Exact Mass: 73.0565

Exact Mass Matches: 73.0565

Found 41 metabolites which its exact mass value is equals to given mass value 73.0565, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

N,N-Dimethylformamide

Dimethylamid kyseliny mravenci

C3H7NO (73.0528)


Dimethylformamide is a polar (hydrophilic) Aprotic solvent with a high boiling point. It facilitates reactions that follow polar mechanisms, such as SN2 reactions. Dimethylformamide can be synthesized from methyl formate and dimethyl amine or reaction of dimethyl amine and carbon monoxide. Dimethylformamide is not stable in the presence of strong bases like sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid and is hydrolyzed back into formic acid and dimethylamine, especially at elevated temperatures.; Dimethylformamide is the organic compound with the formula (CH3)2NC(O)H. Commonly abbreviated DMF (though this acronym is sometimes used for dimethylfuran), this colourless liquid is miscible with water and the majority of organic liquids. DMF is a common solvent for chemical reactions. Pure dimethylformamide is odorless whereas technical grade or degraded dimethylformamide often has a fishy smell due to impurity of dimethylamine. Its name is derived from the fact that it is a derivative of formamide, the amide of formic acid.; N,N-Dimethylformamide (DMF) is a clear liquid that has been widely used in industries as a solvent, an additive, or an intermediate because of its extensive miscibility with water and most common organic solvents. Its health effects include hepatotoxicity and male reproductoxicity, possibly linked with mitochondrial DNA (mtDNA) alterations including mtDNA common deletion (delta-mtDNA4977) and mtDNA copy number; during the biotransformation of DMF in the body, free radicals are formed, including hydroxyl radicals.; The world-wide consumption of DMF in 2001 was approximately 285,000 metric tonnes and most of that was used as an industrial solvent. Overexposure to DMF could result in hepatotoxicity, alcohol intolerance, possible embryotoxicity and teratogenicity in humans and animals, and decline of human sperm motility. Based on its wide application and a wide range of toxic effects, DMF has been selected as one of the four priority compounds for human field studies by the National Toxicology Program (NTP) of the US National Institute of Environmental Health Sciences (NIEHS). The current permissible exposure limit for DMF in the working environment is 10 ppm in both USA and Taiwan. The concentrations of two major DMF metabolites in urine, N-methylformamide (U-NMF) of 15 mg/L and N-acetyl-S-(N-methylcarbamoyl) cysteine (U-AMCC) of 40 mg/L, were recommended as the biological exposure indices (BEIs) by the American Conference of Governmental Industrial Hygienists for DMF exposure in workplace. (PMID: 17254560). N,N-Dimethylformamide is found in papaya. N,N-Dimethylformamide (DMF) is a clear liquid that has been widely used in industries as a solvent, an additive, or an intermediate because of its extensive miscibility with water and most common organic solvents. Its health effects include hepatotoxicity and male reproductoxicity, possibly linked with mitochondrial DNA (mtDNA) alterations including mtDNA common deletion (delta-mtDNA4977) and mtDNA copy number; during the biotransformation of DMF in the body, free radicals are formed, including hydroxyl radicals. The world-wide consumption of DMF in 2001 was approximately 285,000 metric tonnes and most of that was used as an industrial solvent. Overexposure to DMF could result in hepatotoxicity, alcohol intolerance, possible embryotoxicity and teratogenicity in humans and animals, and decline of human sperm motility. Based on its wide application and a wide range of toxic effects, DMF has been selected as one of the four priority compounds for human field studies by the National Toxicology Program (NTP) of the US National Institute of Environmental Health Sciences (NIEHS). The current permissible exposure limit for DMF in the working environment is 10 ppm in both USA and Taiwan. The concentrations of two major DMF metabolites in urine, N-methylformamide (U-NMF) of 15 mg/L and N-acetyl-S-(N-methylcarbamoyl) cysteine (U-AMCC) of 40 mg/L, were recommended as the biological exposure indices (BEIs) by the American Conference of Governmental Industrial Hygienists for DMF exposure in workplace. (PMID: 17254560). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

1-Methylguanidine

1-Methylguanidine hydrochloride

C2H7N3 (73.064)


Methylguanidine (MG) is a guanidine in which one of the amino hydrogens of guanidine itself is substituted by a methyl group. Methylguanidine is a guanidine compound deriving from protein catabolism. It is also a product of putrefaction. Methylguanidine has a role as a metabolite, an EC 1.14.13.39 (nitric oxide synthase) inhibitor and as a uremic toxin. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It accumulates in renal failure, however it also exhibits anti-inflammatory effects. Methylguanidine is synthesized from creatinine concomitant with the synthesis of hydrogen peroxide from endogenous substrates in peroxisomes. Recent evidence suggests that methylguanidine significantly inhibits iNOS activity and TNF- release. This means that methylguandine can attenuate the degree of inflammation and tissue damage associated with endotoxic shock. Methylguanidine (MG) is a guanidine compound deriving from protein catabolism. It is also a product of putrefaction. Methylguanidine is a suspected uraemic toxin that accumulates in renal failure, however it also exhibits anti-inflammatory effects. Methylguanidine is synthesized from creatinine concomitant with the synthesis of hydrogen peroxide from endogenous substrates in peroxisomes. Recent evidence suggests that methylguanidine significantly inhibits iNOS activity and TNF- release. This means that methylguandine can attenuate the degree of inflammation and tissue damage associated with endotoxic shock. Methylguanidine is found in loquat and apple. Methylguanidine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=471-29-4 (retrieved 2024-07-16) (CAS RN: 471-29-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Aminoacetone

1-amino-(8CI,9ci)-2-propanone

C3H7NO (73.0528)


Threonine dehydrogenase catalyzes the oxidation of threonine by NAD+ to glycine and acetyl-CoA, but when the ratio acetyl-CoA/CoA increases in nutritional deprivation (e.g., in diabetes) the enzyme produces aminoacetone (Chem. Res. Toxicol., 14 (9), 1323 -1329, 2001). Aminoacetone is thought to be a substrate for SSAO (semicarbazide-sensitive amine oxidase), leading to the production of the toxic product methylglyoxal (Journal of Chromatography B. Volume 824, Issues 1-2 , 25 September 2005, Pages 116-122 ). Threonine dehydrogenase catalyzes the oxidation of threonine by NAD+ to glycine and acetyl-CoA (5), but when the ratio acetyl-CoA/CoA increases in nutritional deprivation (e.g., in diabetes) the enzyme produces AA. (Chem. Res. Toxicol., 14 (9), 1323 -1329, 2001);

   

3-Aminopropionaldehyde

beta-Aminopropion aldehyde

C3H7NO (73.0528)


3-aminopropionaldehyde is a member of the class of compounds known as alpha-hydrogen aldehydes. Alpha-hydrogen aldehydes are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. 3-aminopropionaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-aminopropionaldehyde can be found in a number of food items such as lemon, natal plum, common wheat, and leek, which makes 3-aminopropionaldehyde a potential biomarker for the consumption of these food products. 3-aminopropionaldehyde exists in all living organisms, ranging from bacteria to humans. In humans, 3-aminopropionaldehyde is involved in the beta-alanine metabolism. 3-aminopropionaldehyde is also involved in few metabolic disorders, which include carnosinuria, carnosinemia, gaba-transaminase deficiency, and ureidopropionase deficiency. 3-Aminopropanal is a reactive aldehyde that mediates progressive neuronal necrosis and glial apoptosis. (PMID 11943872). Increased activity of polyamine oxidase catabolizes polyamines (such as spermine, spermidine and putrescine) to produce 3-aminopropanal. (PMID 15246852).

   

Acetone oxime

N-(propan-2-ylidene)hydroxylamine

C3H7NO (73.0528)


   

1-Aminocyclopropanol

1-Aminocyclopropanol hydrochloride

C3H7NO (73.0528)


   

Propanal, 2-amino-

Propanal, 2-amino-

C3H7NO (73.0528)


   

3,3-Dimethyltriaz-1-ene

3,3-Dimethyltriaz-1-ene

C2H7N3 (73.064)


   

Methyl acetimidate

Methyl acetimidate hydrochloride

C3H7NO (73.0528)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007096 - Imidoesters

   

N-METHYLACETAMIDE

N-Methylacetamide sodium salt

C3H7NO (73.0528)


   

Oxazolidine

1,3-Oxazolidine

C3H7NO (73.0528)


   

Tert-Butoxy

tert-butyloxidanyl

C4H9O (73.0653)


   

N,N-DIMETHYLFORMAMIDE

N,N-dibutyl formammide

C3H7NO (73.0528)


   

Propanal, oxime

Propanal, oxime

C3H7NO (73.0528)


   

METHYLGUANIDINE

N-methylguanidine

C2H7N3 (73.064)


A guanidine in which one of the amino hydrogens of guanidine itself is substituted by a methyl group.

   

METHYLGUANDINE

METHYLGUANDINE

C2H7N3 (73.064)


   

1-METHYLGUANIDINE

1-METHYLGUANIDINE

C2H7N3 (73.064)


   

N-Methylacetamide

N-Methylacetamide

C3H7NO (73.0528)


A monocarboxylic acid amide that is the N-methyl derivative of acetamide.

   

N,N-di(methyl)formamide

N,N-di(methyl)formamide

C3H7NO (73.0528)


   

N-Ethylformamide

N-Ethylformamide

C3H7NO (73.0528)


   

3-Oxetanamine

3-Oxetanamine

C3H7NO (73.0528)


   

3-Azetidinol

3-Azetidinol

C3H7NO (73.0528)


   

Propionamide

Propionamide

C3H7NO (73.0528)


   

O-Allyl-hydroxylamine

O-Allyl-hydroxylamine

C3H7NO (73.0528)


   

methylamine-d5 deuteriochloride

methylamine-d5 deuteriochloride

CClD6N (73.0565)


   

Isoxazolidine

1,2-oxazolidine

C3H7NO (73.0528)


   

N,N-Dimethylformamide(CAS68-12-2)

N,N-Dimethylformamide(CAS68-12-2)

C3H7NO (73.0528)


   

Alaninal

Alaninal

C3H7NO (73.0528)


   

(S)-2-Aminopropanal

(S)-2-Aminopropanal

C3H7NO (73.0528)


   

Oxazolidine

Oxazolidine

C3H7NO (73.0528)


   

Tert-Butoxy

Tert-Butoxy

C4H9O (73.0653)


   

1,2,4-Triazolidine

1,2,4-Triazolidine

C2H7N3 (73.064)


   

2-Methylaminoacetaldehyde

2-Methylaminoacetaldehyde

C3H7NO (73.0528)


   

Trimethylsilyl

Trimethylsilyl

C3H9Si (73.0473)


   

U-4224

N,N-Dimethylformamide [UN2265] [Flammable liquid]

C3H7NO (73.0528)


   

N,N-Dimethylformamide-d7

N,N-Dimethylformamide-d7

C3H7NO (73.0528)


   

Triazolidine

Triazolidine

C2H7N3 (73.064)


   

Acetone oxime

Propan-2-one oxime

C3H7NO (73.0528)


   

aminoacetone

aminoacetone

C3H7NO (73.0528)


A propanone consisting of acetone having an amino group at the 1-position.

   

3-Aminopropanal

3-Aminopropanal

C3H7NO (73.0528)


A propanal having an amino substituent at the 3-position

   

Aminopropionaldehyde

Aminopropionaldehyde

C3H7NO (73.0528)