID: 17827316]
  • Guan-Cheng Huang, Jyh-Ming Chow, Shing-Chuan Shen, Liang-Yo Yang, Cheng-Wei Lin, Yen-Chou Chen. Wogonin but not Nor-wogonin inhibits lipopolysaccharide and lipoteichoic acid-induced iNOS gene expression and NO production in macrophages. International immunopharmacology. 2007 Aug; 7(8):1054-63. doi: 10.1016/j.intimp.2007.04.001. [PMID: 17570322]
  • Agoston Jerga, Ying-Jie Lu, Gustavo E Schujman, Diego de Mendoza, Charles O Rock. Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis. The Journal of biological chemistry. 2007 Jul; 282(30):21738-45. doi: 10.1074/jbc.m703536200. [PMID: 17535816]
  • Mónica Perea Vélez, Tine L A Verhoeven, Christian Draing, Sonja Von Aulock, Markus Pfitzenmaier, Armin Geyer, Ivo Lambrichts, Corinne Grangette, Bruno Pot, Jos Vanderleyden, Sigrid C J De Keersmaecker. Functional analysis of D-alanylation of lipoteichoic acid in the probiotic strain Lactobacillus rhamnosus GG. Applied and environmental microbiology. 2007 Jun; 73(11):3595-604. doi: 10.1128/aem.02083-06. [PMID: 17434999]
  • Jürgen Behr, Michael G Gänzle, Rudi F Vogel. Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport. Applied and environmental microbiology. 2006 Oct; 72(10):6483-92. doi: 10.1128/aem.00668-06. [PMID: 17021196]
  • Robert Bucki, Paul A Janmey. Interaction of the gelsolin-derived antibacterial PBP 10 peptide with lipid bilayers and cell membranes. Antimicrobial agents and chemotherapy. 2006 Sep; 50(9):2932-40. doi: 10.1128/aac.00134-06. [PMID: 16940084]
  • A L Casey, T Worthington, R S Bonser, P A Lambert, T S J Elliott. Rapid serodiagnosis of Staphylococcus aureus surgical site infection following median sternotomy. The Journal of infection. 2006 Apr; 52(4):276-81. doi: 10.1016/j.jinf.2005.06.006. [PMID: 16045994]
  • Ho Seong Seo, Je Hak Kim, Moon H Nahm. Platelet-activating factor-acetylhydrolase can monodeacylate and inactivate lipoteichoic acid. Clinical and vaccine immunology : CVI. 2006 Apr; 13(4):452-8. doi: 10.1128/cvi.13.4.452-458.2006. [PMID: 16603612]
  • Maria-Rosa Sarrias, Sandra Roselló, Fernando Sánchez-Barbero, Josep M Sierra, Jordi Vila, José Yélamos, Jordi Vives, Cristina Casals, Francisco Lozano. A role for human Sp alpha as a pattern recognition receptor. The Journal of biological chemistry. 2005 Oct; 280(42):35391-8. doi: 10.1074/jbc.m505042200. [PMID: 16030018]
  • Mari Gotoh, Yukiko Takamoto, Kahori Kurosaka, Junko Masuda, Michiru Ida, Ayano Satoh, Eiji Takayama, Kyoko Kojima-Aikawa, Yoshiro Kobayashi, Isamu Matsumoto. Annexins I and IV inhibit Staphylococcus aureus attachment to human macrophages. Immunology letters. 2005 May; 98(2):297-302. doi: 10.1016/j.imlet.2004.12.004. [PMID: 15860231]
  • Hiroki Tanabe, Tokiyoshi Ayabe, Brian Bainbridge, Tina Guina, Robert K Ernst, Richard P Darveau, Samuel I Miller, Andre J Ouellette. Mouse paneth cell secretory responses to cell surface glycolipids of virulent and attenuated pathogenic bacteria. Infection and immunity. 2005 Apr; 73(4):2312-20. doi: 10.1128/iai.73.4.2312-2320.2005. [PMID: 15784576]
  • Karen J Jones, Alan D Perris, Ann B Vernallis, Tony Worthington, Peter A Lambert, Tom Sj Elliott. Induction of inflammatory cytokines and nitric oxide in J774.2 cells and murine macrophages by lipoteichoic acid and related cell wall antigens from Staphylococcus epidermidis. Journal of medical microbiology. 2005 Apr; 54(Pt 4):315-321. doi: 10.1099/jmm.0.45872-0. [PMID: 15770014]
  • Siegfried Morath, Sonja von Aulock, Thomas Hartung. Structure/function relationships of lipoteichoic acids. Journal of endotoxin research. 2005; 11(6):348-56. doi: 10.1179/096805105x67328. [PMID: 16303090]
  • Tobias Böttcher, Hao Ren, Michel Goiny, Joachim Gerber, Jens Lykkesfeldt, Ulrich Kuhnt, Miriam Lotz, Stephanie Bunkowski, Carola Werner, Ingmar Schau, Annette Spreer, Stephan Christen, Roland Nau. Clindamycin is neuroprotective in experimental Streptococcus pneumoniae meningitis compared with ceftriaxone. Journal of neurochemistry. 2004 Dec; 91(6):1450-60. doi: 10.1111/j.1471-4159.2004.02837.x. [PMID: 15584921]
  • Martha Triantafilou, Maria Manukyan, Alan Mackie, Siegfried Morath, Thomas Hartung, Holger Heine, Kathy Triantafilou. Lipoteichoic acid and toll-like receptor 2 internalization and targeting to the Golgi are lipid raft-dependent. The Journal of biological chemistry. 2004 Sep; 279(39):40882-9. doi: 10.1074/jbc.m400466200. [PMID: 15247273]
  • Haobo Jiang, Congcong Ma, Zhi-Qiang Lu, Michael R Kanost. Beta-1,3-glucan recognition protein-2 (betaGRP-2)from Manduca sexta; an acute-phase protein that binds beta-1,3-glucan and lipoteichoic acid to aggregate fungi and bacteria and stimulate prophenoloxidase activation. Insect biochemistry and molecular biology. 2004 Jan; 34(1):89-100. doi: 10.1016/j.ibmb.2003.09.006. [PMID: 14976985]
  • Woojin Scott Kim, Christine M Ordija, Mason W Freeman. Activation of signaling pathways by putative scavenger receptor class A (SR-A) ligands requires CD14 but not SR-A. Biochemical and biophysical research communications. 2003 Oct; 310(2):542-9. doi: 10.1016/j.bbrc.2003.09.049. [PMID: 14521944]
  • Johannes H M Levels, Philip R Abraham, Erik P van Barreveld, Joost C M Meijers, Sander J H van Deventer. Distribution and kinetics of lipoprotein-bound lipoteichoic acid. Infection and immunity. 2003 Jun; 71(6):3280-4. doi: 10.1128/iai.71.6.3280-3284.2003. [PMID: 12761109]
  • Susanne Deininger, Andreas Stadelmaier, Sonja von Aulock, Siegfried Morath, Richard R Schmidt, Thomas Hartung. Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. Journal of immunology (Baltimore, Md. : 1950). 2003 Apr; 170(8):4134-8. doi: 10.4049/jimmunol.170.8.4134. [PMID: 12682244]
  • Michael Morr, Osamu Takeuchi, Shizuo Akira, Markus M Simon, Peter F Mühlradt. Differential recognition of structural details of bacterial lipopeptides by toll-like receptors. European journal of immunology. 2002 Dec; 32(12):3337-47. doi: 10.1002/1521-4141(200212)32:12<3337::aid-immu3337>3.0.co;2-#. [PMID: 12432564]
  • Prabal K Chatterjee, Kai Zacharowski, Salvatore Cuzzocrea, Paul A J Brown, Keith N Stewart, Helder Mota-Filipe, Christoph Thiemermann. Lipoteichoic acid from Staphylococcus aureus reduces renal ischemia/reperfusion injury. Kidney international. 2002 Oct; 62(4):1249-63. doi: 10.1111/j.1523-1755.2002.kid580.x. [PMID: 12234295]
  • Siegfried Morath, Andreas Stadelmaier, Armin Geyer, Richard R Schmidt, Thomas Hartung. Synthetic lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release. The Journal of experimental medicine. 2002 Jun; 195(12):1635-40. doi: 10.1084/jem.20020322. [PMID: 12070290]
  • Xiao-Qiang Yu, Michael R Kanost. Binding of hemolin to bacterial lipopolysaccharide and lipoteichoic acid. An immunoglobulin superfamily member from insects as a pattern-recognition receptor. European journal of biochemistry. 2002 Apr; 269(7):1827-34. doi: 10.1046/j.1432-1033.2002.02830.x. [PMID: 11952784]
  • S Yang, R Tamai, S Akashi, O Takeuchi, S Akira, S Sugawara, H Takada. Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture. Infection and immunity. 2001 Apr; 69(4):2045-53. doi: 10.1128/iai.69.4.2045-2053.2001. [PMID: 11254557]
  • B Henrich, R Guadarrama, U Zähringer, C R MacKenzie. The detergent octylglucoside neutralizes lipopolysaccharide in a specific manner. Medical microbiology and immunology. 2001 Apr; 189(3):133-6. doi: 10.1007/s430-001-8019-2. [PMID: 11388610]
  • R Dziarski, Q Wang, K Miyake, C J Kirschning, D Gupta. MD-2 enables Toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall components. Journal of immunology (Baltimore, Md. : 1950). 2001 Feb; 166(3):1938-44. doi: 10.4049/jimmunol.166.3.1938. [PMID: 11160242]
  • P A Lambert, T Worthington, S E Tebbs, T S Elliott. Lipid S, a novel Staphylococcus epidermidis exocellular antigen with potential for the serodiagnosis of infections. FEMS immunology and medical microbiology. 2000 Nov; 29(3):195-202. doi: 10.1111/j.1574-695x.2000.tb01523.x. [PMID: 11064266]
  • A E Halwani, D F Niven, G B Dunphy. Apolipophorin-III and the interactions of lipoteichoic acids with the immediate immune responses of Galleria mellonella. Journal of invertebrate pathology. 2000 Nov; 76(4):233-41. doi: 10.1006/jipa.2000.4978. [PMID: 11112367]
  • P Roethlisberger, N Iida-Tanaka, K Hollemeyer, E Heinzle, I Ishizuka, W Fischer. Unique poly(glycerophosphate) lipoteichoic acid and the glycolipids of a Streptococcus sp. closely related to Streptococcus pneumoniae. European journal of biochemistry. 2000 Sep; 267(17):5520-30. doi: 10.1046/j.1432-1327.2000.01613.x. [PMID: 10951211]
  • T Ayabe, D P Satchell, C L Wilson, W C Parks, M E Selsted, A J Ouellette. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nature immunology. 2000 Aug; 1(2):113-8. doi: 10.1038/77783. [PMID: 11248802]
  • R Dziarski, A J Ulmer, D Gupta. Interactions of CD14 with components of gram-positive bacteria. Chemical immunology. 2000; 74(?):83-107. doi: 10.1159/000058761. [PMID: 10608083]
  • O Takeuchi, K Hoshino, T Kawai, H Sanjo, H Takada, T Ogawa, K Takeda, S Akira. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999 Oct; 11(4):443-51. doi: 10.1016/s1074-7613(00)80119-3. [PMID: 10549626]