Exact Mass: 743.4162

Exact Mass Matches: 743.4162

Found 92 metabolites which its exact mass value is equals to given mass value 743.4162, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Demethyllactenocin

Demethyllactenocin

C37H61NO14 (743.4092)


A macrolide antibiotic that is tylonolide having 6-deoxy-beta-D-allopyranosyl and beta-D-mycaminosyl residues attached to two of its hydroxy groups..

   
   

PS(14:1(9Z)/18:2(10E,12Z)+=O(9))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C38H66NO11P (743.4373)


PS(14:1(9Z)/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:2(10E,12Z)+=O(9)/14:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C38H66NO11P (743.4373)


PS(18:2(10E,12Z)+=O(9)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:2(10E,12Z)+=O(9)/14:1(9Z)), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/18:2(9Z,11E)+=O(13))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C38H66NO11P (743.4373)


PS(14:1(9Z)/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:2(9Z,11E)+=O(13)/14:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C38H66NO11P (743.4373)


PS(18:2(9Z,11E)+=O(13)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:2(9Z,11E)+=O(13)/14:1(9Z)), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/18:3(10,12,15)-OH(9))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C38H66NO11P (743.4373)


PS(14:1(9Z)/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:3(10,12,15)-OH(9)/14:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C38H66NO11P (743.4373)


PS(18:3(10,12,15)-OH(9)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:3(10,12,15)-OH(9)/14:1(9Z)), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/18:3(9,11,15)-OH(13))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C38H66NO11P (743.4373)


PS(14:1(9Z)/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:3(9,11,15)-OH(13)/14:1(9Z))

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C38H66NO11P (743.4373)


PS(18:3(9,11,15)-OH(13)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:3(9,11,15)-OH(13)/14:1(9Z)), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

Formobactin

Formobactin

C38H57N5O10 (743.4105)


A cyclic hydroxamic acid derivative and antibiotic isolated from Nocardia sp. strain ND20. It exerts an inhibitory effect on lipid peroxidation and also has a potent protecting effect on neuronal cells.

   
   

spinosyn alpha1b

spinosyn alpha1b

C42H65NO10 (743.4608)


   

N-demethylspinosyn alpha1

N-demethylspinosyn alpha1

C42H65NO10 (743.4608)


   
   

3-O-demethylspinosyn alpha1

3-O-demethylspinosyn alpha1

C42H65NO10 (743.4608)


   

21-desethyl-21-cyclopropyl spinosyn A

21-desethyl-21-cyclopropyl spinosyn A

C42H65NO10 (743.4608)


   

2-O-demethylspinosyn alpha1

2-O-demethylspinosyn alpha1

C42H65NO10 (743.4608)


   
   

POTASSIUM HEXABROMOOSMIATE

POTASSIUM HEXABROMOOSMIATE

Br6K2Os (743.398)


   

PS(14:1(9Z)/18:2(10E,12Z)+=O(9))

PS(14:1(9Z)/18:2(10E,12Z)+=O(9))

C38H66NO11P (743.4373)


   

PS(18:2(10E,12Z)+=O(9)/14:1(9Z))

PS(18:2(10E,12Z)+=O(9)/14:1(9Z))

C38H66NO11P (743.4373)


   

PS(14:1(9Z)/18:2(9Z,11E)+=O(13))

PS(14:1(9Z)/18:2(9Z,11E)+=O(13))

C38H66NO11P (743.4373)


   

PS(18:2(9Z,11E)+=O(13)/14:1(9Z))

PS(18:2(9Z,11E)+=O(13)/14:1(9Z))

C38H66NO11P (743.4373)


   

PS(14:1(9Z)/18:3(10,12,15)-OH(9))

PS(14:1(9Z)/18:3(10,12,15)-OH(9))

C38H66NO11P (743.4373)


   

PS(18:3(10,12,15)-OH(9)/14:1(9Z))

PS(18:3(10,12,15)-OH(9)/14:1(9Z))

C38H66NO11P (743.4373)


   

PS(14:1(9Z)/18:3(9,11,15)-OH(13))

PS(14:1(9Z)/18:3(9,11,15)-OH(13))

C38H66NO11P (743.4373)


   

PS(18:3(9,11,15)-OH(13)/14:1(9Z))

PS(18:3(9,11,15)-OH(13)/14:1(9Z))

C38H66NO11P (743.4373)


   

Cocosamide A

Cocosamide A

C42H57N5O7 (743.4258)


A natural product found in Lyngbya majuscula.

   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H66NO8P (743.4526)


   

(4Z,7Z,10Z,13Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]hexadeca-4,7,10,13-tetraenamide

(4Z,7Z,10Z,13Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]hexadeca-4,7,10,13-tetraenamide

C38H65NO13 (743.4456)


   

(9Z,12Z,15Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]octadeca-9,12,15-trienamide

(9Z,12Z,15Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]octadeca-9,12,15-trienamide

C38H65NO13 (743.4456)


   

(7Z,10Z,13Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]hexadeca-7,10,13-trienamide

(7Z,10Z,13Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]hexadeca-7,10,13-trienamide

C38H65NO13 (743.4456)


   

(6Z,9Z,12Z,15Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]octadeca-6,9,12,15-tetraenamide

(6Z,9Z,12Z,15Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]octadeca-6,9,12,15-tetraenamide

C38H65NO13 (743.4456)


   

(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H58NO10P (743.3798)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate

C42H66NO8P (743.4526)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H66NO8P (743.4526)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H66NO8P (743.4526)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoate

C42H66NO8P (743.4526)


   

MePC(33:9)

MePC(22:6_11:3)

C42H66NO8P (743.4526)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   

PS P-20:1/12:3;O2

PS P-20:1/12:3;O2

C38H66NO11P (743.4373)


   
   
   
   
   
   
   
   
   
   
   
   
   
   

PC(34:9)

PC(22:6_12:3)

C42H66NO8P (743.4526)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

4-[({2-[1-(acetyloxy)-3-(2-{[hydroxy(1-methylpiperidin-2-yl)methylidene]amino}-n-(hydroxymethyl)-3-methylpentanamido)-4-methylpentyl]-1,3-thiazol-4-yl}(hydroxy)methylidene)amino]-2-methyl-5-phenylpentanoic acid

4-[({2-[1-(acetyloxy)-3-(2-{[hydroxy(1-methylpiperidin-2-yl)methylidene]amino}-n-(hydroxymethyl)-3-methylpentanamido)-4-methylpentyl]-1,3-thiazol-4-yl}(hydroxy)methylidene)amino]-2-methyl-5-phenylpentanoic acid

C38H57N5O8S (743.3928)


   

(2r)-2-[(2r,4r)-2-{[(2s)-2-{[(2s)-2-{[(2r)-5-carbamimidamido-1-hydroxy-2-(trimethylammonio)pentylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-4-hydroxy-n-methyl-5-(n'-methylcarbamimidamido)pentanamido]-4-carboxybutanoate

(2r)-2-[(2r,4r)-2-{[(2s)-2-{[(2s)-2-{[(2r)-5-carbamimidamido-1-hydroxy-2-(trimethylammonio)pentylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-4-hydroxy-n-methyl-5-(n'-methylcarbamimidamido)pentanamido]-4-carboxybutanoate

C32H61N11O9 (743.4653)


   

(2r,3as,5ar,5bs,9r,13s,14r,16as,16br)-13-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-14-methyl-9-[(1e)-prop-1-en-1-yl]-2-{[(2r,3r,4r,5s,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

(2r,3as,5ar,5bs,9r,13s,14r,16as,16br)-13-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-14-methyl-9-[(1e)-prop-1-en-1-yl]-2-{[(2r,3r,4r,5s,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

C42H65NO10 (743.4608)


   

6-[(6-{[(11z,13e)-4,10-dihydroxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-6-yl]oxy}-4-(dimethylamino)-5-hydroxy-2-methyloxan-3-yl)oxy]-4-hydroxy-2,4-dimethyloxan-3-yl acetate

6-[(6-{[(11z,13e)-4,10-dihydroxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-6-yl]oxy}-4-(dimethylamino)-5-hydroxy-2-methyloxan-3-yl)oxy]-4-hydroxy-2,4-dimethyloxan-3-yl acetate

C37H61NO14 (743.4092)


   

9-(but-1-en-1-yl)-13-{[5-(dimethylamino)-6-methyloxan-2-yl]oxy}-2-[(3-hydroxy-4,5-dimethoxy-6-methyloxan-2-yl)oxy]-14-methyl-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

9-(but-1-en-1-yl)-13-{[5-(dimethylamino)-6-methyloxan-2-yl]oxy}-2-[(3-hydroxy-4,5-dimethoxy-6-methyloxan-2-yl)oxy]-14-methyl-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

C42H65NO10 (743.4608)


   

n-(1-hydroxy-2-oxoazepan-3-yl)-3-{[2-({hydroxy[5-methyl-2-(6-oxocyclohexa-2,4-dien-1-ylidene)-3h-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyacetamido)hexanoyl]oxy}-2-methyldodecanimidic acid

n-(1-hydroxy-2-oxoazepan-3-yl)-3-{[2-({hydroxy[5-methyl-2-(6-oxocyclohexa-2,4-dien-1-ylidene)-3h-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyacetamido)hexanoyl]oxy}-2-methyldodecanimidic acid

C38H57N5O10 (743.4105)


   

9-(but-1-en-1-yl)-14-methyl-13-{[6-methyl-5-(methylamino)oxan-2-yl]oxy}-2-[(3,4,5-trimethoxy-6-methyloxan-2-yl)oxy]-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

9-(but-1-en-1-yl)-14-methyl-13-{[6-methyl-5-(methylamino)oxan-2-yl]oxy}-2-[(3,4,5-trimethoxy-6-methyloxan-2-yl)oxy]-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

C42H65NO10 (743.4608)


   

2-({2-[(2-{2-[(3-amino-1,2-dihydroxydecylidene)amino]-3-hydroxy-n-methylpropanamido}-1-hydroxy-4-methylpentylidene)amino]-1-hydroxy-3-(4-hydroxyphenyl)propylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

2-({2-[(2-{2-[(3-amino-1,2-dihydroxydecylidene)amino]-3-hydroxy-n-methylpropanamido}-1-hydroxy-4-methylpentylidene)amino]-1-hydroxy-3-(4-hydroxyphenyl)propylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

C38H57N5O10 (743.4105)


   

n-[(3e)-5-[16-(acetyloxy)-15-hydroxy-2,7,14,15,24-pentamethyl-6,9,12-trioxo-11,18,27,28,29-pentaoxapentacyclo[21.3.1.1¹,⁴.1²⁰,²⁴.0¹⁷,¹⁹]nonacos-13-en-10-yl]penta-1,3-dien-1-yl]butanimidic acid

n-[(3e)-5-[16-(acetyloxy)-15-hydroxy-2,7,14,15,24-pentamethyl-6,9,12-trioxo-11,18,27,28,29-pentaoxapentacyclo[21.3.1.1¹,⁴.1²⁰,²⁴.0¹⁷,¹⁹]nonacos-13-en-10-yl]penta-1,3-dien-1-yl]butanimidic acid

C40H57NO12 (743.3881)


   

n-(1-hydroxy-2-oxoazepan-3-yl)-3-{[2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyformamido)hexanoyl]oxy}-2,2-dimethyldodecanimidic acid

n-(1-hydroxy-2-oxoazepan-3-yl)-3-{[2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyformamido)hexanoyl]oxy}-2,2-dimethyldodecanimidic acid

C38H57N5O10 (743.4105)


   

(3s,9s,13s,16s,21as)-3,16-dibenzyl-4,11-dihydroxy-13-isopropyl-2,10,10,15-tetramethyl-9-(pent-4-en-1-yl)-3h,6h,9h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecane-1,7,14,17-tetrone

(3s,9s,13s,16s,21as)-3,16-dibenzyl-4,11-dihydroxy-13-isopropyl-2,10,10,15-tetramethyl-9-(pent-4-en-1-yl)-3h,6h,9h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecane-1,7,14,17-tetrone

C42H57N5O7 (743.4258)


   

13-{[5-(dimethylamino)-6-methyloxan-2-yl]oxy}-14-methyl-9-(prop-1-en-1-yl)-2-[(3,4,5-trimethoxy-6-methyloxan-2-yl)oxy]-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

13-{[5-(dimethylamino)-6-methyloxan-2-yl]oxy}-14-methyl-9-(prop-1-en-1-yl)-2-[(3,4,5-trimethoxy-6-methyloxan-2-yl)oxy]-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

C42H65NO10 (743.4608)


   

(2r,3as,5ar,5bs,9r,13s,14r,16as,16br)-9-[(1e)-but-1-en-1-yl]-14-methyl-13-{[(2r,5r,6r)-6-methyl-5-(methylamino)oxan-2-yl]oxy}-2-{[(2r,3r,4r,5s,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

(2r,3as,5ar,5bs,9r,13s,14r,16as,16br)-9-[(1e)-but-1-en-1-yl]-14-methyl-13-{[(2r,5r,6r)-6-methyl-5-(methylamino)oxan-2-yl]oxy}-2-{[(2r,3r,4r,5s,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

C42H65NO10 (743.4608)


   

(2r,3as,5ar,5bs,9r,13s,14r,16as,16br)-9-[(1e)-but-1-en-1-yl]-13-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-2-{[(2r,3r,4s,5s,6s)-3-hydroxy-4,5-dimethoxy-6-methyloxan-2-yl]oxy}-14-methyl-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

(2r,3as,5ar,5bs,9r,13s,14r,16as,16br)-9-[(1e)-but-1-en-1-yl]-13-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-2-{[(2r,3r,4s,5s,6s)-3-hydroxy-4,5-dimethoxy-6-methyloxan-2-yl]oxy}-14-methyl-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

C42H65NO10 (743.4608)


   

n-[(1z,3e)-5-[(1r,2s,4r,7s,10s,13z,15r,16r,17s,19s,20s,23r,24s)-16-(acetyloxy)-15-hydroxy-2,7,14,15,24-pentamethyl-6,9,12-trioxo-11,18,27,28,29-pentaoxapentacyclo[21.3.1.1¹,⁴.1²⁰,²⁴.0¹⁷,¹⁹]nonacos-13-en-10-yl]penta-1,3-dien-1-yl]butanimidic acid

n-[(1z,3e)-5-[(1r,2s,4r,7s,10s,13z,15r,16r,17s,19s,20s,23r,24s)-16-(acetyloxy)-15-hydroxy-2,7,14,15,24-pentamethyl-6,9,12-trioxo-11,18,27,28,29-pentaoxapentacyclo[21.3.1.1¹,⁴.1²⁰,²⁴.0¹⁷,¹⁹]nonacos-13-en-10-yl]penta-1,3-dien-1-yl]butanimidic acid

C40H57NO12 (743.3881)


   

(2r,3as,5ar,5bs,9r,13s,14r,16as,16br)-9-[(1e)-but-1-en-1-yl]-14-methyl-13-{[(2r,5s,6r)-6-methyl-5-(methylamino)oxan-2-yl]oxy}-2-{[(2r,3r,4r,5s,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

(2r,3as,5ar,5bs,9r,13s,14r,16as,16br)-9-[(1e)-but-1-en-1-yl]-14-methyl-13-{[(2r,5s,6r)-6-methyl-5-(methylamino)oxan-2-yl]oxy}-2-{[(2r,3r,4r,5s,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

C42H65NO10 (743.4608)


   

n-(1-hydroxy-2-oxoazepan-3-yl)-3-{[2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyacetamido)hexanoyl]oxy}-2-methyldodecanimidic acid

n-(1-hydroxy-2-oxoazepan-3-yl)-3-{[2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyacetamido)hexanoyl]oxy}-2-methyldodecanimidic acid

C38H57N5O10 (743.4105)


   

(3s)-n-[(3r)-1-hydroxy-2-oxoazepan-3-yl]-3-{[(2r)-2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyformamido)hexanoyl]oxy}-2,2-dimethyldodecanimidic acid

(3s)-n-[(3r)-1-hydroxy-2-oxoazepan-3-yl]-3-{[(2r)-2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyformamido)hexanoyl]oxy}-2,2-dimethyldodecanimidic acid

C38H57N5O10 (743.4105)


   

(2r,3as,5ar,5bs,9r,13s,14r,16as,16br)-9-[(1e)-but-1-en-1-yl]-13-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-2-{[(2r,3r,4r,5r,6s)-4-hydroxy-3,5-dimethoxy-6-methyloxan-2-yl]oxy}-14-methyl-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

(2r,3as,5ar,5bs,9r,13s,14r,16as,16br)-9-[(1e)-but-1-en-1-yl]-13-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-2-{[(2r,3r,4r,5r,6s)-4-hydroxy-3,5-dimethoxy-6-methyloxan-2-yl]oxy}-14-methyl-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

C42H65NO10 (743.4608)


   

3,16-dibenzyl-4,11-dihydroxy-13-isopropyl-2,10,10,15-tetramethyl-9-(pent-4-en-1-yl)-3h,6h,9h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecane-1,7,14,17-tetrone

3,16-dibenzyl-4,11-dihydroxy-13-isopropyl-2,10,10,15-tetramethyl-9-(pent-4-en-1-yl)-3h,6h,9h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecane-1,7,14,17-tetrone

C42H57N5O7 (743.4258)


   

n-[(1z,3e)-5-[(1r,2s,4r,7r,10s,13e,15r,16r,17s,19r,20s,23r,24s)-16-(acetyloxy)-15-hydroxy-2,7,14,15,24-pentamethyl-6,9,12-trioxo-11,18,27,28,29-pentaoxapentacyclo[21.3.1.1¹,⁴.1²⁰,²⁴.0¹⁷,¹⁹]nonacos-13-en-10-yl]penta-1,3-dien-1-yl]butanimidic acid

n-[(1z,3e)-5-[(1r,2s,4r,7r,10s,13e,15r,16r,17s,19r,20s,23r,24s)-16-(acetyloxy)-15-hydroxy-2,7,14,15,24-pentamethyl-6,9,12-trioxo-11,18,27,28,29-pentaoxapentacyclo[21.3.1.1¹,⁴.1²⁰,²⁴.0¹⁷,¹⁹]nonacos-13-en-10-yl]penta-1,3-dien-1-yl]butanimidic acid

C40H57NO12 (743.3881)


   

9-(but-1-en-1-yl)-13-{[5-(dimethylamino)-6-methyloxan-2-yl]oxy}-2-[(4-hydroxy-3,5-dimethoxy-6-methyloxan-2-yl)oxy]-14-methyl-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

9-(but-1-en-1-yl)-13-{[5-(dimethylamino)-6-methyloxan-2-yl]oxy}-2-[(4-hydroxy-3,5-dimethoxy-6-methyloxan-2-yl)oxy]-14-methyl-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

C42H65NO10 (743.4608)


   

(2s,4r)-4-[({2-[(3r)-1-(acetyloxy)-3-[(2s,3s)-2-({hydroxy[(2r)-1-methylpiperidin-2-yl]methylidene}amino)-n-(hydroxymethyl)-3-methylpentanamido]-4-methylpentyl]-1,3-thiazol-4-yl}(hydroxy)methylidene)amino]-2-methyl-5-phenylpentanoic acid

(2s,4r)-4-[({2-[(3r)-1-(acetyloxy)-3-[(2s,3s)-2-({hydroxy[(2r)-1-methylpiperidin-2-yl]methylidene}amino)-n-(hydroxymethyl)-3-methylpentanamido]-4-methylpentyl]-1,3-thiazol-4-yl}(hydroxy)methylidene)amino]-2-methyl-5-phenylpentanoic acid

C38H57N5O8S (743.3928)


   

(2r,3s)-n-[(3r)-1-hydroxy-2-oxoazepan-3-yl]-3-{[(2s)-2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyacetamido)hexanoyl]oxy}-2-methyldodecanimidic acid

(2r,3s)-n-[(3r)-1-hydroxy-2-oxoazepan-3-yl]-3-{[(2s)-2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyacetamido)hexanoyl]oxy}-2-methyldodecanimidic acid

C38H57N5O10 (743.4105)