Exact Mass: 740.4628104

Exact Mass Matches: 740.4628104

Found 500 metabolites which its exact mass value is equals to given mass value 740.4628104, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Schidigerasaponin D5

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-(5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-16-yl)oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


Schidigerasaponin D5 is a natural product found in Yucca gloriosa and Asparagus gobicus with data available. Melongoside E is found in fruits. Melongoside E is a constituent of aubergine (Solanum melongena). Constituent of aubergine (Solanum melongena). Melongoside E is found in fruits and eggplant. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

Desglucodesrhamnoparillin

2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


Desglucodesrhamnoparillin is found in herbs and spices. Desglucodesrhamnoparillin is isolated from rhizomes of Mexican sarsaparilla (Smilax aristolochiaefolia).

   

Capsicoside B2

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


Constituent of bell pepper (Capsicum annuum). Capsicoside B2 is found in many foods, some of which are fruits, herbs and spices, pepper (c. annuum), and yellow bell pepper. Capsicoside B2 is found in fruits. Capsicoside B2 is a constituent of bell pepper (Capsicum annuum).

   

Torvoside C

2-[(3,5-dihydroxy-2-methyl-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16-dioloxy}oxan-4-yl)oxy]-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


Torvoside C is found in fruits. Torvoside C is a constituent of Solanum torvum (pea eggplant)

   

Asparagoside C

2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


Asparagoside C is found in green vegetables. Asparagoside C is a constituent of asparagus (Asparagus officinalis) root

   

25-Epiruizgenin 3-[4'-rhamnosylglucoside]

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-19-oloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


25-Epiruizgenin 3-[4-rhamnosylglucoside] is found in onion-family vegetables. 25-Epiruizgenin 3-[4-rhamnosylglucoside] is a constituent of Allium tuberosum (Chinese chives) Constituent of Allium tuberosum (Chinese chives). 25-Epiruizgenin 3-[4-rhamnosylglucoside] is found in onion-family vegetables.

   

PA(18:4(6Z,9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C43H65O8P (740.441682)


PA(18:4(6Z,9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z))

[(2R)-2,3-bis[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C43H65O8P (740.441682)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z))

[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C43H65O8P (740.441682)


PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C39H65O11P (740.426427)


PA(16:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C39H65O11P (740.426427)


PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:1(9Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(17:0/PGJ2)

[(2R)-3-(heptadecanoyloxy)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propoxy]phosphonic acid

C40H69O10P (740.4628104)


PA(17:0/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(17:0/PGJ2), in particular, consists of one chain of one heptadecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGJ2/17:0)

[(2R)-2-(heptadecanoyloxy)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propoxy]phosphonic acid

C40H69O10P (740.4628104)


PA(PGJ2/17:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/17:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of heptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2R)-3-(octadecanoyloxy)-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/18:0)

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/18:0)

C41H73O9P (740.4991938)


PA(20:3(5Z,8Z,11Z)-O(14R,15S)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)-O(14R,15S)/18:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2R)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/18:0)

[(2R)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(5Z,8Z,14Z)-O(11S,12R)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,14Z)-O(11S,12R)/18:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2R)-3-(octadecanoyloxy)-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,11Z,14Z)-O(8,9)/18:0)

[(2R)-2-(octadecanoyloxy)-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(5Z,11Z,14Z)-O(8,9)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,11Z,14Z)-O(8,9)/18:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2R)-3-(octadecanoyloxy)-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-O(5,6)/18:0)

[(2R)-2-(octadecanoyloxy)-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(8Z,11Z,14Z)-O(5,6)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-O(5,6)/18:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:0)

[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:0)

[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:0)

[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/18:0)

[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,7E,11Z,14Z)-OH(9)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,7E,11Z,14Z)-OH(9)/18:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(11Z)/20:3(6,8,11)-OH(5))

[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:1(11Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(11Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(6,8,11)-OH(5)/18:1(11Z))

[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(6,8,11)-OH(5)/18:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(6,8,11)-OH(5)/18:1(11Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)/20:3(6,8,11)-OH(5))

[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:1(9Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(6,8,11)-OH(5)/18:1(9Z))

[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(6,8,11)-OH(5)/18:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(6,8,11)-OH(5)/18:1(9Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(6Z,9Z,12Z)/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C39H65O11P (740.426427)


PA(18:3(6Z,9Z,12Z)/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(6Z,9Z,12Z)/5-iso PGF2VI), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/18:3(6Z,9Z,12Z))

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C39H65O11P (740.426427)


PA(5-iso PGF2VI/18:3(6Z,9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(9Z,12Z,15Z)/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C39H65O11P (740.426427)


PA(18:3(9Z,12Z,15Z)/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9Z,12Z,15Z)/5-iso PGF2VI), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/18:3(9Z,12Z,15Z))

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C39H65O11P (740.426427)


PA(5-iso PGF2VI/18:3(9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:1(11Z)/18:2(10E,12Z)+=O(9))

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:1(11Z)/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(10E,12Z)+=O(9)/20:1(11Z))

[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:2(10E,12Z)+=O(9)/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(10E,12Z)+=O(9)/20:1(11Z)), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:1(11Z)/18:2(9Z,11E)+=O(13))

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:1(11Z)/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,11E)+=O(13)/20:1(11Z))

[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:2(9Z,11E)+=O(13)/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11E)+=O(13)/20:1(11Z)), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:1(11Z)/18:3(10,12,15)-OH(9))

[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:1(11Z)/18:3(10,12,15)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(10,12,15)-OH(9)/20:1(11Z))

[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:3(10,12,15)-OH(9)/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(10,12,15)-OH(9)/20:1(11Z)), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:1(11Z)/18:3(9,11,15)-OH(13))

[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:1(11Z)/18:3(9,11,15)-OH(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(9,11,15)-OH(13)/20:1(11Z))

[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:3(9,11,15)-OH(13)/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9,11,15)-OH(13)/20:1(11Z)), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:2(11Z,14Z)/18:1(12Z)-O(9S,10R))

[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:2(11Z,14Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:2(11Z,14Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/20:2(11Z,14Z))

[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:1(12Z)-O(9S,10R)/20:2(11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/20:2(11Z,14Z)), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:2(11Z,14Z)/18:1(9Z)-O(12,13))

[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:2(11Z,14Z)/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:2(11Z,14Z)/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/20:2(11Z,14Z))

[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:1(9Z)-O(12,13)/20:2(11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/20:2(11Z,14Z)), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-17:0/PGJ2)

[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(14-methylhexadecanoyl)oxy]propoxy]phosphonic acid

C40H69O10P (740.4628104)


PA(a-17:0/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-17:0/PGJ2), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGJ2/a-17:0)

[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(14-methylhexadecanoyl)oxy]propoxy]phosphonic acid

C40H69O10P (740.4628104)


PA(PGJ2/a-17:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/a-17:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-17:0/PGJ2)

[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(15-methylhexadecanoyl)oxy]propoxy]phosphonic acid

C40H69O10P (740.4628104)


PA(i-17:0/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-17:0/PGJ2), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGJ2/i-17:0)

[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(15-methylhexadecanoyl)oxy]propoxy]phosphonic acid

C40H69O10P (740.4628104)


PA(PGJ2/i-17:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/i-17:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2R)-3-[(16-methylheptadecanoyl)oxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/i-18:0)

[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(5Z,8Z,11Z)-O(14R,15S)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)-O(14R,15S)/i-18:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2R)-3-[(16-methylheptadecanoyl)oxy]-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/i-18:0)

[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(5Z,8Z,14Z)-O(11S,12R)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,14Z)-O(11S,12R)/i-18:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2R)-3-[(16-methylheptadecanoyl)oxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,11Z,14Z)-O(8,9)/i-18:0)

[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(5Z,11Z,14Z)-O(8,9)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,11Z,14Z)-O(8,9)/i-18:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2R)-3-[(16-methylheptadecanoyl)oxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-O(5,6)/i-18:0)

[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(8Z,11Z,14Z)-O(5,6)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-O(5,6)/i-18:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-18:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-18:0)

[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-18:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-18:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-18:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-18:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-18:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-18:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-18:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-18:0)

[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-18:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-18:0)

[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-18:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/i-18:0)

[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,7E,11Z,14Z)-OH(9)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,7E,11Z,14Z)-OH(9)/i-18:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

Schidigerasaponin D5

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-(5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-16-yl)oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


Schidigerasaponin D5 is a natural product found in Yucca gloriosa and Asparagus gobicus with data available. Melongoside E is found in fruits. Melongoside E is a constituent of aubergine (Solanum melongena). Constituent of aubergine (Solanum melongena). Melongoside E is found in fruits and eggplant. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   
   
   
   
   
   

Schidigera saponin D5

Schidigera saponin D5

C39H64O13 (740.4346694)


   

3-O-beta-D-xylopyranosyl-6alpha-O-beta-D-xylopyranosyl-16beta,22-dihydroxyhopane|lotoideside E

3-O-beta-D-xylopyranosyl-6alpha-O-beta-D-xylopyranosyl-16beta,22-dihydroxyhopane|lotoideside E

C40H68O12 (740.4710528)


   
   
   

gitogenin 3-O-alpha-L-rhamnopyranosyl-(1-2)-beta-D-galactopyranoside|gitogenin 3-O-[O-alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranoside]|gitogenin 3b-O-[2-O-(alpha-L-rhamnopyanosyl)-beta-D-galactopyranoside]|tuberoside A

gitogenin 3-O-alpha-L-rhamnopyranosyl-(1-2)-beta-D-galactopyranoside|gitogenin 3-O-[O-alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranoside]|gitogenin 3b-O-[2-O-(alpha-L-rhamnopyanosyl)-beta-D-galactopyranoside]|tuberoside A

C39H64O13 (740.4346694)


   
   

3-O-beta-D-xylopyranosyl-16beta-O-alpha-L-arabinopyranosyl-6alpha,22-dihydroxyhopane|lotoideside D

3-O-beta-D-xylopyranosyl-16beta-O-alpha-L-arabinopyranosyl-6alpha,22-dihydroxyhopane|lotoideside D

C40H68O12 (740.4710528)


   
   

preswinholide A ethyl ester

preswinholide A ethyl ester

C41H72O11 (740.5074362)


   

11-(3-methylbutanoyl)-3,13-dipropanoylilikonapyrone

11-(3-methylbutanoyl)-3,13-dipropanoylilikonapyrone

C43H64O10 (740.4499244)


   

(20S)-6-O-[beta-D-xylopyranosyl-(1?2)-beta-D-xylopyranosyl]dammar-24-ene-3beta,6alpha,12beta,20-tetrol|(3beta,6alpha,12beta)-3,12,20-trihydroxydammar-24-en-6-yl 2-O-beta-D-xylopyranosyl-beta-D-xylopyranoside

(20S)-6-O-[beta-D-xylopyranosyl-(1?2)-beta-D-xylopyranosyl]dammar-24-ene-3beta,6alpha,12beta,20-tetrol|(3beta,6alpha,12beta)-3,12,20-trihydroxydammar-24-en-6-yl 2-O-beta-D-xylopyranosyl-beta-D-xylopyranoside

C40H68O12 (740.4710528)


   

(25S)-27-hydroxypennogenin-3-O-alpha-L-rhamnopyranosyl-(1?2)-O-beta-D-glucopyranoside

(25S)-27-hydroxypennogenin-3-O-alpha-L-rhamnopyranosyl-(1?2)-O-beta-D-glucopyranoside

C39H64O13 (740.4346694)


   

(25R)-5beta-spirostan-3beta-ol O-D-glucopyranosyl-(1<*>2)-D-galactopyranoside|(25R)-5beta-spirostan-3beta-ol O-D-glucopyranosyl-(1[*]2)-D-galactopyranoside

(25R)-5beta-spirostan-3beta-ol O-D-glucopyranosyl-(1<*>2)-D-galactopyranoside|(25R)-5beta-spirostan-3beta-ol O-D-glucopyranosyl-(1[*]2)-D-galactopyranoside

C39H64O13 (740.4346694)


   

H-Val-Ala-Val-Leu-Val-Leu-Gly-Ala-OH

H-Val-Ala-Val-Leu-Val-Leu-Gly-Ala-OH

C35H64N8O9 (740.4796014000001)


   

(22S)-3beta,22-dihydroxy-1beta-[(alpha-L-rhamnopyranosyl)oxy]cholest-5,24-dein-16beta-yl beta-D-glucopyranoside

(22S)-3beta,22-dihydroxy-1beta-[(alpha-L-rhamnopyranosyl)oxy]cholest-5,24-dein-16beta-yl beta-D-glucopyranoside

C39H64O13 (740.4346694)


   

(E)-(24R)-241-O-beta-[2,4-di-O-methyl-D-xylopyranosyl-(1->2)-alpha-L-arabinofuranosyl]-24-methyl-5alpha-cholest-22-ene-3beta,6alpha,15beta,241-tetrol|certonardoside B3

(E)-(24R)-241-O-beta-[2,4-di-O-methyl-D-xylopyranosyl-(1->2)-alpha-L-arabinofuranosyl]-24-methyl-5alpha-cholest-22-ene-3beta,6alpha,15beta,241-tetrol|certonardoside B3

C40H68O12 (740.4710528)


   

4-O-[beta-D-galactopyranosyl-(1->2)-beta-D-xylopyranosyl]-24-methylenecholest-5-ene-2alpha,3beta,7beta-triol|wondosterol A

4-O-[beta-D-galactopyranosyl-(1->2)-beta-D-xylopyranosyl]-24-methylenecholest-5-ene-2alpha,3beta,7beta-triol|wondosterol A

C39H64O13 (740.4346694)


   
   
   

[3-hydroxy-1-[3-hydroxy-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)decan-5-yl]oxy-1-oxodecan-5-yl] 3,5-dihydroxydecanoate

NCGC00381058-01![3-hydroxy-1-[3-hydroxy-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)decan-5-yl]oxy-1-oxodecan-5-yl] 3,5-dihydroxydecanoate

C36H68O15 (740.4557978)


   

C39H64O13_beta-D-Glucopyranoside, 3,23-dihydroxyspirostan-6-yl 6-deoxy-4-O-(6-deoxy-alpha-L-mannopyranosyl)

NCGC00179940-02_C39H64O13_beta-D-Glucopyranoside, 3,23-dihydroxyspirostan-6-yl 6-deoxy-4-O-(6-deoxy-alpha-L-mannopyranosyl)-

C39H64O13 (740.4346694)


   

[3-hydroxy-1-[3-hydroxy-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)decan-5-yl]oxy-1-oxodecan-5-yl] 3,5-dihydroxydecanoate [IIN-based: Match]

NCGC00381058-01![3-hydroxy-1-[3-hydroxy-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)decan-5-yl]oxy-1-oxodecan-5-yl] 3,5-dihydroxydecanoate [IIN-based: Match]

C36H68O15 (740.4557978)


   

[3-hydroxy-1-[3-hydroxy-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)decan-5-yl]oxy-1-oxodecan-5-yl] 3,5-dihydroxydecanoate [IIN-based on: CCMSLIB00000846752]

NCGC00381058-01![3-hydroxy-1-[3-hydroxy-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)decan-5-yl]oxy-1-oxodecan-5-yl] 3,5-dihydroxydecanoate [IIN-based on: CCMSLIB00000846752]

C36H68O15 (740.4557978)


   

PG(14:1(9Z)/20:4(5Z,8Z,11Z,14Z))

1-(9Z-tetradecenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C40H69O10P (740.4628104)


   

PG(18:4(6Z,9Z,12Z,15Z)/16:1(9Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C40H69O10P (740.4628104)


   

PG(20:4(5Z,8Z,11Z,14Z)/14:1(9Z))

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C40H69O10P (740.4628104)


   

PG(20:5(5Z,8Z,11Z,14Z,17Z)/14:0)

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H69O10P (740.4628104)


   

PG(16:1(9Z)/18:4(6Z,9Z,12Z,15Z))

1-(9Z-hexadecenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C40H69O10P (740.4628104)


   

PG(14:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-tetradecanoyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C40H69O10P (740.4628104)


   

PI(12:0/15:0)

1-dodecanoyl-2-pentadecanoyl-glycero-3-phospho-(1-myo-inositol)

C36H69O13P (740.4475553999999)


   

PI(13:0/14:0)

1-tridecanoyl-2-tetradecanoyl-glycero-3-phospho-(1-myo-inositol)

C36H69O13P (740.4475553999999)


   

PI(14:0/13:0)

1-tetradecanoyl-2-tridecanoyl-glycero-3-phospho-(1-myo-inositol)

C36H69O13P (740.4475553999999)


   

PI(15:0/12:0)

1-pentadecanoyl-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C36H69O13P (740.4475553999999)


   

PI(O-16:0/12:0)

1-hexadecyl-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C37H73O12P (740.4839387999999)


   

PA(18:4(6Z,9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C43H65O8P (740.441682)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1,2-di-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycero-3-phosphate

C43H65O8P (740.441682)


   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C43H65O8P (740.441682)


   

Pandaroside C

3beta-[beta-glucopyranosyl-(1-2)-beta-glucopyranosyloxyuronic acid]-16-hydroxy-5alpha,14beta-cholest-16-ene-15,23-dione

C39H64O13 (740.4346694)


   

Torvoside C

2-[(3,5-dihydroxy-2-methyl-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]-3,16-dioloxy}oxan-4-yl)oxy]-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

Asparagoside C

2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

Desglucodesrhamnoparillin

2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

25-Epiruizgenin 3-[4''-rhamnosylglucoside]

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]-19-oloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

Schidigerasaponin D5

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

Capsicoside B2

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   
   

PG 34:5

1-(9Z-hexadecenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C40H69O10P (740.4628104)


   

PI 27:0

1-tetradecanoyl-2-tridecanoyl-glycero-3-phospho-(1-myo-inositol)

C36H69O13P (740.4475553999999)


   

PI O-28:0

1-hexadecyl-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C37H73O12P (740.4839387999999)


   

PA 40:10

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C43H65O8P (740.441682)


   

C6 NBD Sphingomyelin (d18:1/6:0)

C6 NBD Sphingomyelin (d18:1/6:0)

C35H61N6O9P (740.4237426)


   

tiqueside

tiqueside

C39H64O13 (740.4346694)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C1907 - Drug, Natural Product

   
   

2-[2-(3,16-Dihydroxy-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-19-yl)oxy-3,5-dihydroxy-6-methyloxan-4-yl]oxy-6-methyloxane-3,4,5-triol

2-[2-(3,16-Dihydroxy-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-19-yl)oxy-3,5-dihydroxy-6-methyloxan-4-yl]oxy-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5R,6R)-2-[(7S,9S,13R,16S,18S,19S)-3,16-dihydroxy-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-19-yl]oxy-3,5-dihydroxy-6-methyloxan-4-yl]oxy-6-methyloxane-3,4,5-triol

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5R,6R)-2-[(7S,9S,13R,16S,18S,19S)-3,16-dihydroxy-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-19-yl]oxy-3,5-dihydroxy-6-methyloxan-4-yl]oxy-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   
   
   
   
   
   
   

PA(18:3(6Z,9Z,12Z)/5-iso PGF2VI)

PA(18:3(6Z,9Z,12Z)/5-iso PGF2VI)

C39H65O11P (740.426427)


   

PA(5-iso PGF2VI/18:3(6Z,9Z,12Z))

PA(5-iso PGF2VI/18:3(6Z,9Z,12Z))

C39H65O11P (740.426427)


   

PA(18:3(9Z,12Z,15Z)/5-iso PGF2VI)

PA(18:3(9Z,12Z,15Z)/5-iso PGF2VI)

C39H65O11P (740.426427)


   

PA(5-iso PGF2VI/18:3(9Z,12Z,15Z))

PA(5-iso PGF2VI/18:3(9Z,12Z,15Z))

C39H65O11P (740.426427)


   

PA(18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PA(18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C41H73O9P (740.4991938)


   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/18:0)

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PA(18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C41H73O9P (740.4991938)


   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/18:0)

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:3(5Z,11Z,14Z)-O(8,9))

PA(18:0/20:3(5Z,11Z,14Z)-O(8,9))

C41H73O9P (740.4991938)


   

PA(20:3(5Z,11Z,14Z)-O(8,9)/18:0)

PA(20:3(5Z,11Z,14Z)-O(8,9)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:3(8Z,11Z,14Z)-O(5,6))

PA(18:0/20:3(8Z,11Z,14Z)-O(5,6))

C41H73O9P (740.4991938)


   

PA(20:3(8Z,11Z,14Z)-O(5,6)/18:0)

PA(20:3(8Z,11Z,14Z)-O(5,6)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PA(18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C41H73O9P (740.4991938)


   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:0)

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PA(18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:0)

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PA(18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:0)

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PA(18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C41H73O9P (740.4991938)


   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:0)

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PA(18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/18:0)

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/18:0)

C41H73O9P (740.4991938)


   

PA(18:1(9Z)/20:3(6,8,11)-OH(5))

PA(18:1(9Z)/20:3(6,8,11)-OH(5))

C41H73O9P (740.4991938)


   

PA(20:3(6,8,11)-OH(5)/18:1(9Z))

PA(20:3(6,8,11)-OH(5)/18:1(9Z))

C41H73O9P (740.4991938)


   

PA(20:1(11Z)/18:2(10E,12Z)+=O(9))

PA(20:1(11Z)/18:2(10E,12Z)+=O(9))

C41H73O9P (740.4991938)


   

PA(18:2(10E,12Z)+=O(9)/20:1(11Z))

PA(18:2(10E,12Z)+=O(9)/20:1(11Z))

C41H73O9P (740.4991938)


   

PA(20:1(11Z)/18:2(9Z,11E)+=O(13))

PA(20:1(11Z)/18:2(9Z,11E)+=O(13))

C41H73O9P (740.4991938)


   

PA(18:2(9Z,11E)+=O(13)/20:1(11Z))

PA(18:2(9Z,11E)+=O(13)/20:1(11Z))

C41H73O9P (740.4991938)


   

PA(i-18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PA(i-18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C41H73O9P (740.4991938)


   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/i-18:0)

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PA(i-18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C41H73O9P (740.4991938)


   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/i-18:0)

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:3(5Z,11Z,14Z)-O(8,9))

PA(i-18:0/20:3(5Z,11Z,14Z)-O(8,9))

C41H73O9P (740.4991938)


   

PA(20:3(5Z,11Z,14Z)-O(8,9)/i-18:0)

PA(20:3(5Z,11Z,14Z)-O(8,9)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:3(8Z,11Z,14Z)-O(5,6))

PA(i-18:0/20:3(8Z,11Z,14Z)-O(5,6))

C41H73O9P (740.4991938)


   

PA(20:3(8Z,11Z,14Z)-O(5,6)/i-18:0)

PA(20:3(8Z,11Z,14Z)-O(5,6)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PA(i-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C41H73O9P (740.4991938)


   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-18:0)

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PA(i-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-18:0)

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PA(i-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-18:0)

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PA(i-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C41H73O9P (740.4991938)


   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-18:0)

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PA(i-18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/i-18:0)

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/i-18:0)

C41H73O9P (740.4991938)


   

PA(18:1(11Z)/20:3(6,8,11)-OH(5))

PA(18:1(11Z)/20:3(6,8,11)-OH(5))

C41H73O9P (740.4991938)


   

PA(20:3(6,8,11)-OH(5)/18:1(11Z))

PA(20:3(6,8,11)-OH(5)/18:1(11Z))

C41H73O9P (740.4991938)


   

PA(20:1(11Z)/18:3(10,12,15)-OH(9))

PA(20:1(11Z)/18:3(10,12,15)-OH(9))

C41H73O9P (740.4991938)


   

PA(18:3(10,12,15)-OH(9)/20:1(11Z))

PA(18:3(10,12,15)-OH(9)/20:1(11Z))

C41H73O9P (740.4991938)


   

PA(20:1(11Z)/18:3(9,11,15)-OH(13))

PA(20:1(11Z)/18:3(9,11,15)-OH(13))

C41H73O9P (740.4991938)


   

PA(18:3(9,11,15)-OH(13)/20:1(11Z))

PA(18:3(9,11,15)-OH(13)/20:1(11Z))

C41H73O9P (740.4991938)


   

PA(20:2(11Z,14Z)/18:1(12Z)-O(9S,10R))

PA(20:2(11Z,14Z)/18:1(12Z)-O(9S,10R))

C41H73O9P (740.4991938)


   

PA(18:1(12Z)-O(9S,10R)/20:2(11Z,14Z))

PA(18:1(12Z)-O(9S,10R)/20:2(11Z,14Z))

C41H73O9P (740.4991938)


   

PA(20:2(11Z,14Z)/18:1(9Z)-O(12,13))

PA(20:2(11Z,14Z)/18:1(9Z)-O(12,13))

C41H73O9P (740.4991938)


   

PA(18:1(9Z)-O(12,13)/20:2(11Z,14Z))

PA(18:1(9Z)-O(12,13)/20:2(11Z,14Z))

C41H73O9P (740.4991938)


   

PA(16:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PA(16:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C39H65O11P (740.426427)


   

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:1(9Z))

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:1(9Z))

C39H65O11P (740.426427)


   

Timosaponin A-III

Smilagenin 3-O-beta-D-glucopyranosyl-(1->2)-beta-D-galactopyranoside

C39H64O13 (740.4346694)


A natural product found in Anemarrhena asphodeloides. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

[3-Hydroxy-1-[3-hydroxy-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)decan-5-yl]oxy-1-oxodecan-5-yl] 3,5-dihydroxydecanoate

[3-Hydroxy-1-[3-hydroxy-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)decan-5-yl]oxy-1-oxodecan-5-yl] 3,5-dihydroxydecanoate

C36H68O15 (740.4557978)


   

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1R,2S,4S,6R,7S,8R,9S,12S,13S,16S,18R)-2,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,5-oxane]-16-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1R,2S,4S,6R,7S,8R,9S,12S,13S,16S,18R)-2,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,5-oxane]-16-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-Hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] dodecanoate

[1-Hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] dodecanoate

C37H73O12P (740.4839387999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C41H73O9P (740.4991938)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] tetradecanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] tetradecanoate

C37H73O12P (740.4839387999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (Z)-pentadec-9-enoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C41H73O9P (740.4991938)


   

[1-Dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] hexadecanoate

[1-Dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] hexadecanoate

C37H73O12P (740.4839387999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (Z)-heptadec-9-enoate

C41H73O9P (740.4991938)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] tridecanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] tridecanoate

C37H73O12P (740.4839387999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C41H73O9P (740.4991938)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] decanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] decanoate

C37H73O12P (740.4839387999999)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] heptadecanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] heptadecanoate

C37H73O12P (740.4839387999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] heptadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] heptadecanoate

C41H73O9P (740.4991938)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] pentadecanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] pentadecanoate

C37H73O12P (740.4839387999999)


   

[1-Heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] undecanoate

[1-Heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] undecanoate

C37H73O12P (740.4839387999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (Z)-nonadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (Z)-nonadec-9-enoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] undecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] undecanoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] pentadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] pentadecanoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] tridecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] tridecanoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (Z)-tridec-9-enoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H73O9P (740.4991938)


   

[1-Decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] octadecanoate

[1-Decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] octadecanoate

C37H73O12P (740.4839387999999)


   
   
   

6-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

6-[2,3-bis[[(Z)-hexadec-9-enoyl]oxy]propoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2,3-bis[[(Z)-hexadec-9-enoyl]oxy]propoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

3,4,5-trihydroxy-6-[3-[(Z)-nonadec-9-enoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(Z)-nonadec-9-enoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

6-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

3,4,5-trihydroxy-6-[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-tridecanoyloxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-tridecanoyloxypropoxy]oxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

6-[2-dodecanoyloxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-dodecanoyloxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

3,4,5-trihydroxy-6-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-tetradecanoyloxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-tetradecanoyloxypropoxy]oxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C43H64O10 (740.4499244)


   

[1-[(2-hexadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[(2-hexadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C40H69O10P (740.4628104)


   

[1-[[2-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[[2-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C40H69O10P (740.4628104)


   

[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-octadec-9-enoate

[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-octadec-9-enoate

C40H69O10P (740.4628104)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C40H69O10P (740.4628104)


   

[1-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C40H69O10P (740.4628104)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C40H69O10P (740.4628104)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C40H69O10P (740.4628104)


   

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C40H69O10P (740.4628104)


   

[1-Hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] henicosanoate

[1-Hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] henicosanoate

C36H69O13P (740.4475553999999)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] nonadecanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] nonadecanoate

C36H69O13P (740.4475553999999)


   

[1-Heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] icosanoate

[1-Heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] icosanoate

C36H69O13P (740.4475553999999)


   

[1-Butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tricosanoate

[1-Butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tricosanoate

C36H69O13P (740.4475553999999)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] tetracosanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] tetracosanoate

C36H69O13P (740.4475553999999)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] docosanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] docosanoate

C36H69O13P (740.4475553999999)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] octadecanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] octadecanoate

C36H69O13P (740.4475553999999)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] tetradecanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] tetradecanoate

C36H69O13P (740.4475553999999)


   

[1-Dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentadecanoate

[1-Dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentadecanoate

C36H69O13P (740.4475553999999)


   

[1-Decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] heptadecanoate

[1-Decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] heptadecanoate

C36H69O13P (740.4475553999999)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] hexadecanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] hexadecanoate

C36H69O13P (740.4475553999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C40H69O10P (740.4628104)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (Z)-octadec-9-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (Z)-octadec-9-enoate

C40H69O10P (740.4628104)


   

[1-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C43H65O8P (740.441682)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C43H65O8P (740.441682)


   

[1-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C43H65O8P (740.441682)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

C40H69O10P (740.4628104)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C40H69O10P (740.4628104)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C40H69O10P (740.4628104)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C40H69O10P (740.4628104)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C40H69O10P (740.4628104)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C40H69O10P (740.4628104)


   

[1-Acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentacosanoate

[1-Acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentacosanoate

C36H69O13P (740.4475553999999)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C40H69O10P (740.4628104)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] octadecanoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] octadecanoate

C40H69O10P (740.4628104)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C43H64O10 (740.4499244)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C40H69O10P (740.4628104)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C43H65O8P (740.441682)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (11E,13E,15E)-octadeca-11,13,15-trienoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (11E,13E,15E)-octadeca-11,13,15-trienoate

C40H69O10P (740.4628104)


   

[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] heptadecanoate

[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] heptadecanoate

C36H69O13P (740.4475553999999)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (E)-octadec-11-enoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (E)-octadec-11-enoate

C40H69O10P (740.4628104)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C40H69O10P (740.4628104)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C40H69O10P (740.4628104)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

C43H65O8P (740.441682)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C40H69O10P (740.4628104)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C40H69O10P (740.4628104)


   

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C43H65O8P (740.441682)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C40H69O10P (740.4628104)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C43H65O8P (740.441682)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C40H69O10P (740.4628104)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C40H69O10P (740.4628104)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C40H69O10P (740.4628104)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C40H69O10P (740.4628104)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] hexadecanoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] hexadecanoate

C36H69O13P (740.4475553999999)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C43H65O8P (740.441682)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C40H69O10P (740.4628104)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate

C43H65O8P (740.441682)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C40H69O10P (740.4628104)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C40H69O10P (740.4628104)


   

[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] heptadecanoate

[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] heptadecanoate

C36H69O13P (740.4475553999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C40H69O10P (740.4628104)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C40H69O10P (740.4628104)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C40H69O10P (740.4628104)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] hexadecanoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] hexadecanoate

C36H69O13P (740.4475553999999)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C43H65O8P (740.441682)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (10E,12E)-octadeca-10,12-dienoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (10E,12E)-octadeca-10,12-dienoate

C40H69O10P (740.4628104)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C40H69O10P (740.4628104)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

C43H64O10 (740.4499244)


   

Ys-II

Ys-II

C39H64O13 (740.4346694)


A spirostanyl glycoside that is smilagenin attached to a beta-D-glucopyranosyl-(1->2)-beta-D-galactopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Yucca gloriosa and Yucca guatemalensis, it exhibits antifungal activity.

   
   

1-hexadecyl-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

1-hexadecyl-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C37H73O12P (740.4839387999999)


   

TG(45:12)

TG(22:6_11:2_12:4)

C48H68O6 (740.5015628000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{4,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{4,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-methyl-6-[(1'r,2r,2's,3r,4's,5s,7's,8'r,9's,12's,13'r,16's,18's,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-methyl-6-[(1'r,2r,2's,3r,4's,5s,7's,8'r,9's,12's,13'r,16's,18's,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

2-{[4-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}oxane-3,4,5-triol

2-{[4-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}oxane-3,4,5-triol

C40H68O12 (740.4710528)


   

(2s,3r,4s,5s,6r)-2-{[(2r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,4r,5ar,7r,9as,9br,11ar)-7-(acetyloxy)-3a,3b,6,6,9a-pentamethyl-1-[(2r,4r,5s)-4,5,6-trihydroxy-6-methylheptan-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,4r,5ar,7r,9as,9br,11ar)-7-(acetyloxy)-3a,3b,6,6,9a-pentamethyl-1-[(2r,4r,5s)-4,5,6-trihydroxy-6-methylheptan-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C40H68O12 (740.4710528)


   

2-[(3,5-dihydroxy-2-methyl-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy}oxan-4-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(3,5-dihydroxy-2-methyl-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy}oxan-4-yl)oxy]-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

2-{[7-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-9-[(3,4,5-trihydroxyoxan-2-yl)oxy]-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}oxane-3,4,5-triol

2-{[7-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-9-[(3,4,5-trihydroxyoxan-2-yl)oxy]-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}oxane-3,4,5-triol

C40H68O12 (740.4710528)


   

(22s)-3β,22-dihydroxy-1β-[(α-l-rhamno-pyranosyl)oxy]cholest-5,24-dien-16β-ylβ-d-glucopyranoside

NA

C39H64O13 (740.4346694)


{"Ingredient_id": "HBIN003769","Ingredient_name": "(22s)-3\u03b2,22-dihydroxy-1\u03b2-[(\u03b1-l-rhamno-pyranosyl)oxy]cholest-5,24-dien-16\u03b2-yl\u03b2-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C39H64O13","Ingredient_Smile": "CC1C(C(C(C(O1)OC2CC(CC3=CCC4C(C23C)CCC5(C4CC(C5C(C)C(CC=C(C)C)O)OC6C(C(C(C(O6)CO)O)O)O)C)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "6106","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

3-o-[β-d-glucopyranosyl(1→2)-β-d-gluco-pyranosyl]-(25s)-5β-spirostan-3β-ol

NA

C39H64O13 (740.4346694)


{"Ingredient_id": "HBIN009166","Ingredient_name": "3-o-[\u03b2-d-glucopyranosyl(1\u21922)-\u03b2-d-gluco-pyranosyl]-(25s)-5\u03b2-spirostan-3\u03b2-ol","Alias": "NA","Ingredient_formula": "C39H64O13","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "8655","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

asparanin a

NA

C39H64O13 (740.4346694)


{"Ingredient_id": "HBIN017104","Ingredient_name": "asparanin a","Alias": "NA","Ingredient_formula": "C39H64O13","Ingredient_Smile": "CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CCC6C5(CCC(C6)OC7C(C(C(C(O7)CO)O)O)OC8C(C(C(C(O8)CO)O)O)O)C)C)C)OC1","Ingredient_weight": "740.9 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1868","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "44583984","DrugBank_id": "NA"}

   

(3s,6r,7s,10s,13s,16s,21as)-16-benzyl-3-[(2s)-butan-2-yl]-8-hydroxy-10,13-diisopropyl-2,7,12-trimethyl-6-pentyl-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

(3s,6r,7s,10s,13s,16s,21as)-16-benzyl-3-[(2s)-butan-2-yl]-8-hydroxy-10,13-diisopropyl-2,7,12-trimethyl-6-pentyl-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C41H64N4O8 (740.4723904)


   

(3s,6s,7r,10s,13s,16s,21as)-16-benzyl-13-[(2s)-butan-2-yl]-8-hydroxy-3,10-diisopropyl-2,7,12-trimethyl-6-pentyl-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

(3s,6s,7r,10s,13s,16s,21as)-16-benzyl-13-[(2s)-butan-2-yl]-8-hydroxy-3,10-diisopropyl-2,7,12-trimethyl-6-pentyl-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C41H64N4O8 (740.4723904)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-methyl-6-[(1'r,2s,2's,3r,4's,5s,7's,8'r,9's,12's,13'r,16's,18's,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-methyl-6-[(1'r,2s,2's,3r,4's,5s,7's,8'r,9's,12's,13'r,16's,18's,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

16-benzyl-8-hydroxy-3,10-diisopropyl-2,7,12-trimethyl-6-pentyl-13-(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

16-benzyl-8-hydroxy-3,10-diisopropyl-2,7,12-trimethyl-6-pentyl-13-(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C41H64N4O8 (740.4723904)


   

(s)-amino[(1s,7s,10r,11s,14r,23s,24r,26r,31r,32s,33r,34r,35s)-11,34-dihydroxy-11,23,24,35-tetramethyl-16-methylidene-37,38,39,40,41-pentaoxa-21-azaoctacyclo[30.4.1.1¹,³³.1³,⁷.1⁷,¹⁰.1¹⁰,¹⁴.0²⁰,²⁶.0²⁶,³¹]hentetraconta-20,29-dien-29-yl]acetic acid

(s)-amino[(1s,7s,10r,11s,14r,23s,24r,26r,31r,32s,33r,34r,35s)-11,34-dihydroxy-11,23,24,35-tetramethyl-16-methylidene-37,38,39,40,41-pentaoxa-21-azaoctacyclo[30.4.1.1¹,³³.1³,⁷.1⁷,¹⁰.1¹⁰,¹⁴.0²⁰,²⁶.0²⁶,³¹]hentetraconta-20,29-dien-29-yl]acetic acid

C42H64N2O9 (740.4611574)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2s,2's,4s,4's,7's,8'r,9's,12's,13's,16's,18'r)-4,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2s,2's,4s,4's,7's,8'r,9's,12's,13's,16's,18'r)-4,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5s)-2-{[(3r,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-7-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-9-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5s)-2-{[(3r,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-7-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-9-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}oxane-3,4,5-triol

C40H68O12 (740.4710528)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

amino({11,34-dihydroxy-11,23,24,35-tetramethyl-16-methylidene-37,38,39,40,41-pentaoxa-21-azaoctacyclo[30.4.1.1¹,³³.1³,⁷.1⁷,¹⁰.1¹⁰,¹⁴.0²⁰,²⁶.0²⁶,³¹]hentetraconta-20,29-dien-29-yl})acetic acid

amino({11,34-dihydroxy-11,23,24,35-tetramethyl-16-methylidene-37,38,39,40,41-pentaoxa-21-azaoctacyclo[30.4.1.1¹,³³.1³,⁷.1⁷,¹⁰.1¹⁰,¹⁴.0²⁰,²⁶.0²⁶,³¹]hentetraconta-20,29-dien-29-yl})acetic acid

C42H64N2O9 (740.4611574)


   

(2r,3r,4r,5s)-2-{[(3r,3as,4s,5as,5br,7r,7as,9s,11as,11bs,13as,13bs)-4-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-7-{[(2r,3s,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}oxane-3,4,5-triol

(2r,3r,4r,5s)-2-{[(3r,3as,4s,5as,5br,7r,7as,9s,11as,11bs,13as,13bs)-4-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-7-{[(2r,3s,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}oxane-3,4,5-triol

C40H68O12 (740.4710528)


   

(2s,3r,4r,5r)-2-{[(3r,3ar,4r,5ar,5br,7s,7as,9s,11ar,11bs,13ar,13br)-7-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-4-{[(2s,3s,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}oxane-3,4,5-triol

(2s,3r,4r,5r)-2-{[(3r,3ar,4r,5ar,5br,7s,7as,9s,11ar,11bs,13ar,13br)-7-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-4-{[(2s,3s,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}oxane-3,4,5-triol

C40H68O12 (740.4710528)


   

(3r,4s,5r,6r)-2-{[(3r,4s,5r)-2-{[(1r,3as,3bs,4r,6r,7s,8r,9ar,9bs,11ar)-4,7,8-trihydroxy-9a,11a-dimethyl-1-[(2r)-6-methyl-5-methylideneheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-6-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(3r,4s,5r,6r)-2-{[(3r,4s,5r)-2-{[(1r,3as,3bs,4r,6r,7s,8r,9ar,9bs,11ar)-4,7,8-trihydroxy-9a,11a-dimethyl-1-[(2r)-6-methyl-5-methylideneheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-6-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(4's,5s,7's,8'r,9's,13's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(4's,5s,7's,8'r,9's,13's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4'r,5s,7's,8's,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4'r,5s,7's,8's,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

2-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-(3-hydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

2-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-(3-hydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C39H64O13 (740.4346694)


   

(1r,2s,3as,3br,9ar,9bs,11s,11as)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11-hydroxy-9a,11a-dimethyl-1-[(2r)-6-methylheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1r,2s,3as,3br,9ar,9bs,11s,11as)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11-hydroxy-9a,11a-dimethyl-1-[(2r)-6-methylheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C39H64O13 (740.4346694)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16'r,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16'r,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

9-(1-hydroxyethyl)-6-(1h-indol-3-ylmethyl)-18-isopropyl-12-methyl-3,15-bis(2-methylpropyl)-1,4,7,10,13,16,19-heptaazacyclohenicosa-1,4,7,10,13,16,19-heptaene-2,5,8,11,14,17,20-heptol

9-(1-hydroxyethyl)-6-(1h-indol-3-ylmethyl)-18-isopropyl-12-methyl-3,15-bis(2-methylpropyl)-1,4,7,10,13,16,19-heptaazacyclohenicosa-1,4,7,10,13,16,19-heptaene-2,5,8,11,14,17,20-heptol

C37H56N8O8 (740.4220896)


   

(2s,3s,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-methyl-6-[(1'r,2s,2's,3s,4's,5r,7's,8'r,9's,12's,13'r,16's,18's,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3s,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-methyl-6-[(1'r,2s,2's,3s,4's,5r,7's,8'r,9's,12's,13'r,16's,18's,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2r,3r,4s,5s,6r)-2-{[(1r,2s,3as,3bs,7r,9r,9ar,9bs,11as)-7-hydroxy-1-[(2s,3s)-3-hydroxy-6-methylhept-5-en-2-yl]-9a,11a-dimethyl-9-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,2s,3as,3bs,7r,9r,9ar,9bs,11as)-7-hydroxy-1-[(2s,3s)-3-hydroxy-6-methylhept-5-en-2-yl]-9a,11a-dimethyl-9-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(1r,2s,3as,3bs,9ar,9bs,11as)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s,3s)-3-hydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1r,2s,3as,3bs,9ar,9bs,11as)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s,3s)-3-hydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C39H64O13 (740.4346694)


   

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2r,3r,4s,5s,6r)-2-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5s,6r)-2-[(2-{7,11-dihydroxy-3a,3b,6,6-tetramethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-6-methylhept-5-en-2-yl)oxy]-6-({[(2r,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-[(2-{7,11-dihydroxy-3a,3b,6,6-tetramethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-6-methylhept-5-en-2-yl)oxy]-6-({[(2r,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C40H68O12 (740.4710528)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-methyl-6-[(1'r,2s,2's,3s,4's,5r,7's,8'r,9's,12's,13'r,16's,18's,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-methyl-6-[(1'r,2s,2's,3s,4's,5r,7's,8'r,9's,12's,13'r,16's,18's,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(3s,6s,7r,10s,13s,16s,21as)-13-benzyl-3-[(2s)-butan-2-yl]-8-hydroxy-10,16-diisopropyl-2,7,12-trimethyl-6-pentyl-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

(3s,6s,7r,10s,13s,16s,21as)-13-benzyl-3-[(2s)-butan-2-yl]-8-hydroxy-10,16-diisopropyl-2,7,12-trimethyl-6-pentyl-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C41H64N4O8 (740.4723904)


   

(9'z,21'e)-3',14',15',17',19',20'-hexahydroxy-6-(2-hydroxybutyl)-5,6',14',18',20',29'-hexamethyl-4',24',28'-trioxaspiro[oxane-2,27'-tricyclo[23.3.1.0³,⁸]nonacosane]-9',21'-dien-23'-one

(9'z,21'e)-3',14',15',17',19',20'-hexahydroxy-6-(2-hydroxybutyl)-5,6',14',18',20',29'-hexamethyl-4',24',28'-trioxaspiro[oxane-2,27'-tricyclo[23.3.1.0³,⁸]nonacosane]-9',21'-dien-23'-one

C40H68O12 (740.4710528)


   

2-[(3,5-dihydroxy-2-{[6-hydroxy-6-(4-hydroxy-3-methylbutyl)-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-6-(hydroxymethyl)oxan-4-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(3,5-dihydroxy-2-{[6-hydroxy-6-(4-hydroxy-3-methylbutyl)-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-6-(hydroxymethyl)oxan-4-yl)oxy]-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5r,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5r,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,6r,7s,8r,9s,12s,13r,16s)-6-hydroxy-6-[(3r)-4-hydroxy-3-methylbutyl]-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-6-(hydroxymethyl)oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,6r,7s,8r,9s,12s,13r,16s)-6-hydroxy-6-[(3r)-4-hydroxy-3-methylbutyl]-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-6-(hydroxymethyl)oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5r)-2-{[(2s,3r,4s,5r)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-7,9-dihydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}-3,5-dihydroxyoxan-4-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(2s,3r,4s,5r)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-7,9-dihydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}-3,5-dihydroxyoxan-4-yl]oxy}oxane-3,4,5-triol

C40H68O12 (740.4710528)


   

(1'r,2r,3'r,5s,6s,6's,8's,9'z,14'r,15'r,17'r,18'r,19'r,20's,21'e,25'r,29'r)-3',14',15',17',19',20'-hexahydroxy-6-[(2r)-2-hydroxybutyl]-5,6',14',18',20',29'-hexamethyl-4',24',28'-trioxaspiro[oxane-2,27'-tricyclo[23.3.1.0³,⁸]nonacosane]-9',21'-dien-23'-one

(1'r,2r,3'r,5s,6s,6's,8's,9'z,14'r,15'r,17'r,18'r,19'r,20's,21'e,25'r,29'r)-3',14',15',17',19',20'-hexahydroxy-6-[(2r)-2-hydroxybutyl]-5,6',14',18',20',29'-hexamethyl-4',24',28'-trioxaspiro[oxane-2,27'-tricyclo[23.3.1.0³,⁸]nonacosane]-9',21'-dien-23'-one

C40H68O12 (740.4710528)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-methyl-6-[(1'r,2r,2's,3s,4's,5s,7's,8'r,9's,12's,13'r,16's,18's,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-methyl-6-[(1'r,2r,2's,3s,4's,5s,7's,8'r,9's,12's,13'r,16's,18's,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-methyl-6-[(1'r,2r,2's,3s,4's,5r,7's,8'r,9's,12's,13'r,16's,18's,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-methyl-6-[(1'r,2r,2's,3s,4's,5r,7's,8'r,9's,12's,13'r,16's,18's,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,16'-dioloxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s)-2-[(2-{[(2s)-2-{[(2s)-2-{[(2s)-2-{[(2s)-2-{[(2s)-2-{[(2s)-2-amino-1-hydroxy-3-methylbutylidene]amino}-1-hydroxypropylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyethylidene)amino]propanoic acid

(2s)-2-[(2-{[(2s)-2-{[(2s)-2-{[(2s)-2-{[(2s)-2-{[(2s)-2-{[(2s)-2-amino-1-hydroxy-3-methylbutylidene]amino}-1-hydroxypropylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyethylidene)amino]propanoic acid

C35H64N8O9 (740.4796014000001)


   

(3s,6s,9s,12s,15s,18s)-9-[(1r)-1-hydroxyethyl]-6-(1h-indol-3-ylmethyl)-18-isopropyl-12-methyl-3,15-bis(2-methylpropyl)-1,4,7,10,13,16,19-heptaazacyclohenicosa-1,4,7,10,13,16,19-heptaene-2,5,8,11,14,17,20-heptol

(3s,6s,9s,12s,15s,18s)-9-[(1r)-1-hydroxyethyl]-6-(1h-indol-3-ylmethyl)-18-isopropyl-12-methyl-3,15-bis(2-methylpropyl)-1,4,7,10,13,16,19-heptaazacyclohenicosa-1,4,7,10,13,16,19-heptaene-2,5,8,11,14,17,20-heptol

C37H56N8O8 (740.4220896)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's,18'r,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-19'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's,18'r,19's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-19'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(r)-amino[(1r,3r,7r,10r,11r,14s,23r,24s,26r,31s,32s,33r,34r,35r)-11,34-dihydroxy-11,23,24,35-tetramethyl-16-methylidene-37,38,39,40,41-pentaoxa-21-azaoctacyclo[30.4.1.1¹,³³.1³,⁷.1⁷,¹⁰.1¹⁰,¹⁴.0²⁰,²⁶.0²⁶,³¹]hentetraconta-20,29-dien-29-yl]acetic acid

(r)-amino[(1r,3r,7r,10r,11r,14s,23r,24s,26r,31s,32s,33r,34r,35r)-11,34-dihydroxy-11,23,24,35-tetramethyl-16-methylidene-37,38,39,40,41-pentaoxa-21-azaoctacyclo[30.4.1.1¹,³³.1³,⁷.1⁷,¹⁰.1¹⁰,¹⁴.0²⁰,²⁶.0²⁶,³¹]hentetraconta-20,29-dien-29-yl]acetic acid

C42H64N2O9 (740.4611574)


   

1-{5-[({4-hydroxy-3-[(4-hydroxy-3,5-dimethoxyoxan-2-yl)oxy]-5-(hydroxymethyl)oxolan-2-yl}oxy)methyl]-6-methylhept-3-en-2-yl}-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,7-triol

1-{5-[({4-hydroxy-3-[(4-hydroxy-3,5-dimethoxyoxan-2-yl)oxy]-5-(hydroxymethyl)oxolan-2-yl}oxy)methyl]-6-methylhept-3-en-2-yl}-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,7-triol

C40H68O12 (740.4710528)


   

5,11,17,23-tetrahydroxy-3,6,9,15,18,21-hexaisopropyl-12,24-dimethyl-1,7,13,19-tetraoxa-4,10,16,22-tetraazacyclotetracosa-4,10,16,22-tetraene-2,8,14,20-tetrone

5,11,17,23-tetrahydroxy-3,6,9,15,18,21-hexaisopropyl-12,24-dimethyl-1,7,13,19-tetraoxa-4,10,16,22-tetraazacyclotetracosa-4,10,16,22-tetraene-2,8,14,20-tetrone

C36H60N4O12 (740.420752)


   

2-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-1-(3,7-dihydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

2-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-1-(3,7-dihydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C39H64O13 (740.4346694)


   

(2s,3r,4s,5r)-2-{[(2s,3r,4s,5s)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-7,9-dihydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}-3,5-dihydroxyoxan-4-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(2s,3r,4s,5s)-2-{[(3s,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-7,9-dihydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}-3,5-dihydroxyoxan-4-yl]oxy}oxane-3,4,5-triol

C40H68O12 (740.4710528)


   

2-[(2-{[7,9-dihydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}-3,5-dihydroxyoxan-4-yl)oxy]oxane-3,4,5-triol

2-[(2-{[7,9-dihydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-4-yl]oxy}-3,5-dihydroxyoxan-4-yl)oxy]oxane-3,4,5-triol

C40H68O12 (740.4710528)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(2'r,9's,13's,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(2'r,9's,13's,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(s)-amino[(1r,3r,7r,10r,11r,14s,23r,24s,26r,31s,32s,33r,34r,35r)-11,34-dihydroxy-11,23,24,35-tetramethyl-16-methylidene-37,38,39,40,41-pentaoxa-21-azaoctacyclo[30.4.1.1¹,³³.1³,⁷.1⁷,¹⁰.1¹⁰,¹⁴.0²⁰,²⁶.0²⁶,³¹]hentetraconta-20,29-dien-29-yl]acetic acid

(s)-amino[(1r,3r,7r,10r,11r,14s,23r,24s,26r,31s,32s,33r,34r,35r)-11,34-dihydroxy-11,23,24,35-tetramethyl-16-methylidene-37,38,39,40,41-pentaoxa-21-azaoctacyclo[30.4.1.1¹,³³.1³,⁷.1⁷,¹⁰.1¹⁰,¹⁴.0²⁰,²⁶.0²⁶,³¹]hentetraconta-20,29-dien-29-yl]acetic acid

C42H64N2O9 (740.4611574)


   

(1r,2s,3as,3bs,9ar,9bs,11as)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s,3s,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1r,2s,3as,3bs,9ar,9bs,11as)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s,3s,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C39H64O13 (740.4346694)


   

2-{[7-hydroxy-1-(3-hydroxy-6-methylhept-5-en-2-yl)-9a,11a-dimethyl-9-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[7-hydroxy-1-(3-hydroxy-6-methylhept-5-en-2-yl)-9a,11a-dimethyl-9-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

7-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-(1-hydroxy-5-methylhex-4-en-1-yl)-3a,3b-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde

7-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-(1-hydroxy-5-methylhex-4-en-1-yl)-3a,3b-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde

C39H64O13 (740.4346694)


   

(2s,3r,4s,5r,6r)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9'r,12's,13's,16's,18's)-2',5,7',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5r,6r)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9'r,12's,13's,16's,18's)-2',5,7',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-19'-oloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-19'-oloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5r)-2-{[(3r,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-4-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-7-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(3r,3as,4s,5ar,5br,7s,7ar,9s,11ar,11br,13ar,13br)-4-hydroxy-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-7-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}oxane-3,4,5-triol

C40H68O12 (740.4710528)


   

16-benzyl-8-hydroxy-10,13-diisopropyl-2,7,12-trimethyl-6-pentyl-3-(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

16-benzyl-8-hydroxy-10,13-diisopropyl-2,7,12-trimethyl-6-pentyl-3-(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C41H64N4O8 (740.4723904)


   

(1r,3r,3as,3br,5s,5as,7s,9ar,9bs,11ar)-1-[(2r,3e,5r)-5-({[(2r,3r,4s,5s)-4-hydroxy-3-{[(2s,3r,4s,5r)-4-hydroxy-3,5-dimethoxyoxan-2-yl]oxy}-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,7-triol

(1r,3r,3as,3br,5s,5as,7s,9ar,9bs,11ar)-1-[(2r,3e,5r)-5-({[(2r,3r,4s,5s)-4-hydroxy-3-{[(2s,3r,4s,5r)-4-hydroxy-3,5-dimethoxyoxan-2-yl]oxy}-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,7-triol

C40H68O12 (740.4710528)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4s,5r,6r)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4s,5r,6r)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

13-benzyl-8-hydroxy-10,16-diisopropyl-2,7,12-trimethyl-6-pentyl-3-(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

13-benzyl-8-hydroxy-10,16-diisopropyl-2,7,12-trimethyl-6-pentyl-3-(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C41H64N4O8 (740.4723904)


   

(3s,10s,13s,16s,21as)-13-benzyl-8-hydroxy-10,16-diisopropyl-2,7,12-trimethyl-6-pentyl-3-(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

(3s,10s,13s,16s,21as)-13-benzyl-8-hydroxy-10,16-diisopropyl-2,7,12-trimethyl-6-pentyl-3-(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C41H64N4O8 (740.4723904)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)


   

2-[(2-{[2-({2-[(2-{[2-({2-[(2-amino-1-hydroxy-3-methylbutylidene)amino]-1-hydroxypropylidene}amino)-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-4-methylpentylidene)amino]-1-hydroxy-3-methylbutylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyethylidene)amino]propanoic acid

2-[(2-{[2-({2-[(2-{[2-({2-[(2-amino-1-hydroxy-3-methylbutylidene)amino]-1-hydroxypropylidene}amino)-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-4-methylpentylidene)amino]-1-hydroxy-3-methylbutylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyethylidene)amino]propanoic acid

C35H64N8O9 (740.4796014000001)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,15'r,16'r,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,15'r,16'r,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H64O13 (740.4346694)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4346694)