Exact Mass: 743.3928

Exact Mass Matches: 743.3928

Found 77 metabolites which its exact mass value is equals to given mass value 743.3928, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Demethyllactenocin

Demethyllactenocin

C37H61NO14 (743.4092)


A macrolide antibiotic that is tylonolide having 6-deoxy-beta-D-allopyranosyl and beta-D-mycaminosyl residues attached to two of its hydroxy groups..

   
   

PS(14:1(9Z)/18:2(10E,12Z)+=O(9))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C38H66NO11P (743.4373)


PS(14:1(9Z)/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:2(10E,12Z)+=O(9)/14:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C38H66NO11P (743.4373)


PS(18:2(10E,12Z)+=O(9)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:2(10E,12Z)+=O(9)/14:1(9Z)), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/18:2(9Z,11E)+=O(13))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C38H66NO11P (743.4373)


PS(14:1(9Z)/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:2(9Z,11E)+=O(13)/14:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C38H66NO11P (743.4373)


PS(18:2(9Z,11E)+=O(13)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:2(9Z,11E)+=O(13)/14:1(9Z)), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/18:3(10,12,15)-OH(9))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C38H66NO11P (743.4373)


PS(14:1(9Z)/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:3(10,12,15)-OH(9)/14:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C38H66NO11P (743.4373)


PS(18:3(10,12,15)-OH(9)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:3(10,12,15)-OH(9)/14:1(9Z)), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/18:3(9,11,15)-OH(13))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C38H66NO11P (743.4373)


PS(14:1(9Z)/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:3(9,11,15)-OH(13)/14:1(9Z))

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C38H66NO11P (743.4373)


PS(18:3(9,11,15)-OH(13)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:3(9,11,15)-OH(13)/14:1(9Z)), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

Formobactin

Formobactin

C38H57N5O10 (743.4105)


A cyclic hydroxamic acid derivative and antibiotic isolated from Nocardia sp. strain ND20. It exerts an inhibitory effect on lipid peroxidation and also has a potent protecting effect on neuronal cells.

   
   
   

cyclo(-Gly-transPro-Thr-Kyn-Ala-Asn-Leu-)|cyclomontanin B

cyclo(-Gly-transPro-Thr-Kyn-Ala-Asn-Leu-)|cyclomontanin B

C34H49N9O10 (743.3602)


   
   

POTASSIUM HEXABROMOOSMIATE

POTASSIUM HEXABROMOOSMIATE

Br6K2Os (743.398)


   

Carbobenzoxy-Pro-Lys-Phe-Y(Po2)-Ala-Pro-Ome

Carbobenzoxy-Pro-Lys-Phe-Y(Po2)-Ala-Pro-Ome

C36H52N6O9P+ (743.3533)


   

PS(14:1(9Z)/18:2(10E,12Z)+=O(9))

PS(14:1(9Z)/18:2(10E,12Z)+=O(9))

C38H66NO11P (743.4373)


   

PS(18:2(10E,12Z)+=O(9)/14:1(9Z))

PS(18:2(10E,12Z)+=O(9)/14:1(9Z))

C38H66NO11P (743.4373)


   

PS(14:1(9Z)/18:2(9Z,11E)+=O(13))

PS(14:1(9Z)/18:2(9Z,11E)+=O(13))

C38H66NO11P (743.4373)


   

PS(18:2(9Z,11E)+=O(13)/14:1(9Z))

PS(18:2(9Z,11E)+=O(13)/14:1(9Z))

C38H66NO11P (743.4373)


   

PS(14:1(9Z)/18:3(10,12,15)-OH(9))

PS(14:1(9Z)/18:3(10,12,15)-OH(9))

C38H66NO11P (743.4373)


   

PS(18:3(10,12,15)-OH(9)/14:1(9Z))

PS(18:3(10,12,15)-OH(9)/14:1(9Z))

C38H66NO11P (743.4373)


   

PS(14:1(9Z)/18:3(9,11,15)-OH(13))

PS(14:1(9Z)/18:3(9,11,15)-OH(13))

C38H66NO11P (743.4373)


   

PS(18:3(9,11,15)-OH(13)/14:1(9Z))

PS(18:3(9,11,15)-OH(13)/14:1(9Z))

C38H66NO11P (743.4373)


   

Cocosamide A

Cocosamide A

C42H57N5O7 (743.4258)


A natural product found in Lyngbya majuscula.

   

1-[[(3R,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-[4-(trifluoromethyl)anilino]methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-3-(4-methoxyphenyl)-1-methylurea

1-[[(3R,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-[4-(trifluoromethyl)anilino]methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-3-(4-methoxyphenyl)-1-methylurea

C38H48F3N5O7 (743.3506)


   

N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]acetamide

N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]acetamide

C32H57NO18 (743.3575)


   

N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxynon-4-en-2-yl]pentanamide

N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxynon-4-en-2-yl]pentanamide

C32H57NO18 (743.3575)


   

N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyundec-4-en-2-yl]propanamide

N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyundec-4-en-2-yl]propanamide

C32H57NO18 (743.3575)


   

N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]butanamide

N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]butanamide

C32H57NO18 (743.3575)


   

N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]hexanamide

N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]hexanamide

C32H57NO18 (743.3575)


   

(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H58NO10P (743.3798)


   
   
   
   
   
   
   
   
   
   

PS P-20:1/12:3;O2

PS P-20:1/12:3;O2

C38H66NO11P (743.4373)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

4-[({2-[1-(acetyloxy)-3-(2-{[hydroxy(1-methylpiperidin-2-yl)methylidene]amino}-n-(hydroxymethyl)-3-methylpentanamido)-4-methylpentyl]-1,3-thiazol-4-yl}(hydroxy)methylidene)amino]-2-methyl-5-phenylpentanoic acid

4-[({2-[1-(acetyloxy)-3-(2-{[hydroxy(1-methylpiperidin-2-yl)methylidene]amino}-n-(hydroxymethyl)-3-methylpentanamido)-4-methylpentyl]-1,3-thiazol-4-yl}(hydroxy)methylidene)amino]-2-methyl-5-phenylpentanoic acid

C38H57N5O8S (743.3928)


   

6-[(6-{[(11z,13e)-4,10-dihydroxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-6-yl]oxy}-4-(dimethylamino)-5-hydroxy-2-methyloxan-3-yl)oxy]-4-hydroxy-2,4-dimethyloxan-3-yl acetate

6-[(6-{[(11z,13e)-4,10-dihydroxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-6-yl]oxy}-4-(dimethylamino)-5-hydroxy-2-methyloxan-3-yl)oxy]-4-hydroxy-2,4-dimethyloxan-3-yl acetate

C37H61NO14 (743.4092)


   

n-(1-hydroxy-2-oxoazepan-3-yl)-3-{[2-({hydroxy[5-methyl-2-(6-oxocyclohexa-2,4-dien-1-ylidene)-3h-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyacetamido)hexanoyl]oxy}-2-methyldodecanimidic acid

n-(1-hydroxy-2-oxoazepan-3-yl)-3-{[2-({hydroxy[5-methyl-2-(6-oxocyclohexa-2,4-dien-1-ylidene)-3h-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyacetamido)hexanoyl]oxy}-2-methyldodecanimidic acid

C38H57N5O10 (743.4105)


   

2-({2-[(2-{2-[(3-amino-1,2-dihydroxydecylidene)amino]-3-hydroxy-n-methylpropanamido}-1-hydroxy-4-methylpentylidene)amino]-1-hydroxy-3-(4-hydroxyphenyl)propylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

2-({2-[(2-{2-[(3-amino-1,2-dihydroxydecylidene)amino]-3-hydroxy-n-methylpropanamido}-1-hydroxy-4-methylpentylidene)amino]-1-hydroxy-3-(4-hydroxyphenyl)propylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

C38H57N5O10 (743.4105)


   

n-[(3e)-5-[16-(acetyloxy)-15-hydroxy-2,7,14,15,24-pentamethyl-6,9,12-trioxo-11,18,27,28,29-pentaoxapentacyclo[21.3.1.1¹,⁴.1²⁰,²⁴.0¹⁷,¹⁹]nonacos-13-en-10-yl]penta-1,3-dien-1-yl]butanimidic acid

n-[(3e)-5-[16-(acetyloxy)-15-hydroxy-2,7,14,15,24-pentamethyl-6,9,12-trioxo-11,18,27,28,29-pentaoxapentacyclo[21.3.1.1¹,⁴.1²⁰,²⁴.0¹⁷,¹⁹]nonacos-13-en-10-yl]penta-1,3-dien-1-yl]butanimidic acid

C40H57NO12 (743.3881)


   

n-(1-hydroxy-2-oxoazepan-3-yl)-3-{[2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyformamido)hexanoyl]oxy}-2,2-dimethyldodecanimidic acid

n-(1-hydroxy-2-oxoazepan-3-yl)-3-{[2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyformamido)hexanoyl]oxy}-2,2-dimethyldodecanimidic acid

C38H57N5O10 (743.4105)


   

(3s,9s,13s,16s,21as)-3,16-dibenzyl-4,11-dihydroxy-13-isopropyl-2,10,10,15-tetramethyl-9-(pent-4-en-1-yl)-3h,6h,9h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecane-1,7,14,17-tetrone

(3s,9s,13s,16s,21as)-3,16-dibenzyl-4,11-dihydroxy-13-isopropyl-2,10,10,15-tetramethyl-9-(pent-4-en-1-yl)-3h,6h,9h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecane-1,7,14,17-tetrone

C42H57N5O7 (743.4258)


   

n-[(1z,3e)-5-[(1r,2s,4r,7s,10s,13z,15r,16r,17s,19s,20s,23r,24s)-16-(acetyloxy)-15-hydroxy-2,7,14,15,24-pentamethyl-6,9,12-trioxo-11,18,27,28,29-pentaoxapentacyclo[21.3.1.1¹,⁴.1²⁰,²⁴.0¹⁷,¹⁹]nonacos-13-en-10-yl]penta-1,3-dien-1-yl]butanimidic acid

n-[(1z,3e)-5-[(1r,2s,4r,7s,10s,13z,15r,16r,17s,19s,20s,23r,24s)-16-(acetyloxy)-15-hydroxy-2,7,14,15,24-pentamethyl-6,9,12-trioxo-11,18,27,28,29-pentaoxapentacyclo[21.3.1.1¹,⁴.1²⁰,²⁴.0¹⁷,¹⁹]nonacos-13-en-10-yl]penta-1,3-dien-1-yl]butanimidic acid

C40H57NO12 (743.3881)


   

n-(1-hydroxy-2-oxoazepan-3-yl)-3-{[2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyacetamido)hexanoyl]oxy}-2-methyldodecanimidic acid

n-(1-hydroxy-2-oxoazepan-3-yl)-3-{[2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyacetamido)hexanoyl]oxy}-2-methyldodecanimidic acid

C38H57N5O10 (743.4105)


   

(3s)-n-[(3r)-1-hydroxy-2-oxoazepan-3-yl]-3-{[(2r)-2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyformamido)hexanoyl]oxy}-2,2-dimethyldodecanimidic acid

(3s)-n-[(3r)-1-hydroxy-2-oxoazepan-3-yl]-3-{[(2r)-2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyformamido)hexanoyl]oxy}-2,2-dimethyldodecanimidic acid

C38H57N5O10 (743.4105)


   

2-[(6s,9s,12s,15s,18r,23as)-15-[2-(2-aminophenyl)-2-oxoethyl]-6-[(2r)-butan-2-yl]-1,4,7,10,13,16-hexahydroxy-18-[(1r)-1-hydroxyethyl]-12-methyl-19-oxo-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-9-yl]ethanimidic acid

2-[(6s,9s,12s,15s,18r,23as)-15-[2-(2-aminophenyl)-2-oxoethyl]-6-[(2r)-butan-2-yl]-1,4,7,10,13,16-hexahydroxy-18-[(1r)-1-hydroxyethyl]-12-methyl-19-oxo-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-9-yl]ethanimidic acid

C34H49N9O10 (743.3602)


   

2-[(9s,12s,15s,18r,23as)-15-[2-(2-aminophenyl)-2-oxoethyl]-6-[(2r)-butan-2-yl]-1,4,7,10,13,16-hexahydroxy-18-[(1r)-1-hydroxyethyl]-12-methyl-19-oxo-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-9-yl]ethanimidic acid

2-[(9s,12s,15s,18r,23as)-15-[2-(2-aminophenyl)-2-oxoethyl]-6-[(2r)-butan-2-yl]-1,4,7,10,13,16-hexahydroxy-18-[(1r)-1-hydroxyethyl]-12-methyl-19-oxo-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-9-yl]ethanimidic acid

C34H49N9O10 (743.3602)


   

3,16-dibenzyl-4,11-dihydroxy-13-isopropyl-2,10,10,15-tetramethyl-9-(pent-4-en-1-yl)-3h,6h,9h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecane-1,7,14,17-tetrone

3,16-dibenzyl-4,11-dihydroxy-13-isopropyl-2,10,10,15-tetramethyl-9-(pent-4-en-1-yl)-3h,6h,9h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecane-1,7,14,17-tetrone

C42H57N5O7 (743.4258)


   

n-[(1z,3e)-5-[(1r,2s,4r,7r,10s,13e,15r,16r,17s,19r,20s,23r,24s)-16-(acetyloxy)-15-hydroxy-2,7,14,15,24-pentamethyl-6,9,12-trioxo-11,18,27,28,29-pentaoxapentacyclo[21.3.1.1¹,⁴.1²⁰,²⁴.0¹⁷,¹⁹]nonacos-13-en-10-yl]penta-1,3-dien-1-yl]butanimidic acid

n-[(1z,3e)-5-[(1r,2s,4r,7r,10s,13e,15r,16r,17s,19r,20s,23r,24s)-16-(acetyloxy)-15-hydroxy-2,7,14,15,24-pentamethyl-6,9,12-trioxo-11,18,27,28,29-pentaoxapentacyclo[21.3.1.1¹,⁴.1²⁰,²⁴.0¹⁷,¹⁹]nonacos-13-en-10-yl]penta-1,3-dien-1-yl]butanimidic acid

C40H57NO12 (743.3881)


   

(2s,4r)-4-[({2-[(3r)-1-(acetyloxy)-3-[(2s,3s)-2-({hydroxy[(2r)-1-methylpiperidin-2-yl]methylidene}amino)-n-(hydroxymethyl)-3-methylpentanamido]-4-methylpentyl]-1,3-thiazol-4-yl}(hydroxy)methylidene)amino]-2-methyl-5-phenylpentanoic acid

(2s,4r)-4-[({2-[(3r)-1-(acetyloxy)-3-[(2s,3s)-2-({hydroxy[(2r)-1-methylpiperidin-2-yl]methylidene}amino)-n-(hydroxymethyl)-3-methylpentanamido]-4-methylpentyl]-1,3-thiazol-4-yl}(hydroxy)methylidene)amino]-2-methyl-5-phenylpentanoic acid

C38H57N5O8S (743.3928)


   

(2r,3s)-n-[(3r)-1-hydroxy-2-oxoazepan-3-yl]-3-{[(2s)-2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyacetamido)hexanoyl]oxy}-2-methyldodecanimidic acid

(2r,3s)-n-[(3r)-1-hydroxy-2-oxoazepan-3-yl]-3-{[(2s)-2-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-1,3-oxazol-4-yl]methylidene}amino)-6-(n-hydroxyacetamido)hexanoyl]oxy}-2-methyldodecanimidic acid

C38H57N5O10 (743.4105)