Exact Mass: 754.4449

Exact Mass Matches: 754.4449

Found 391 metabolites which its exact mass value is equals to given mass value 754.4449, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PPA 34:1

1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-pyrophosphate; 1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycerol 3-pyrophosphate; 1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycerol 3-diphosphate

C37H72O11P2 (754.455)


   

Chikusetsusaponin Ia

2-{[16-hydroxy-14-(2-hydroxy-6-methylhept-5-en-2-yl)-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-yl]oxy}-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol

C41H70O12 (754.4867)


Chikusetsusaponin Ia is found in tea. Chikusetsusaponin Ia is a constituent of Panax japonicum (Japanese ginseng) Constituent of Panax japonicum (Japanese ginseng). Chikusetsusaponin Ia is found in tea. D002491 - Central Nervous System Agents

   

Agavoside B

16-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-10-one

C39H62O14 (754.4139)


Agavoside B is found in green vegetables. Agavoside B is from the famine food Agave americana. From the famine food Agave americana. Agavoside B is found in green vegetables.

   

Schidigerasaponin C2

2-[4,5-Dihydroxy-6-(hydroxymethyl)-2-(15-hydroxy-7,9,13-trimethyl-5-methylidenespiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-16-yl)oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C39H62O14 (754.4139)


Schidigerasaponin C2 is found in fruits. Schidigerasaponin C2 is a constituent of Yucca schidigera (Mojave yucca) Constituent of Yucca schidigera (Mojave yucca). Schidigerasaponin C2 is found in fruits.

   

Ginsenoside Mc

(2S,3R,4S,5S,6R)-2-{[(2S)-2-[(1R,2R,5S,7R,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2R,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-3,4,5-triol

C41H70O12 (754.4867)


Ginsenoside Mc is considered to be practically insoluble (in water) and acidic

   

Alliospiroside D

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18-ene-4,16-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


Alliospiroside D is found in garden onion. Alliospiroside D is a constituent of Allium cepa (onion)

   

Pamaqueside

16-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]-11-one

C39H62O14 (754.4139)


   

PA(18:0/PGJ2)

[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(18:0/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/PGJ2), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGJ2/18:0)

[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(PGJ2/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/18:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(18:1(11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(11Z))

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(11Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(18:1(11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(11Z))

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(11Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(18:1(11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(11Z))

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(11Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(18:1(9Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(9Z))

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(9Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(18:1(9Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(9Z))

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(9Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(18:1(9Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(9Z))

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(9Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,11Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(18:2(9Z,11Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,11Z))

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,11Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,12Z))

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,12Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(18:1(12Z)-2OH(9,10)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(18:1(12Z)-2OH(9,10)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/PGJ2)

[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(i-18:0/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/PGJ2), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGJ2/i-18:0)

[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H71O10P (754.4785)


PA(PGJ2/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/i-18:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C40H67O11P (754.4421)


PG(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0)

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0)

C40H67O11P (754.4421)


PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C40H67O11P (754.4421)


PG(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C40H67O11P (754.4421)


PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C40H67O11P (754.4421)


PG(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C40H67O11P (754.4421)


PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C40H67O11P (754.4421)


PG(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C40H67O11P (754.4421)


PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C40H67O11P (754.4421)


PG(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C40H67O11P (754.4421)


PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

Spirostan, |A-D-glucopyranoside deriv

OPHIOGENIN 3-O-A-L-RHAMNOPYRANOSYL-(1->2)-BETA-D-GLUCOPYRANOSIDE

C39H62O14 (754.4139)


   

Turrillianoside

Turrillianoside

C39H62O14 (754.4139)


   
   

Diboviquinone-3,4

Diboviquinone-3,4

C47H62O8 (754.4444)


   
   
   

Surculoside B

Surculoside B

C39H62O14 (754.4139)


   

Mutalomycin

Mutalomycin

C41H70O12 (754.4867)


A polyether antibiotic produced by a strain of Streptomyces mutabilis NRRL 8088.

   

3-O-[alpha-L-Rhamnopyranosyl-(1鈥樏傗垎4)-beta-D-Glucopyranoside]-(3beta,17alpha,25S)-Spirost-5-ene-3,17,27-triol

3-O-[alpha-L-Rhamnopyranosyl-(1鈥樏傗垎4)-beta-D-Glucopyranoside]-(3beta,17alpha,25S)-Spirost-5-ene-3,17,27-triol

C39H62O14 (754.4139)


   
   

Gypenoside LXXI

Gypenoside LXXI

C41H70O12 (754.4867)


   

cyclosieversioside A

cyclosieversioside A

C40H66O13 (754.4503)


   

16beta-Acetoxy-3beta-[7-((S)-1-carboxy-4-guanidino-butylcarbamoyl)-heptanoyloxy]-14,15beta-epoxy-5beta,14beta-bufa-20,22-dienolid|16beta-acetoxy-3beta-[7-((S)-1-carboxy-4-guanidino-butylcarbamoyl)-heptanoyloxy]-14,15beta-epoxy-5beta,14beta-bufa-20,22-dienolide|Cinobufagin-3-suberoylargininester|cinobufotoxin

16beta-Acetoxy-3beta-[7-((S)-1-carboxy-4-guanidino-butylcarbamoyl)-heptanoyloxy]-14,15beta-epoxy-5beta,14beta-bufa-20,22-dienolid|16beta-acetoxy-3beta-[7-((S)-1-carboxy-4-guanidino-butylcarbamoyl)-heptanoyloxy]-14,15beta-epoxy-5beta,14beta-bufa-20,22-dienolide|Cinobufagin-3-suberoylargininester|cinobufotoxin

C40H58N4O10 (754.4153)


   

teikagenin-3-O-beta-D-fucopyranosyl-20-O-beta-D-diginopyranosyl-(1->3)-beta-D-canaropyranoside (basikoside D>|teikagenin-3-O-beta-D-fucopyranosyl-20-O-beta-D-diginopyranosyl-(1->3)-beta-D-canaropyranoside (basikoside D]

teikagenin-3-O-beta-D-fucopyranosyl-20-O-beta-D-diginopyranosyl-(1->3)-beta-D-canaropyranoside (basikoside D>|teikagenin-3-O-beta-D-fucopyranosyl-20-O-beta-D-diginopyranosyl-(1->3)-beta-D-canaropyranoside (basikoside D]

C40H66O13 (754.4503)


   

cyclosieversioside E

cyclosieversioside E

C40H66O13 (754.4503)


   

(25S)-17alpha,27-dihydroxyspirost-5-en-3beta-yl alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside|(25S)-27-hydroxypenogenin 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-beta-D-glucopyranoside

(25S)-17alpha,27-dihydroxyspirost-5-en-3beta-yl alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside|(25S)-27-hydroxypenogenin 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-beta-D-glucopyranoside

C39H62O14 (754.4139)


   

(25R)-1??,2??-Dihydroxyspirost-5-en-3??-yl O-??-L-rhamnopyranosyl-(1鈥樏傗垎2)-??-D-galactopyranoside

(25R)-1??,2??-Dihydroxyspirost-5-en-3??-yl O-??-L-rhamnopyranosyl-(1鈥樏傗垎2)-??-D-galactopyranoside

C39H62O14 (754.4139)


   

(24S,25R)-1beta-[(beta-D-fucopyranosyl)oxy]-6beta-hydroxy-3alpha,5alpha-cyclospirostan-24-yl beta-D-glucopyranoside|(24S,25R)-1??-[(??-D-Fucopyranosyl)oxy]-6??-hydroxy-3??,5??-cyclospirostan-24-yl ??-D-glucopyranoside

(24S,25R)-1beta-[(beta-D-fucopyranosyl)oxy]-6beta-hydroxy-3alpha,5alpha-cyclospirostan-24-yl beta-D-glucopyranoside|(24S,25R)-1??-[(??-D-Fucopyranosyl)oxy]-6??-hydroxy-3??,5??-cyclospirostan-24-yl ??-D-glucopyranoside

C39H62O14 (754.4139)


   

alliospiroside D

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosan]-18-ene-4,16-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

1beta,2alpha-dihydroxy-5alpha-spirost-25(27)-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranoside

1beta,2alpha-dihydroxy-5alpha-spirost-25(27)-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranoside

C39H62O14 (754.4139)


   

(23S,24R,25S)-23,24-dihydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside

(23S,24R,25S)-23,24-dihydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside

C39H62O14 (754.4139)


   

(25S)-1beta-[(beta-D-fucopyranosyl)oxy]-6beta-hydroxy-22alpha-methoxy-3alpha,5alpha-cyclofurostan-26-yl beta-D-glucopyranoside

(25S)-1beta-[(beta-D-fucopyranosyl)oxy]-6beta-hydroxy-22alpha-methoxy-3alpha,5alpha-cyclofurostan-26-yl beta-D-glucopyranoside

C40H66O13 (754.4503)


   

(25R)-6alpha-hydroxy-5alpha-spirostan-3-one 6-O-beta-D-glucopyranosyl-(1->3)-beta-D-glucopyranoside

(25R)-6alpha-hydroxy-5alpha-spirostan-3-one 6-O-beta-D-glucopyranosyl-(1->3)-beta-D-glucopyranoside

C39H62O14 (754.4139)


   

H-Ile-Ala-Val-Pro-Gly-Glu-Val-Ala-OH|Ile-Ala-Val-Pro-Gly-Glu-Val-Ala

H-Ile-Ala-Val-Pro-Gly-Glu-Val-Ala-OH|Ile-Ala-Val-Pro-Gly-Glu-Val-Ala

C34H58N8O11 (754.4225)


   
   

(25R)-5beta-[(O-beta-D-glucopyranosyl-(1->3)-beta-D-galactopyranosyl)oxy]-5beta-spirostan-12-one

(25R)-5beta-[(O-beta-D-glucopyranosyl-(1->3)-beta-D-galactopyranosyl)oxy]-5beta-spirostan-12-one

C39H62O14 (754.4139)


   
   

(23S)-spirost-5-en-3beta,23alpha,27-triol-3-O-alpha-L-rhamnopyranosyl-(1?4)-beta-D-glucopyranoside|chonglouoside SL-2

(23S)-spirost-5-en-3beta,23alpha,27-triol-3-O-alpha-L-rhamnopyranosyl-(1?4)-beta-D-glucopyranoside|chonglouoside SL-2

C39H62O14 (754.4139)


   

4-desacetoxyvinblastine

4-desacetoxyvinblastine

C44H58N4O7 (754.4305)


   

(25R)-3?,17alpha-diol-5alpha-spirostan-6-one 3-O-alpha-L-rhamnopyranosyl-(1?2)-?-D-glucopyranoside

(25R)-3?,17alpha-diol-5alpha-spirostan-6-one 3-O-alpha-L-rhamnopyranosyl-(1?2)-?-D-glucopyranoside

C39H62O14 (754.4139)


   
   

(20S,25S)-spirost-5-en-3beta,12beta,21-triol 3-O-alpha-L-rhamnopyranosyl-(1?2)-beta-D-glucopyranoside

(20S,25S)-spirost-5-en-3beta,12beta,21-triol 3-O-alpha-L-rhamnopyranosyl-(1?2)-beta-D-glucopyranoside

C39H62O14 (754.4139)


   

(20S,25S)-spirost-5-en-3beta,11alpha,21-triol 3-O-alpha-L-rhamnopyranosyl-(1?2)-beta-D-glucopyranoside

(20S,25S)-spirost-5-en-3beta,11alpha,21-triol 3-O-alpha-L-rhamnopyranosyl-(1?2)-beta-D-glucopyranoside

C39H62O14 (754.4139)


   

(20S,24R)-epoxydammarane 3beta,12beta,25-trihydroxy-12-O-beta-D-quinovopyranosyl-3-O-alpha-L-arabinopyranoside

(20S,24R)-epoxydammarane 3beta,12beta,25-trihydroxy-12-O-beta-D-quinovopyranosyl-3-O-alpha-L-arabinopyranoside

C41H70O12 (754.4867)


   

cyclodissectoside

cyclodissectoside

C40H66O13 (754.4503)


   

(25R)-spirost-7-ene-2alpha,3beta,5alpha-triol 3-O-[alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside]

(25R)-spirost-7-ene-2alpha,3beta,5alpha-triol 3-O-[alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside]

C39H62O14 (754.4139)


   
   

xestostrol ester of 18-bromooctadeca-(9E,17E)-diene-5,7,15-triynoic acid

xestostrol ester of 18-bromooctadeca-(9E,17E)-diene-5,7,15-triynoic acid

C48H67BrO2 (754.4324)


   

21beta-benzoylsitakisogenin 3-O-beta-D-glucuronopyranoside

21beta-benzoylsitakisogenin 3-O-beta-D-glucuronopyranoside

C43H62O11 (754.4292)


   
   

aspergillicin E

aspergillicin E

C39H58N6O9 (754.4265)


   

(25S)-17alpha,25-dihydroxyspirost-5-en-3beta-yl-O-alpha-L-rhamnopyranosyl-(1->3)-beta-D-glucopyranoside

(25S)-17alpha,25-dihydroxyspirost-5-en-3beta-yl-O-alpha-L-rhamnopyranosyl-(1->3)-beta-D-glucopyranoside

C39H62O14 (754.4139)


   

ginsenoside Mx

(2S,3R,4S,5S,6R)-2-[(2S)-2-[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-methylhept-5-en-2-yl]oxy-6-[[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxane-3,4,5-triol

C41H70O12 (754.4867)


Ginsenoside Mx is a ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions and in which the hydroxy group at position 20 has been converted to the corresponding beta-D-xylopyranosyl-beta-D-glucopyranoside. It has a role as an antineoplastic agent and a plant metabolite. It is a ginsenoside, a tetracyclic triterpenoid, a beta-D-glucoside, a disaccharide derivative and a 3beta-hydroxy-4,4-dimethylsteroid. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. ginsenoside Mx is a natural product found in Gynostemma pentaphyllum, Fusarium sacchari, and Centella asiatica with data available. A ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions and in which the hydroxy group at position 20 has been converted to the corresponding beta-D-xylopyranosyl-beta-D-glucopyranoside. Gypenoside XIII is belonging to the gypenosides. Gypenosides, extracted from Gynostemma pentaphyllum, have various pharmacological properties and protect against cardiovascular diseases, especially atherosclerosis[1].

   

PG(15:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-pentadecanoyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C41H71O10P (754.4785)


   

PG(15:1(9Z)/20:4(5Z,8Z,11Z,14Z))

1-(9Z-pentadecenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C41H71O10P (754.4785)


   

PG(17:1(9Z)/18:4(6Z,9Z,12Z,15Z))

1-(9Z-heptadecenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C41H71O10P (754.4785)


   

PG(17:2(9Z,12Z)/18:3(6Z,9Z,12Z))

1-(9Z,12Z-heptadecadienoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C41H71O10P (754.4785)


   

PG(17:2(9Z,12Z)/18:3(9Z,12Z,15Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C41H71O10P (754.4785)


   

PG(18:3(6Z,9Z,12Z)/17:2(9Z,12Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C41H71O10P (754.4785)


   

PG(18:3(9Z,12Z,15Z)/17:2(9Z,12Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C41H71O10P (754.4785)


   

PG(18:4(6Z,9Z,12Z,15Z)/17:1(9Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C41H71O10P (754.4785)


   

PG(20:4(5Z,8Z,11Z,14Z)/15:1(9Z))

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C41H71O10P (754.4785)


   

PG(20:5(5Z,8Z,11Z,14Z,17Z)/15:0)

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C41H71O10P (754.4785)


   

PI(15:0/13:0)

1-pentadecanoyl-2-tridecanoyl-glycero-3-phospho-(1-myo-inositol)

C37H71O13P (754.4632)


   

PI(13:0/15:0)

1-tridecanoyl-2-pentadecanoyl-glycero-3-phospho-(1-myo-inositol)

C37H71O13P (754.4632)


   

PI(12:0/16:0)

1-dodecanoyl-2-hexadecanoyl-glycero-3-phospho-(1-myo-inositol)

C37H71O13P (754.4632)


   

PI(16:0/12:0)

1-hexadecanoyl-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C37H71O13P (754.4632)


   

PI(14:0/14:0)

1,2-ditetradecanoyl-sn-glycero-3-phospho-(1-myo-inositol)

C37H71O13P (754.4632)


   

Agavoside B

16-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]-10-one

C39H62O14 (754.4139)


   

Schidigerasaponin C2

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{7,9,13-trimethyl-5-methylidene-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]-15-oloxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H62O14 (754.4139)


   

PG 35:5

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C41H71O10P (754.4785)


   

PI 28:0

1-tridecanoyl-2-pentadecanoyl-glycero-3-phospho-(1-myo-inositol)

C37H71O13P (754.4632)


   

Xestosteryl 18-bromooctadeca-9E,17E-diene-5,7,15-triynoate

24-methylene,26,27-dimethylcholest-5-en-3beta-yl 18-bromooctadeca-9E,17E-diene-5,7,15-triynoate

C48H67O2Br (754.4324)


   

(23S,24R,25S)-23,24-dihydroxy-spirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1-2)-beta-D-glucopyranoside

(23S,24R,25S)-23,24-dihydroxy-spirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1-2)-beta-D-glucopyranoside

C39H62O14 (754.4139)


   

Parisvanioside C

(25R)-spirost-7-ene-3beta,5alpha,6beta-triol-3-O-alpha-l-rhamnopyranosyl-(1-2)-beta-d-glucopyranoside

C39H62O14 (754.4139)


   

ALPHA-D-GLUCOSE 1,6-DIPHOSPHATE CYCLOHEXYLAMMONIUM SALT, HYDRATE

ALPHA-D-GLUCOSE 1,6-DIPHOSPHATE CYCLOHEXYLAMMONIUM SALT, HYDRATE

C30H68N4O13P2 (754.4258)


   

pamaqueside

pamaqueside

C39H62O14 (754.4139)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C1907 - Drug, Natural Product

   

N,N-DITRIDECYLPERYLENE-3,4,9,10-TETRACARBOXYLIC DIIMIDE

N,N-DITRIDECYLPERYLENE-3,4,9,10-TETRACARBOXYLIC DIIMIDE

C50H62N2O4 (754.4709)


   

Ginsenoside C-Y

Ginsenoside C-Y

C41H70O12 (754.4867)


A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding alpha-L-arabinopyranosyl-(1->6)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position.

   

1-(9Z-hexadecenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycero-3-phosphoserine

1-(9Z-hexadecenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycero-3-phosphoserine

C40H69NO10P- (754.4659)


   

PA(i-18:0/PGJ2)

PA(i-18:0/PGJ2)

C41H71O10P (754.4785)


   

PA(PGJ2/i-18:0)

PA(PGJ2/i-18:0)

C41H71O10P (754.4785)


   
   
   

PA(18:1(11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PA(18:1(11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C41H71O10P (754.4785)


   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(11Z))

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(11Z))

C41H71O10P (754.4785)


   

PA(18:1(11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PA(18:1(11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C41H71O10P (754.4785)


   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(11Z))

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(11Z))

C41H71O10P (754.4785)


   

PA(18:1(11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PA(18:1(11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C41H71O10P (754.4785)


   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(11Z))

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(11Z))

C41H71O10P (754.4785)


   

PA(18:1(9Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PA(18:1(9Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C41H71O10P (754.4785)


   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(9Z))

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:1(9Z))

C41H71O10P (754.4785)


   

PA(18:1(9Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PA(18:1(9Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C41H71O10P (754.4785)


   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(9Z))

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:1(9Z))

C41H71O10P (754.4785)


   

PA(18:1(9Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PA(18:1(9Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C41H71O10P (754.4785)


   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(9Z))

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:1(9Z))

C41H71O10P (754.4785)


   

PA(18:2(9Z,11Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(18:2(9Z,11Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C41H71O10P (754.4785)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,11Z))

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,11Z))

C41H71O10P (754.4785)


   

PA(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C41H71O10P (754.4785)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,12Z))

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:2(9Z,12Z))

C41H71O10P (754.4785)


   

PA(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-2OH(9,10))

PA(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-2OH(9,10))

C41H71O10P (754.4785)


   

PA(18:1(12Z)-2OH(9,10)/20:4(5Z,8Z,11Z,14Z))

PA(18:1(12Z)-2OH(9,10)/20:4(5Z,8Z,11Z,14Z))

C41H71O10P (754.4785)


   

PA(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-2OH(9,10))

PA(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-2OH(9,10))

C41H71O10P (754.4785)


   

PA(18:1(12Z)-2OH(9,10)/20:4(8Z,11Z,14Z,17Z))

PA(18:1(12Z)-2OH(9,10)/20:4(8Z,11Z,14Z,17Z))

C41H71O10P (754.4785)


   

PG(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PG(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C40H67O11P (754.4421)


   

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0)

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0)

C40H67O11P (754.4421)


   

PG(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PG(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C40H67O11P (754.4421)


   

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0)

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0)

C40H67O11P (754.4421)


   

PG(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PG(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C40H67O11P (754.4421)


   

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0)

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0)

C40H67O11P (754.4421)


   

PG(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PG(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C40H67O11P (754.4421)


   

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0)

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0)

C40H67O11P (754.4421)


   

PG(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PG(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C40H67O11P (754.4421)


   

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0)

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0)

C40H67O11P (754.4421)


   

Spirostan-12-one, 3-((4-O-beta-D-glucopyranosyl-beta-D-galactopyranosyl)oxy)-, (3-beta,5-alpha,25R)-

Spirostan-12-one, 3-((4-O-beta-D-glucopyranosyl-beta-D-galactopyranosyl)oxy)-, (3-beta,5-alpha,25R)-

C39H62O14 (754.4139)


   
   

1-palmitoyl-2-lauroyl-sn-glycero-3-phospho-1D-myo-inositol

1-palmitoyl-2-lauroyl-sn-glycero-3-phospho-1D-myo-inositol

C37H71O13P (754.4632)


A 1-hexadecanoyl-2-acyl-sn-glycero-3-phospho-1D-myo-inositol in which the 2-acyl substituent is specified as lauroyl (dodecanoyl).

   

[3-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] tetradecanoate

[3-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] tetradecanoate

C37H71O13P (754.4632)


   

Smgdg O-23:0_6:0

Smgdg O-23:0_6:0

C38H74O12S (754.4901)


   

Smgdg O-25:0_4:0

Smgdg O-25:0_4:0

C38H74O12S (754.4901)


   

Smgdg O-8:0_21:0

Smgdg O-8:0_21:0

C38H74O12S (754.4901)


   

Smgdg O-27:0_2:0

Smgdg O-27:0_2:0

C38H74O12S (754.4901)


   

Smgdg O-22:0_7:0

Smgdg O-22:0_7:0

C38H74O12S (754.4901)


   

Smgdg O-9:0_20:0

Smgdg O-9:0_20:0

C38H74O12S (754.4901)


   

Smgdg O-24:0_5:0

Smgdg O-24:0_5:0

C38H74O12S (754.4901)


   

Smgdg O-26:0_3:0

Smgdg O-26:0_3:0

C38H74O12S (754.4901)


   

Smgdg O-26:7_4:0

Smgdg O-26:7_4:0

C39H62O12S (754.3962)


   

Smgdg O-28:7_2:0

Smgdg O-28:7_2:0

C39H62O12S (754.3962)


   

Smgdg O-21:0_8:0

Smgdg O-21:0_8:0

C38H74O12S (754.4901)


   

Smgdg O-20:0_9:0

Smgdg O-20:0_9:0

C38H74O12S (754.4901)


   

Dgdg O-22:6_2:0

Dgdg O-22:6_2:0

C39H62O14 (754.4139)


   

Smgdg O-18:0_11:0

Smgdg O-18:0_11:0

C38H74O12S (754.4901)


   

Smgdg O-10:0_19:0

Smgdg O-10:0_19:0

C38H74O12S (754.4901)


   

Smgdg O-19:0_10:0

Smgdg O-19:0_10:0

C38H74O12S (754.4901)


   

Smgdg O-11:0_18:0

Smgdg O-11:0_18:0

C38H74O12S (754.4901)


   

Smgdg O-12:0_17:0

Smgdg O-12:0_17:0

C38H74O12S (754.4901)


   

Smgdg O-15:0_14:0

Smgdg O-15:0_14:0

C38H74O12S (754.4901)


   

Smgdg O-13:0_16:0

Smgdg O-13:0_16:0

C38H74O12S (754.4901)


   

Smgdg O-16:0_13:0

Smgdg O-16:0_13:0

C38H74O12S (754.4901)


   

Smgdg O-17:0_12:0

Smgdg O-17:0_12:0

C38H74O12S (754.4901)


   

Smgdg O-14:0_15:0

Smgdg O-14:0_15:0

C38H74O12S (754.4901)


   
   

PMeOH 18:4_22:6

PMeOH 18:4_22:6

C44H67O8P (754.4573)


   

PMeOH 18:5_22:5

PMeOH 18:5_22:5

C44H67O8P (754.4573)


   

PMeOH 20:5_20:5

PMeOH 20:5_20:5

C44H67O8P (754.4573)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C41H71O10P (754.4785)


   

[1-[(2-heptadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[(2-heptadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C41H71O10P (754.4785)


   

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C41H71O10P (754.4785)


   

[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-nonadec-9-enoate

C41H71O10P (754.4785)


   

[1-[[2-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[[2-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C41H71O10P (754.4785)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C41H71O10P (754.4785)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H71O10P (754.4785)


   

[1-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C41H71O10P (754.4785)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H71O10P (754.4785)


   

[1-Butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetracosanoate

[1-Butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetracosanoate

C37H71O13P (754.4632)


   

[1-Heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] henicosanoate

[1-Heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] henicosanoate

C37H71O13P (754.4632)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] pentacosanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] pentacosanoate

C37H71O13P (754.4632)


   

[1-Hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] docosanoate

[1-Hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] docosanoate

C37H71O13P (754.4632)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] icosanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] icosanoate

C37H71O13P (754.4632)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] tricosanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] tricosanoate

C37H71O13P (754.4632)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] nonadecanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] nonadecanoate

C37H71O13P (754.4632)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] pentadecanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] pentadecanoate

C37H71O13P (754.4632)


   

[1-Dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] hexadecanoate

[1-Dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] hexadecanoate

C37H71O13P (754.4632)


   

[1-Decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] octadecanoate

[1-Decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] octadecanoate

C37H71O13P (754.4632)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

C37H71O13P (754.4632)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C41H71O10P (754.4785)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C41H71O10P (754.4785)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C41H71O10P (754.4785)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

C41H71O10P (754.4785)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C41H71O10P (754.4785)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H71O10P (754.4785)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C41H71O10P (754.4785)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (Z)-nonadec-9-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (Z)-nonadec-9-enoate

C41H71O10P (754.4785)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H71O10P (754.4785)


   

[1-Acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] hexacosanoate

[1-Acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] hexacosanoate

C37H71O13P (754.4632)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O10P (754.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C41H71O10P (754.4785)


   

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H62O12S (754.3962)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoate

C44H66O10 (754.4656)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C41H71O10P (754.4785)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C41H71O10P (754.4785)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C41H71O10P (754.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C41H71O10P (754.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O10P (754.4785)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C41H71O10P (754.4785)


   

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H62O12S (754.3962)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H71O10P (754.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C41H71O10P (754.4785)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C41H71O10P (754.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C41H71O10P (754.4785)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoate

C44H66O10 (754.4656)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (10E,13E,16E)-nonadeca-10,13,16-trienoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (10E,13E,16E)-nonadeca-10,13,16-trienoate

C41H71O10P (754.4785)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C41H71O10P (754.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C41H71O10P (754.4785)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (E)-nonadec-9-enoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (E)-nonadec-9-enoate

C41H71O10P (754.4785)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoate

C44H67O8P (754.4573)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] nonadecanoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] nonadecanoate

C41H71O10P (754.4785)


   

[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadecanoate

[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadecanoate

C37H71O13P (754.4632)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (7E,9E)-nonadeca-7,9-dienoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (7E,9E)-nonadeca-7,9-dienoate

C41H71O10P (754.4785)


   

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H62O12S (754.3962)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C41H71O10P (754.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O10P (754.4785)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

C37H71O13P (754.4632)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] heptadecanoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] heptadecanoate

C37H71O13P (754.4632)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

C44H67O8P (754.4573)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H71O10P (754.4785)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O10P (754.4785)


   

Chikusetsusaponin Ia

Chikusetsusaponin Ia

C41H70O12 (754.4867)


D002491 - Central Nervous System Agents

   

Ginsenoside Mc

Ginsenoside Mc

C41H70O12 (754.4867)


A ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions and in which the hydroxy group at position 20 has been converted to the corresponding alpha-L-arabinofuranosyl-beta-D-glucopyranoside.

   

phosphatidylserine 34:4(1-)

phosphatidylserine 34:4(1-)

C40H69NO10P (754.4659)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 34 carbons in total and 4 double bonds.

   

DGDG O-22:0;O

DGDG O-22:0;O

C37H70O15 (754.4714)


   
   

MGDG O-35:10;O

MGDG O-35:10;O

C44H66O10 (754.4656)


   
   
   
   
   
   
   
   
   
   
   

PA P-18:0/20:5;O3

PA P-18:0/20:5;O3

C41H71O10P (754.4785)


   

PA P-18:1/20:4;O3

PA P-18:1/20:4;O3

C41H71O10P (754.4785)


   

PA 16:0/22:5;O2

PA 16:0/22:5;O2

C41H71O10P (754.4785)


   

PA 18:0/20:5;O2

PA 18:0/20:5;O2

C41H71O10P (754.4785)


   

PA 18:1/20:4;O2

PA 18:1/20:4;O2

C41H71O10P (754.4785)


   

PA 18:2/20:3;O2

PA 18:2/20:3;O2

C41H71O10P (754.4785)


   

PA 18:4/22:7;O

PA 18:4/22:7;O

C43H63O9P (754.4209)


   

PA 20:3/18:2;O2

PA 20:3/18:2;O2

C41H71O10P (754.4785)


   

PA 20:4/18:1;O2

PA 20:4/18:1;O2

C41H71O10P (754.4785)


   
   
   
   
   
   
   

PG 20:3/13:4;O2

PG 20:3/13:4;O2

C39H63O12P (754.4057)


   

PG 20:4/13:3;O2

PG 20:4/13:3;O2

C39H63O12P (754.4057)


   
   
   
   
   
   
   
   

PI O-20:0/7:2;O2

PI O-20:0/7:2;O2

C36H67O14P (754.4268)


   

PI O-20:0/8:1;O

PI O-20:0/8:1;O

C37H71O13P (754.4632)


   
   
   

PI P-18:0/9:1;O2

PI P-18:0/9:1;O2

C36H67O14P (754.4268)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1's,2s,2's,3s,4r,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,4-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1's,2s,2's,3s,4r,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,4-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-2',8'-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-2',8'-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

2-[2-hydroxy-6-(1-{9-hydroxy-2-[5'-(6-hydroxy-3,5,6-trimethyloxan-2-yl)-2,3'-dimethyl-[2,2'-bioxolan]-5-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl}ethyl)-4-methoxy-3,5-dimethyloxan-2-yl]propanoic acid

2-[2-hydroxy-6-(1-{9-hydroxy-2-[5'-(6-hydroxy-3,5,6-trimethyloxan-2-yl)-2,3'-dimethyl-[2,2'-bioxolan]-5-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl}ethyl)-4-methoxy-3,5-dimethyloxan-2-yl]propanoic acid

C41H70O12 (754.4867)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5r,7's,8's,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-8',16'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5r,7's,8's,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-8',16'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-8',16'-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-8',16'-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

2-[(8-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

2-[(8-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C40H58N4O10 (754.4153)


   

(4r,6e,8r,9r)-9-[(2s,4r,8z,12s,14r,16s,19r,20s,21s)-14,16-bis(acetyloxy)-4,12,20-trihydroxy-9,19,21-trimethyl-22-oxo-1-oxacyclodocos-8-en-2-yl]-8-hydroxy-6-methyldec-6-en-4-yl acetate

(4r,6e,8r,9r)-9-[(2s,4r,8z,12s,14r,16s,19r,20s,21s)-14,16-bis(acetyloxy)-4,12,20-trihydroxy-9,19,21-trimethyl-22-oxo-1-oxacyclodocos-8-en-2-yl]-8-hydroxy-6-methyldec-6-en-4-yl acetate

C41H70O12 (754.4867)


   

(2s,3r,4s,5s,6r)-2-[(1's,2s,2's,3r,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-[(1's,2s,2's,3r,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C39H62O14 (754.4139)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8's,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-5,8'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8's,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-5,8'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-4,14'-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-4,14'-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

C40H66O13 (754.4503)


   

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

C40H66O13 (754.4503)


   

(2s)-2-[(2r,3r,4r,5s,6s)-2-hydroxy-6-[(1r)-1-[(2r,5s,7r,8s,9r)-9-hydroxy-2-[(2r,2'r,3'r,5s,5's)-5'-[(2r,3s,5s,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-2,3'-dimethyl-[2,2'-bioxolan]-5-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]ethyl]-4-methoxy-3,5-dimethyloxan-2-yl]propanoic acid

(2s)-2-[(2r,3r,4r,5s,6s)-2-hydroxy-6-[(1r)-1-[(2r,5s,7r,8s,9r)-9-hydroxy-2-[(2r,2'r,3'r,5s,5's)-5'-[(2r,3s,5s,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-2,3'-dimethyl-[2,2'-bioxolan]-5-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]ethyl]-4-methoxy-3,5-dimethyloxan-2-yl]propanoic acid

C41H70O12 (754.4867)


   

(14s)-14-hydroxy-n-[2-(5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadecanimidic acid

(14s)-14-hydroxy-n-[2-(5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadecanimidic acid

C38H62N2O13 (754.4252)


   

(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(3ar)-7,11-dihydroxy-3a,3b,6,6-tetramethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(3ar)-7,11-dihydroxy-3a,3b,6,6-tetramethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C41H70O12 (754.4867)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5r,7's,8's,9's,12's,13'r,16's)-5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5r,7's,8's,9's,12's,13'r,16's)-5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

(2r)-2-[(2r,3s,4r,5s,6s)-2-hydroxy-6-[(1s)-1-[(2r,5s,7r,8r,9r)-9-hydroxy-2-[(2s,2's,3's,5r,5's)-5'-[(2s,3s,5r,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-2,3'-dimethyl-[2,2'-bioxolan]-5-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]ethyl]-4-methoxy-3,5-dimethyloxan-2-yl]propanoic acid

(2r)-2-[(2r,3s,4r,5s,6s)-2-hydroxy-6-[(1s)-1-[(2r,5s,7r,8r,9r)-9-hydroxy-2-[(2s,2's,3's,5r,5's)-5'-[(2s,3s,5r,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-2,3'-dimethyl-[2,2'-bioxolan]-5-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]ethyl]-4-methoxy-3,5-dimethyloxan-2-yl]propanoic acid

C41H70O12 (754.4867)


   

(14r)-14-hydroxy-n-[2-(5-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadecanimidic acid

(14r)-14-hydroxy-n-[2-(5-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadecanimidic acid

C38H62N2O13 (754.4252)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2s,2's,3s,4's,5s,7's,8'r,9's,10'r,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,10'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2s,2's,3s,4's,5s,7's,8'r,9's,10'r,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,10'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

(1s,3r,4r,5r,8s,9s,11s,13s,14s)-4-(acetyloxy)-8-formyl-14-(furan-3-yl)-6,6,9,13-tetramethyl-18-methylidene-10,16-dioxo-2,7,15-trioxatetracyclo[9.6.1.0¹,¹³.0³,⁹]octadecan-5-yl hexadecanoate

(1s,3r,4r,5r,8s,9s,11s,13s,14s)-4-(acetyloxy)-8-formyl-14-(furan-3-yl)-6,6,9,13-tetramethyl-18-methylidene-10,16-dioxo-2,7,15-trioxatetracyclo[9.6.1.0¹,¹³.0³,⁹]octadecan-5-yl hexadecanoate

C43H62O11 (754.4292)


   

21 beta-benzoylsitakisogenin-3-o-beta-d-glucuronopyranoside

21β-benzoylsitakisogenin-3-o-β-d-glucuro-nopyranoside

C43H62O11 (754.4292)


{"Ingredient_id": "HBIN003555","Ingredient_name": "21 beta-benzoylsitakisogenin-3-o-beta-d-glucuronopyranoside","Alias": "21\u03b2-benzoylsitakisogenin-3-o-\u03b2-d-glucuro-nopyranoside","Ingredient_formula": "C43H62O11","Ingredient_Smile": "CC1(CC2C3=CCC4C5(CCC(C(C5CCC4(C3(CC(C2(CC1OC(=O)C6=CC=CC=C6)CO)O)C)C)(C)C)OC7C(C(C(C(O7)C(=O)O)O)O)O)C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "25193;2272","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(23s,25r)-spirost-5-ene-3β,23-diol 23-o-[o-β-d-glucopyranosyl-(1→6)-β-d-glucopyrano-side]

NA

C39H62O14 (754.4139)


{"Ingredient_id": "HBIN004167","Ingredient_name": "(23s,25r)-spirost-5-ene-3\u03b2,23-diol 23-o-[o-\u03b2-d-glucopyranosyl-(1\u21926)-\u03b2-d-glucopyrano-side]","Alias": "NA","Ingredient_formula": "C39H62O14","Ingredient_Smile": "CC1CC(C2(C(C3C(O2)CC4C3(CCC5C4CC=C6C5(CCC(C6)O)C)C)C)OC1)OC7C(C(C(C(O7)COC8C(C(C(C(O8)CO)O)O)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "20203","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(24s,25r)-1β-[(β-d-fucopyranosyl)oxy]-6β-hydroxy-3α,5α-cyclospirostan-24-yl β-d-glucopyranoside

NA

C39H62O14 (754.4139)


{"Ingredient_id": "HBIN004520","Ingredient_name": "(24s,25r)-1\u03b2-[(\u03b2-d-fucopyranosyl)oxy]-6\u03b2-hydroxy-3\u03b1,5\u03b1-cyclospirostan-24-yl \u03b2-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C39H62O14","Ingredient_Smile": "CC1COC2(CC1OC3C(C(C(C(O3)CO)O)O)O)C(C4C(O2)CC5C4(CCC6C5CC(C78C6(C(CC7C8)OC9C(C(C(C(O9)C)O)O)O)C)O)C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "7975","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

3beta,23-dihydroxy-lup-20(29)-ene-28-o-beta-d-glucopyranosyl-(1-6)-beta-d-glucopyranoside

NA

C40H66O13 (754.4503)


{"Ingredient_id": "HBIN008075","Ingredient_name": "3beta,23-dihydroxy-lup-20(29)-ene-28-o-beta-d-glucopyranosyl-(1-6)-beta-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C40H66O13","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "25898","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8s,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8s,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxane-3,4,5-triol

C40H66O13 (754.4503)


   

(2s,3r,4s,5s,6r)-2-[(1's,2s,2's,3s,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-[(1's,2s,2's,3s,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C39H62O14 (754.4139)


   

(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-16'-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-16'-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

C39H62O14 (754.4139)


   

2-{[14-hydroxy-15-(5-hydroxy-2,6,6-trimethyloxan-2-yl)-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

2-{[14-hydroxy-15-(5-hydroxy-2,6,6-trimethyloxan-2-yl)-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

C40H66O13 (754.4503)


   

(1r,3r,3as,3br,5s,5as,7s,9ar,9bs,11ar)-1-[(2r,3e,5r)-5-(2-{[(2r,3r,4s,5s)-4-hydroxy-3-{[(2s,3r,4s,5r)-4-hydroxy-3,5-dimethoxyoxan-2-yl]oxy}-5-(hydroxymethyl)oxolan-2-yl]oxy}ethyl)-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,7-triol

(1r,3r,3as,3br,5s,5as,7s,9ar,9bs,11ar)-1-[(2r,3e,5r)-5-(2-{[(2r,3r,4s,5s)-4-hydroxy-3-{[(2s,3r,4s,5r)-4-hydroxy-3,5-dimethoxyoxan-2-yl]oxy}-5-(hydroxymethyl)oxolan-2-yl]oxy}ethyl)-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,7-triol

C41H70O12 (754.4867)


   

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H62O14 (754.4139)


   

2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-14'-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy}oxane-3,4,5-triol

2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-14'-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy}oxane-3,4,5-triol

C39H62O14 (754.4139)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8's,9's,12's,13'r,16's)-5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8's,9's,12's,13'r,16's)-5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

3,3',6,6'-tetrahydroxy-4-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)-4'-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)-[1,1'-bi(cyclohexane)]-1(6),1'(6'),3,3'-tetraene-2,2',5,5'-tetrone

3,3',6,6'-tetrahydroxy-4-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)-4'-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)-[1,1'-bi(cyclohexane)]-1(6),1'(6'),3,3'-tetraene-2,2',5,5'-tetrone

C47H62O8 (754.4444)


   

(2r,3r,4s,5r,6r)-2-methyl-6-[(1's,2r,2's,4s,4's,5r,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]oxane-3,4,5-triol

(2r,3r,4s,5r,6r)-2-methyl-6-[(1's,2r,2's,4s,4's,5r,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]oxane-3,4,5-triol

C39H62O14 (754.4139)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4s,4's,5r,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-4,14'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4s,4's,5r,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-4,14'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8s,9s,11r,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8s,9s,11r,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

C40H66O13 (754.4503)


   

15-hydroxy-n-[2-(5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadecanimidic acid

15-hydroxy-n-[2-(5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadecanimidic acid

C38H62N2O13 (754.4252)


   

(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

C39H62O14 (754.4139)


   

n-[(3s,9r,12s,13r,16s,19s,22s)-16-[(2r)-butan-2-yl]-9-[(2s)-butan-2-yl]-11,18-dihydroxy-19-[(4-methoxyphenyl)methyl]-13,20-dimethyl-2,8,15,21-tetraoxo-14-oxa-1,7,10,17,20-pentaazatricyclo[20.3.0.0³,⁷]pentacosa-10,17-dien-12-yl]ethanimidic acid

n-[(3s,9r,12s,13r,16s,19s,22s)-16-[(2r)-butan-2-yl]-9-[(2s)-butan-2-yl]-11,18-dihydroxy-19-[(4-methoxyphenyl)methyl]-13,20-dimethyl-2,8,15,21-tetraoxo-14-oxa-1,7,10,17,20-pentaazatricyclo[20.3.0.0³,⁷]pentacosa-10,17-dien-12-yl]ethanimidic acid

C39H58N6O9 (754.4265)


   

6-{[10-(benzoyloxy)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

6-{[10-(benzoyloxy)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C43H62O11 (754.4292)


   

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-hydroxy-2,6,6-trimethyloxan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-hydroxy-2,6,6-trimethyloxan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

C40H66O13 (754.4503)


   

9-[14,16-bis(acetyloxy)-4,12,20-trihydroxy-9,19,21-trimethyl-22-oxo-1-oxacyclodocos-8-en-2-yl]-8-hydroxy-6-methyldec-6-en-4-yl acetate

9-[14,16-bis(acetyloxy)-4,12,20-trihydroxy-9,19,21-trimethyl-22-oxo-1-oxacyclodocos-8-en-2-yl]-8-hydroxy-6-methyldec-6-en-4-yl acetate

C41H70O12 (754.4867)


   

(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,18's,19's)-19'-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-one

(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,18's,19's)-19'-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-one

C39H62O14 (754.4139)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8's,9's,12's,13'r,16's)-5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8's,9's,12's,13'r,16's)-5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,4-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,4-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

14-hydroxy-n-[2-(5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadecanimidic acid

14-hydroxy-n-[2-(5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadecanimidic acid

C38H62N2O13 (754.4252)


   

2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C39H62O14 (754.4139)


   

(3z)-4-{[3-(5-{3-[(2z)-n,5-dihydroxy-3-methylpent-2-enamido]propyl}-3,6-dihydroxy-2,5-dihydropyrazin-2-yl)propyl](hydroxy)carbamoyl}-3-methylbut-3-en-1-yl 5-[(2e)-n,5-dihydroxy-3-methylpent-2-enamido]-2-(dimethylamino)pentanoate

(3z)-4-{[3-(5-{3-[(2z)-n,5-dihydroxy-3-methylpent-2-enamido]propyl}-3,6-dihydroxy-2,5-dihydropyrazin-2-yl)propyl](hydroxy)carbamoyl}-3-methylbut-3-en-1-yl 5-[(2e)-n,5-dihydroxy-3-methylpent-2-enamido]-2-(dimethylamino)pentanoate

C35H58N6O12 (754.4113)


   

(1s,3r,4s,5r,8s,11s,13s,14s)-4-(acetyloxy)-8-formyl-14-(furan-3-yl)-6,6,9,13-tetramethyl-18-methylidene-10,16-dioxo-2,7,15-trioxatetracyclo[9.6.1.0¹,¹³.0³,⁹]octadecan-5-yl hexadecanoate

(1s,3r,4s,5r,8s,11s,13s,14s)-4-(acetyloxy)-8-formyl-14-(furan-3-yl)-6,6,9,13-tetramethyl-18-methylidene-10,16-dioxo-2,7,15-trioxatetracyclo[9.6.1.0¹,¹³.0³,⁹]octadecan-5-yl hexadecanoate

C43H62O11 (754.4292)


   

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11r,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11r,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

C40H66O13 (754.4503)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2s,2's,3s,4's,5s,7's,8's,9's,10'r,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,10'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2s,2's,3s,4's,5s,7's,8's,9's,10'r,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,10'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

(2r,3s,4r,5r,6s)-2-{[(2s,3s,4r,5r,6s)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2s,2'r,4'r,5s,7's,8'r,9'r,12'r,13's,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-2',8'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2r,3s,4r,5r,6s)-2-{[(2s,3s,4r,5r,6s)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2s,2'r,4'r,5s,7's,8'r,9'r,12'r,13's,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-2',8'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

2-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-(7-hydroxy-6-methyl-3-oxoheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

2-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-(7-hydroxy-6-methyl-3-oxoheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C39H62O14 (754.4139)


   

2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl}oxy)oxane-3,4,5-triol

2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl}oxy)oxane-3,4,5-triol

C40H66O13 (754.4503)


   

16'-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

16'-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

C39H62O14 (754.4139)


   

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-[5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-[5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

(2s)-2-[(8-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(8-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C40H58N4O10 (754.4153)


   

(2s)-2-[(2r,3r,5r,6s)-2-hydroxy-6-[(1s)-1-[(2s)-9-hydroxy-2-[(2s,2'r,3's,5'r)-5'-[(2s,3s,5r,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-2,3'-dimethyl-[2,2'-bioxolan]-5-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]ethyl]-4-methoxy-3,5-dimethyloxan-2-yl]propanoic acid

(2s)-2-[(2r,3r,5r,6s)-2-hydroxy-6-[(1s)-1-[(2s)-9-hydroxy-2-[(2s,2'r,3's,5'r)-5'-[(2s,3s,5r,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-2,3'-dimethyl-[2,2'-bioxolan]-5-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]ethyl]-4-methoxy-3,5-dimethyloxan-2-yl]propanoic acid

C41H70O12 (754.4867)


   

2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-5,8'-dioloxy}oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-5,8'-dioloxy}oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,10'-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,10'-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

(15r)-15-hydroxy-n-[2-(5-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadecanimidic acid

(15r)-15-hydroxy-n-[2-(5-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadecanimidic acid

C38H62N2O13 (754.4252)


   

2-[(8-{[(11s)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

2-[(8-{[(11s)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C40H58N4O10 (754.4153)


   

n-{11,18-dihydroxy-19-[(4-methoxyphenyl)methyl]-13,20-dimethyl-2,8,15,21-tetraoxo-9,16-bis(sec-butyl)-14-oxa-1,7,10,17,20-pentaazatricyclo[20.3.0.0³,⁷]pentacosa-10,17-dien-12-yl}ethanimidic acid

n-{11,18-dihydroxy-19-[(4-methoxyphenyl)methyl]-13,20-dimethyl-2,8,15,21-tetraoxo-9,16-bis(sec-butyl)-14-oxa-1,7,10,17,20-pentaazatricyclo[20.3.0.0³,⁷]pentacosa-10,17-dien-12-yl}ethanimidic acid

C39H58N6O9 (754.4265)


   

2-({14-hydroxy-15-[4-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl}oxy)oxane-3,4,5-triol

2-({14-hydroxy-15-[4-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl}oxy)oxane-3,4,5-triol

C40H66O13 (754.4503)


   

(4r,6e,8r,9r)-9-[(2s,4r,8e,12s,14s,16s,19r,20s,21s)-14,16-bis(acetyloxy)-4,12,20-trihydroxy-9,19,21-trimethyl-22-oxo-1-oxacyclodocos-8-en-2-yl]-8-hydroxy-6-methyldec-6-en-4-yl acetate

(4r,6e,8r,9r)-9-[(2s,4r,8e,12s,14s,16s,19r,20s,21s)-14,16-bis(acetyloxy)-4,12,20-trihydroxy-9,19,21-trimethyl-22-oxo-1-oxacyclodocos-8-en-2-yl]-8-hydroxy-6-methyldec-6-en-4-yl acetate

C41H70O12 (754.4867)


   

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

C40H66O13 (754.4503)


   

(2s,3r,4s,5s,6r)-2-[(5-hydroxy-2-{7-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-6-methylhept-6-en-2-yl)oxy]-6-({[(2r,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-[(5-hydroxy-2-{7-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-6-methylhept-6-en-2-yl)oxy]-6-({[(2r,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C41H70O12 (754.4867)


   

(1r,3as,3bs,7r,9ar,9bs,11ar)-1-[(2r)-6-ethyl-5-methylideneoctan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl (9e,17e)-18-bromooctadeca-9,17-dien-5,7,15-triynoate

(1r,3as,3bs,7r,9ar,9bs,11ar)-1-[(2r)-6-ethyl-5-methylideneoctan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl (9e,17e)-18-bromooctadeca-9,17-dien-5,7,15-triynoate

C48H67BrO2 (754.4324)


   

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,4r)-4-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,4r)-4-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

C40H66O13 (754.4503)


   

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8s,9s,11r,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[(2r,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8s,9s,11r,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[(2r,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxane-3,4,5-triol

C40H66O13 (754.4503)


   

16'-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

16'-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

C39H62O14 (754.4139)


   

(2s,3s,5r,6s)-2-[(2r,2's,3r,5r,5'r)-5'-[(2s,4r,5r,7r,9r,10r)-7-{[(2r,5s,6r)-6-[(1r)-1-carboxyethyl]-5-methyloxan-2-yl]methyl}-9-methoxy-2,4,10-trimethyl-1,6-dioxaspiro[4.5]decan-2-yl]-3-(hydroxymethyl)-2'-methyl-[2,2'-bioxolan]-5-yl]-6-hydroxy-5,6-dimethyloxane-3-carboxylic acid

(2s,3s,5r,6s)-2-[(2r,2's,3r,5r,5'r)-5'-[(2s,4r,5r,7r,9r,10r)-7-{[(2r,5s,6r)-6-[(1r)-1-carboxyethyl]-5-methyloxan-2-yl]methyl}-9-methoxy-2,4,10-trimethyl-1,6-dioxaspiro[4.5]decan-2-yl]-3-(hydroxymethyl)-2'-methyl-[2,2'-bioxolan]-5-yl]-6-hydroxy-5,6-dimethyloxane-3-carboxylic acid

C40H66O13 (754.4503)


   

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-4,16'-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-4,16'-dioloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

(2r,3s,4r,5s)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

(2r,3s,4r,5s)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

C40H66O13 (754.4503)


   

2-[(2-{7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-6-methylhept-5-en-2-yl)oxy]-6-({[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-3,4,5-triol

2-[(2-{7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-6-methylhept-5-en-2-yl)oxy]-6-({[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-3,4,5-triol

C41H70O12 (754.4867)


   

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol

C40H66O13 (754.4503)


   

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-[5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-[5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)


   

(2s,3s,4r,5s,6r)-6-{[(3s,4as,6as,6bs,8s,8as,10s,12as,14as,14bs)-10-(benzoyloxy)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4r,5s,6r)-6-{[(3s,4as,6as,6bs,8s,8as,10s,12as,14as,14bs)-10-(benzoyloxy)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C43H62O11 (754.4292)


   

(15s)-15-hydroxy-n-[2-(5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadecanimidic acid

(15s)-15-hydroxy-n-[2-(5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadecanimidic acid

C38H62N2O13 (754.4252)


   

(1r,2s,3as,3bs,9ar,9bs,11as)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s,6s)-7-hydroxy-6-methyl-3-oxoheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1r,2s,3as,3bs,9ar,9bs,11as)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s,6s)-7-hydroxy-6-methyl-3-oxoheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C39H62O14 (754.4139)


   

(1'r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

(1'r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

C39H62O14 (754.4139)


   

4-(acetyloxy)-8-formyl-14-(furan-3-yl)-6,6,9,13-tetramethyl-18-methylidene-10,16-dioxo-2,7,15-trioxatetracyclo[9.6.1.0¹,¹³.0³,⁹]octadecan-5-yl hexadecanoate

4-(acetyloxy)-8-formyl-14-(furan-3-yl)-6,6,9,13-tetramethyl-18-methylidene-10,16-dioxo-2,7,15-trioxatetracyclo[9.6.1.0¹,¹³.0³,⁹]octadecan-5-yl hexadecanoate

C43H62O11 (754.4292)


   

(1s,3r,4s,5r,8s,9r,11s,13s,14s)-4-(acetyloxy)-8-formyl-14-(furan-3-yl)-6,6,9,13-tetramethyl-18-methylidene-10,16-dioxo-2,7,15-trioxatetracyclo[9.6.1.0¹,¹³.0³,⁹]octadecan-5-yl hexadecanoate

(1s,3r,4s,5r,8s,9r,11s,13s,14s)-4-(acetyloxy)-8-formyl-14-(furan-3-yl)-6,6,9,13-tetramethyl-18-methylidene-10,16-dioxo-2,7,15-trioxatetracyclo[9.6.1.0¹,¹³.0³,⁹]octadecan-5-yl hexadecanoate

C43H62O11 (754.4292)


   

19'-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-one

19'-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-one

C39H62O14 (754.4139)


   

1-(6-ethyl-5-methylideneoctan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl 18-bromooctadeca-9,17-dien-5,7,15-triynoate

1-(6-ethyl-5-methylideneoctan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl 18-bromooctadeca-9,17-dien-5,7,15-triynoate

C48H67BrO2 (754.4324)


   

3,3',6,6'-tetrahydroxy-4-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-4'-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-[1,1'-bi(cyclohexane)]-1(6),1'(6'),3,3'-tetraene-2,2',5,5'-tetrone

3,3',6,6'-tetrahydroxy-4-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-4'-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-[1,1'-bi(cyclohexane)]-1(6),1'(6'),3,3'-tetraene-2,2',5,5'-tetrone

C47H62O8 (754.4444)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,15's,16'r,18'r)-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,15's,16'r,18'r)-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H62O14 (754.4139)


   

2-[(2-{7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-6-methylhept-5-en-2-yl)oxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol

2-[(2-{7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-6-methylhept-5-en-2-yl)oxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol

C41H70O12 (754.4867)


   

(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

C39H62O14 (754.4139)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,4r,5ar,7r,9as,9br,11ar)-7-(acetyloxy)-1-[(2r,4r,5s)-4,5-dihydroxy-6-methoxy-6-methylheptan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,4r,5ar,7r,9as,9br,11ar)-7-(acetyloxy)-1-[(2r,4r,5s)-4,5-dihydroxy-6-methoxy-6-methylheptan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C41H70O12 (754.4867)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2'r,4's,5r,7's,8's,9's,12'r,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-2',8'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2'r,4's,5r,7's,8's,9's,12'r,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-2',8'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O14 (754.4139)