Exact Mass: 74.9455538

Exact Mass Matches: 74.9455538

Found 15 metabolites which its exact mass value is equals to given mass value 74.9455538, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Arsenic

Arsenic elemental

As (74.921596)


Arsenic(As) is a ubiquitous metalloid found in several forms in food and the environment, such as the soil, air and water. Physiologically, it exists as an ion in the body. The predominant form is inorganic arsenic in drinking water, which is both highly toxic and carcinogenic and rapidly bioavailable. Arsenic is currently one of the most important environmental global contaminants and toxicants, particularly in the developing countries. For decades, very large populations have been and are currently still exposed to inorganic Arsenic through geogenically contaminated drinking water. An increased incidence of disease mediated by this toxicant is the consequence of long-term exposure. In humans chronic ingestion of inorganic arsenic (> 500 mg/L As) has been associated with cardiovascular, nervous, hepatic and renal diseases and diabetes mellitus as well as cancer of the skin, bladder, lung, liver and prostate. Contrary to the earlier view that methylated compounds are innocuous, the methylated metabolites are now recognized to be both toxic and carcinogenic, possibly due to genotoxicity, inhibition of antioxidative enzyme functions, or other mechanisms. Arsenic inhibits indirectly sulfhydryl containing enzymes and interferes with cellular metabolism. Effects involve such phenomena as cytotoxicity, genotoxicity and inhibition of enzymes with antioxidant function. These are all related to nutritional factors directly or indirectly. Nutritional studies both in experimental and epidemiological studies provide convincing evidence that nutritional intervention, including chemoprevention, offers a pragmatic approach to mitigate the health effects of arsenic exposure, particularly cancer, in the relatively resource-poor developing countries. Nutritional intervention, especially with micronutrients, many of which are antioxidants and share the same pathway with Arsenic , appears a host defence against the health effects of arsenic contamination in developing countries and should be embraced as it is pragmatic and inexpensive. (PMID: 17477765, 17179408). Arsenic(As) is a ubiquitous metalloid found in several forms in food and the environment, such as the soil, air and water. Physiologically, it exists as an ion in the body. The predominant form is inorganic arsenic in drinking water, which is both highly toxic and carcinogenic and rapidly bioavailable. Arsenic is currently one of the most important environmental global contaminants and toxicants, particularly in the developing countries. For decades, very large populations have been and are currently still exposed to inorganic Arsenic through geogenically contaminated drinking water. An increased incidence of disease mediated by this toxicant is the consequence of long-term exposure. In humans chronic ingestion of inorganic arsenic (> 500 mg/L As) has been associated with cardiovascular, nervous, hepatic and renal diseases and diabetes mellitus as well as cancer of the skin, bladder, lung, liver and prostate. Contrary to the earlier view that methylated compounds are innocuous, the methylated metabolites are now recognized to be both toxic and carcinogenic, possibly due to genotoxicity, inhibition of antioxidative enzyme functions, or other mechanisms. Arsenic inhibits indirectly sulfhydryl containing enzymes and interferes with cellular metabolism. Effects involve such phenomena as cytotoxicity, genotoxicity and inhibition of enzymes with antioxidant function. These are all related to nutritional factors directly or indirectly. Nutritional studies both in experimental and epidemiological studies provide convincing evidence that nutritional intervention, including chemoprevention, offers a pragmatic approach to mitigate the health effects of arsenic exposure, particularly cancer, in the relatively resource-poor developing countries. Nutritional intervention, especially with micronutrients, many of which are antioxidants and share the same pathway with Arsenic , appears a host defence against the health effects of arsenic contamination in developing countries and should be embraced as it is pragmatic and inexpensive. (PMID: 17477765, 17179408)

   

Chloroacetonitrile

2-chloroacetonitrile

C2H2ClN (74.9875762)


   

arsenic(5+)

arsenic(5+)

As+5 (74.921596)


   

Arsenic(3+) ion

Arsenic Cation (3+)

As+3 (74.921596)


   

Hypothiocyanite

N,6-didehydro-3,6-dihydro-3-Methyl-adenosine

CHNOS (74.9778856)


As it is an organic compound, hypothiocyanite occurs naturally in the antimicrobial immune system of the human respiratory tract in a redox reaction catalyzed by the enzyme lactoperoxidase. It has been researched extensively for its capabilities as an alternative antibiotic as it is harmless to human body cells while being cytotoxic to bacteria. Of late, the exact processes for making hypothiocyanite have been patented as such an effective antimicrobial has many commercial applications. Whether or not this antimicrobial compound comprises the entirety of the immune system of the respiratory tract remains to be seen.; Hypothiocyanite is the anion [OSCN]- and the conjugate base of hypothiocyanous acid. It is an organic compound part of the thiocyanates as it contains the functional group SCN. It is formed when an oxygen is singly bonded to the thiocyanate group. Hypothiocyanous acid (HOSCN) is a fairly weak acid as its acid dissociation constant is 5.3 [HMDB] As it is an organic compound, hypothiocyanite occurs naturally in the antimicrobial immune system of the human respiratory tract in a redox reaction catalyzed by the enzyme lactoperoxidase. It has been researched extensively for its capabilities as an alternative antibiotic as it is harmless to human body cells while being cytotoxic to bacteria. Of late, the exact processes for making hypothiocyanite have been patented as such an effective antimicrobial has many commercial applications. Whether or not this antimicrobial compound comprises the entirety of the immune system of the respiratory tract remains to be seen. Hypothiocyanite is the anion [OSCN]- and the conjugate base of hypothiocyanous acid. It is an organic compound part of the thiocyanates as it contains the functional group SCN. It is formed when an oxygen is singly bonded to the thiocyanate group. Hypothiocyanous acid (HOSCN) is a fairly weak acid as its acid dissociation constant is 5.3. D000890 - Anti-Infective Agents

   
   

Cobalt oxide

Cobalt oxide

CoO (74.928113)


   
   
   

CID 155926124

CID 155926124

As (74.921596)


   

Arsenic-75(5+)

Arsenic-75(5+)

As+5 (74.921596)


   

Arsenic-75(3+)

Arsenic-75(3+)

As+3 (74.921596)


   

Arsenic

Arsenic

As (74.921596)


   

Arsenic Cation (3+)

Arsenic Cation (3+)

As+3 (74.921596)


   

hypothiocyanous acid

hypothiocyanous acid

CHNOS (74.9778856)


A sulfur oxoacid that is sulfenic acid in which the hydrogen attached to the sulfur has been replaced by a cyano group.