Exact Mass: 722.4886296

Exact Mass Matches: 722.4886296

Found 500 metabolites which its exact mass value is equals to given mass value 722.4886296, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Prephytoene diphosphate

{[hydroxy({[(1R,2R,3R)-2-methyl-3-[(1E,5E,9E)-2,6,10,14-tetramethylpentadeca-1,5,9,13-tetraen-1-yl]-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]cyclopropyl]methoxy})phosphoryl]oxy}phosphonic acid

C40H68O7P2 (722.4440038000001)


Phytoene is a precursor to carotenoids. Prephytoene comes from geranyl geranyl diphosphate (GGPP). Carotenoids are essential for life. Prephytoene diphosphate is involved in the following two reactions: 1) Prephytoene diphosphate + H+ + NADPH <=> Pyrophosphate + cis-Phytoene + NADP+ and 2) Geranylgeranyl diphosphate <=> Pyrophosphate + Prephytoene diphosphate + H+ [HMDB]. Prephytoene diphosphate is found in many foods, some of which are brassicas, wasabi, cocoa bean, and black elderberry. Phytoene is a precursor to carotenoids. Prephytoene comes from geranyl geranyl diphosphate (GGPP). Carotenoids are essential for life. Prephytoene diphosphate is involved in the following two reactions: 1) Prephytoene diphosphate + H+ + NADPH <=> Pyrophosphate + cis-Phytoene + NADP+ and 2) Geranylgeranyl diphosphate <=> Pyrophosphate + Prephytoene diphosphate + H+.

   

Octaprenyl diphosphate

{[hydroxy({[(2E,6E,10E,14E,18E,22E,26E)-3,7,11,15,19,23,27,31-octamethyldotriaconta-2,6,10,14,18,22,26,30-octaen-1-yl]oxy})phosphoryl]oxy}phosphonic acid

C40H68O7P2 (722.4440038000001)


Octaprenyl diphosphate, also known as farnesylfarnesylgeraniol or OPP, belongs to the class of organic compounds known as tetraterpenoids. These are terpenoid molecules containing 10 consecutively linked isoprene units. Octaprenyl diphosphate is the precursor for the side chain of the isoprenoid quinones ubiquinone and menaquinone. It is a substrate of the enzyme trans-octaprenyltranstransferase (EC 2.5.1.11) in the steroid biosynthesis pathway. Octaprenyl diphosphate is the precursor for the side chain of the isoprenoid quinones ubiquinone and menaquinone. It is a substrate of enzyme trans-octaprenyltranstransferase [EC 2.5.1.11] in biosynthesis of steroids pathway (KEGG). [HMDB]. Octaprenyl diphosphate is found in many foods, some of which are macadamia nut (m. tetraphylla), brazil nut, maitake, and dill.

   

ditrans,pentacis-Octaprenyl diphosphate

(2z,6z,10z,14z,18z,22e,26e)-3,7,11,15,19,23,27,31-Octamethyldotriaconta-2,6,10,14,18,22,26,30-Octaen-1-Yl Trihydrogen Diphosphate

C40H68O7P2 (722.4440038000001)


   

PG(16:0/16:0)

[(2R)-2,3-bis(hexadecanoyloxy)propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C38H75O10P (722.509758)


PG(16:0/16:0) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(16:0/16:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(16:0/16:0) is a phosphatidylglycerol. Phosphatidylglycerols consist of a glycerol 3-phosphate backbone esterified to either saturated or unsaturated fatty acids on carbons 1 and 2. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PG(16:0/16:0), in particular, consists of two hexadecanoyl chains at positions C-1 and C-2. In E. coli glycerophospholipid metabolism, phosphatidylglycerol is formed from phosphatidic acid (1,2-diacyl-sn-glycerol 3-phosphate) by a sequence of enzymatic reactions that proceeds via two intermediates, cytidine diphosphate diacylglycerol (CDP-diacylglycerol) and phosphatidylglycerophosphate (PGP, a phosphorylated phosphatidylglycerol). Phosphatidylglycerols, along with CDP-diacylglycerol, also serve as precursor molecules for the synthesis of cardiolipin, a phospholipid found in membranes.

   

1,26-Dicaffeoylhexacosanediol

26-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}hexacosyl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C44H66O8 (722.4757436000001)


1,26-Dicaffeoylhexacosanediol is found in cereals and cereal products. 1,26-Dicaffeoylhexacosanediol is isolated from oats (Avena sativa Isolated from oats (Avena sativa). 1,26-Dicaffeoylhexacosanediol is found in oat and cereals and cereal products.

   

PA(16:0/22:5(4Z,7Z,10Z,13Z,16Z))

[(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-(hexadecanoyloxy)propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(16:0/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of osbond acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:0/22:5(7Z,10Z,13Z,16Z,19Z))

[(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-(hexadecanoyloxy)propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(16:0/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of clupanodonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:1(9Z)/22:4(7Z,10Z,13Z,16Z))

[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-[(9Z)-hexadec-9-enoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(16:1(9Z)/22:4(7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:0/20:5(5Z,8Z,11Z,14Z,17Z))

[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(18:0/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(11Z)/20:4(5Z,8Z,11Z,14Z))

[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(18:1(11Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(11Z)/20:4(8Z,11Z,14Z,17Z))

[(2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(18:1(11Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(9Z)/20:4(5Z,8Z,11Z,14Z))

[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(18:1(9Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(9Z)/20:4(8Z,11Z,14Z,17Z))

[(2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(18:1(9Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:2(9Z,12Z)/20:3(5Z,8Z,11Z))

[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(18:2(9Z,12Z)/20:3(5Z,8Z,11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:2(9Z,12Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of mead acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:4(6Z,9Z,12Z,15Z)/20:1(11Z))

[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(18:4(6Z,9Z,12Z,15Z)/20:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/20:1(11Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:1(11Z)/18:4(6Z,9Z,12Z,15Z))

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(20:1(11Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(5Z,8Z,11Z)/18:2(9Z,12Z))

[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(20:3(5Z,8Z,11Z)/18:2(9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(5Z,8Z,11Z)/18:2(9Z,12Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(5Z,8Z,11Z,14Z)/18:1(11Z))

[(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(20:4(5Z,8Z,11Z,14Z)/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/18:1(11Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(5Z,8Z,11Z,14Z)/18:1(9Z))

[(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(20:4(5Z,8Z,11Z,14Z)/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/18:1(9Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(8Z,11Z,14Z,17Z)/18:1(11Z))

[(2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(20:4(8Z,11Z,14Z,17Z)/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/18:1(11Z)), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(8Z,11Z,14Z,17Z)/18:1(9Z))

[(2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(20:4(8Z,11Z,14Z,17Z)/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/18:1(9Z)), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:4(7Z,10Z,13Z,16Z)/16:1(9Z))

[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-[(9Z)-hexadec-9-enoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(22:4(7Z,10Z,13Z,16Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:4(7Z,10Z,13Z,16Z)/16:1(9Z)), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:5(4Z,7Z,10Z,13Z,16Z)/16:0)

[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-(hexadecanoyloxy)propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(22:5(4Z,7Z,10Z,13Z,16Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:5(4Z,7Z,10Z,13Z,16Z)/16:0), in particular, consists of one chain of osbond acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:5(7Z,10Z,13Z,16Z,19Z)/16:0)

[(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-(hexadecanoyloxy)propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(22:5(7Z,10Z,13Z,16Z,19Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:5(7Z,10Z,13Z,16Z,19Z)/16:0), in particular, consists of one chain of clupanodonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(8Z,11Z,14Z)/18:2(9Z,12Z))

[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(20:3(8Z,11Z,14Z)/18:2(9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(8Z,11Z,14Z)/18:2(9Z,12Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:2(9Z,12Z)/20:3(8Z,11Z,14Z))

[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(6Z,9Z,12Z)/20:2(11Z,14Z))

[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(18:3(6Z,9Z,12Z)/20:2(11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/20:2(11Z,14Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(9Z,12Z,15Z)/20:2(11Z,14Z))

[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(18:3(9Z,12Z,15Z)/20:2(11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/20:2(11Z,14Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:2(11Z,14Z)/18:3(6Z,9Z,12Z))

[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(20:2(11Z,14Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:2(11Z,14Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:2(11Z,14Z)/18:3(9Z,12Z,15Z))

[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(20:2(11Z,14Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:2(11Z,14Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PG(a-13:0/i-19:0)

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methyldodecanoyloxy)propan-2-yl] 17-methyloctadecanoate

C38H75O10P (722.509758)


PG(a-13:0/i-19:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(a-13:0/i-19:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isononadecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(i-12:0/i-20:0)

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methylundecanoyloxy)propan-2-yl] 18-methylnonadecanoate

C38H75O10P (722.509758)


PG(i-12:0/i-20:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-12:0/i-20:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(i-13:0/i-19:0)

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(11-methyldodecanoyloxy)propan-2-yl] 17-methyloctadecanoate

C38H75O10P (722.509758)


PG(i-13:0/i-19:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-13:0/i-19:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isononadecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:0)

[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H71O8P (722.4886296)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:0), in particular, consists of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl chain to the C-1 atom, and one octadecanoyl to the C-2 atom. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

Dipalmitoylphosphatidylglycerol

[2,3-bis(hexadecanoyloxy)propoxy](2,3-dihydroxypropoxy)phosphinic acid

C38H75O10P (722.509758)


   

PA(15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/15:0)

[(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/15:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/15:0)

[(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/15:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/15:0)

[(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/15:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/15:0)

[(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/15:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2R)-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/15:0)

[(2R)-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/15:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(a-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-15:0)

[(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-15:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(a-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-15:0)

[(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-15:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(a-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-15:0)

[(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-15:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(a-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-15:0)

[(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-15:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2R)-3-[(12-methyltetradecanoyl)oxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(a-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-15:0)

[(2R)-2-[(12-methyltetradecanoyl)oxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-15:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(i-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-15:0)

[(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-15:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(i-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-15:0)

[(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-15:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(i-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-15:0)

[(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-15:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(i-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-15:0)

[(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-15:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2R)-3-[(13-methyltetradecanoyl)oxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(i-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-15:0)

[(2R)-2-[(13-methyltetradecanoyl)oxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C40H67O9P (722.4522462)


PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-15:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

Cer(d18:0/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-2-{[(2S,3R)-1,3-dihydroxyoctadecan-2-yl]-C-hydroxycarbonimidoyl}ethyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C41H74N2O6S (722.5267304000001)


Cer(d18:0/LTE4) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Corymbivillosol acetate

Corymbivillosol acetate

C45H70O7 (722.512127)


   
   

(2S)-1,2-di-O-(7Z,10Z,13Z)-hexadecadienoyl-3-O-beta-D-galactopyranosyl-sn-glycerol

(2S)-1,2-di-O-(7Z,10Z,13Z)-hexadecadienoyl-3-O-beta-D-galactopyranosyl-sn-glycerol

C41H70O10 (722.496872)


   

11alpha-acetoxy-20(S),24(R)-epoxydammaran-3beta,11alpha,25-triol 3-O-beta-D-2-O-acetylglucopyranoside

11alpha-acetoxy-20(S),24(R)-epoxydammaran-3beta,11alpha,25-triol 3-O-beta-D-2-O-acetylglucopyranoside

C40H66O11 (722.4604886000001)


   

(1E,24E)-1,24-tetracosanediol diferulate|1,24-Tetracosanediol diferulate|tetracosane-1,24-diyl di[(E)-ferulate]

(1E,24E)-1,24-tetracosanediol diferulate|1,24-Tetracosanediol diferulate|tetracosane-1,24-diyl di[(E)-ferulate]

C44H66O8 (722.4757436000001)


   

lupanol-3-O-beta-D-glucopyranosyl(1->5)-O-beta-D-xylofuranoside

lupanol-3-O-beta-D-glucopyranosyl(1->5)-O-beta-D-xylofuranoside

C41H70O10 (722.496872)


   
   

[3-[[2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] hexadecanoate

[3-[[2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] hexadecanoate

C38H75O10P (722.509758)


   

PG 32:0

Octadecanoic acid, 3-[[(2,3-dihydroxypropoxy)hydroxyphosphinyl]oxy]-2-[(1-oxotetradecyl)oxy]propyl ester, (R)-

C38H75O10P (722.509758)


Found in mouse lung; TwoDicalId=20; MgfFile=160901_Lung_AA_Neg_17_never; MgfId=750

   

[2.3-bis(hexadecanoyloxy)propoxy][2.3-dihydroxypropoxy]phosphinic acid

[2.3-bis(hexadecanoyloxy)propoxy][2.3-dihydroxypropoxy]phosphinic acid

C38H75O10P (722.509758)


   

1,2-Dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt

1,2-Dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt

C38H75O10P (722.509758)


   

Dipalmitoylphosphatidylglycerol

Hexadecanoic acid, 1-[[[(2,3-dihydroxypropoxy)hydroxyphosphinyl]oxy]methyl]-1,2-ethanediyl ester

C38H75O10P (722.509758)


   

PG(18:0/14:0)

Octadecanoic acid, 3-[[(2,3-dihydroxypropoxy)hydroxyphosphinyl]oxy]-2-[(1-oxotetradecyl)oxy]propyl ester, (R)-

C38H75O10P (722.509758)


   

PG(18:0/14:0)[U]

Octadecanoic acid, 3-[[(2,3-dihydroxypropoxy)hydroxyphosphinyl]oxy]-2-[(1-oxotetradecyl)oxy]propyl ester

C38H75O10P (722.509758)


   

PG(32:0)

1,2-Dihexadecanoyl-rac-glycero-3-phospho-(1-rac-glycerol)

C38H75O10P (722.509758)


   

PG(20:0/12:0)

1-eicosanoyl-2-dodecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H75O10P (722.509758)


   

PG(19:0/13:0)

1-nonadecanoyl-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H75O10P (722.509758)


   

PG(17:0/15:0)

1-heptadecanoyl-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H75O10P (722.509758)


   

PG(15:0/17:0)

1-pentadecanoyl-2-heptadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H75O10P (722.509758)


   

PG(14:0/18:0)

1-tetradecanoyl-2-octadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H75O10P (722.509758)


   

PG(13:0/19:0)

1-tridecanoyl-2-nonadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H75O10P (722.509758)


   

PG(12:0/20:0)

1-dodecanoyl-2-eicosanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H75O10P (722.509758)


   

PA(16:1(9Z)/22:4(7Z,10Z,13Z,16Z))

1-(9Z-hexadecenoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(18:2(9Z,12Z)/20:3(8Z,11Z,14Z))

1-(9Z,12Z-octadecadienoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(18:3(6Z,9Z,12Z)/20:2(11Z,14Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(18:3(9Z,12Z,15Z)/20:2(11Z,14Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(18:4(6Z,9Z,12Z,15Z)/20:1(11Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(20:1(11Z)/18:4(6Z,9Z,12Z,15Z))

1-(11Z-eicosenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(20:2(11Z,14Z)/18:3(6Z,9Z,12Z))

1-(11Z,14Z-eicosadienoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(20:2(11Z,14Z)/18:3(9Z,12Z,15Z))

1-(11Z,14Z-eicosadienoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(20:3(8Z,11Z,14Z)/18:2(9Z,12Z))

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(20:4(5Z,8Z,11Z,14Z)/18:1(9Z))

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(9Z-octadecenoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:0)

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-octadecanoyl-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(22:4(7Z,10Z,13Z,16Z)/16:1(9Z))

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(18:1(9Z)/20:4(5Z,8Z,11Z,14Z))

1-(9Z-octadecenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

PA(18:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-octadecanoyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

1,26-Dicaffeoylhexacosanediol

26-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}hexacosyl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C44H66O8 (722.4757436000001)


   

PA 38:5

1-(11Z,14Z-eicosadienoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C41H71O8P (722.4886296)


   

Octaprenyl diphosphate, trans-Octaprenyl diphosphate

Octaprenyl diphosphate, trans-Octaprenyl diphosphate

C40H68O7P2 (722.4440038000001)


   
   

1,2-Dipalmitoyl-phosphatidyl-glycerole

1,2-Dipalmitoyl-phosphatidyl-glycerole

C38H75O10P (722.509758)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D001430 - Bacteriocins

   

1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol

1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol

C38H75O10P (722.509758)


   

1-Stearoyl-2-arachidonoyl-sn-glycero-3-phosphate(2-)

1-Stearoyl-2-arachidonoyl-sn-glycero-3-phosphate(2-)

C41H71O8P-2 (722.4886296)


   

(2S,3R,4S,5S,6R)-2-[(2R,3S,4S,5R,6R)-3,5-dihydroxy-2-(hydroxymethyl)-6-[[(1S,2S,7S,10R,11S,14S,15R,16S,17R,20S,23S)-10,14,16,20-tetramethyl-22-azoniahexacyclo[12.10.0.02,11.05,10.015,23.017,22]tetracos-4-en-7-yl]oxy]oxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

(2S,3R,4S,5S,6R)-2-[(2R,3S,4S,5R,6R)-3,5-dihydroxy-2-(hydroxymethyl)-6-[[(1S,2S,7S,10R,11S,14S,15R,16S,17R,20S,23S)-10,14,16,20-tetramethyl-22-azoniahexacyclo[12.10.0.02,11.05,10.015,23.017,22]tetracos-4-en-7-yl]oxy]oxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64NO11+ (722.4479134)


   

13-[2-O-(6-O-Acetyl-beta-D-glucopyranosyl)-beta-D-glucopyranosyloxy]docosanoic acid

13-[2-O-(6-O-Acetyl-beta-D-glucopyranosyl)-beta-D-glucopyranosyloxy]docosanoic acid

C36H66O14 (722.4452335999999)


   

[(2Z,6Z,10Z,14Z,18Z,22Z,26E)-3,7,11,15,19,23,27,31-octamethyldotriaconta-2,6,10,14,18,22,26,30-octaenyl] phosphono hydrogen phosphate

[(2Z,6Z,10Z,14Z,18Z,22Z,26E)-3,7,11,15,19,23,27,31-octamethyldotriaconta-2,6,10,14,18,22,26,30-octaenyl] phosphono hydrogen phosphate

C40H68O7P2 (722.4440038000001)


   

[(1S,2R,3S)-2-methyl-3-[(1E,5E,9E)-2,6,10,14-tetramethylpentadeca-1,5,9,13-tetraenyl]-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trienyl]cyclopropyl]methyl phosphono hydrogen phosphate

[(1S,2R,3S)-2-methyl-3-[(1E,5E,9E)-2,6,10,14-tetramethylpentadeca-1,5,9,13-tetraenyl]-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trienyl]cyclopropyl]methyl phosphono hydrogen phosphate

C40H68O7P2 (722.4440038000001)


   

PA(15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PA(15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C40H67O9P (722.4522462)


   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/15:0)

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/15:0)

C40H67O9P (722.4522462)


   

PA(15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PA(15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C40H67O9P (722.4522462)


   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/15:0)

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/15:0)

C40H67O9P (722.4522462)


   

PA(15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PA(15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C40H67O9P (722.4522462)


   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/15:0)

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/15:0)

C40H67O9P (722.4522462)


   

PA(15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PA(15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C40H67O9P (722.4522462)


   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/15:0)

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/15:0)

C40H67O9P (722.4522462)


   

PA(15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PA(15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C40H67O9P (722.4522462)


   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/15:0)

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/15:0)

C40H67O9P (722.4522462)


   

PA(a-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PA(a-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C40H67O9P (722.4522462)


   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-15:0)

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-15:0)

C40H67O9P (722.4522462)


   

PA(a-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PA(a-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C40H67O9P (722.4522462)


   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-15:0)

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-15:0)

C40H67O9P (722.4522462)


   

PA(a-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PA(a-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C40H67O9P (722.4522462)


   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-15:0)

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-15:0)

C40H67O9P (722.4522462)


   

PA(a-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PA(a-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C40H67O9P (722.4522462)


   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-15:0)

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-15:0)

C40H67O9P (722.4522462)


   

PA(a-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PA(a-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C40H67O9P (722.4522462)


   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-15:0)

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-15:0)

C40H67O9P (722.4522462)


   

PA(i-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PA(i-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C40H67O9P (722.4522462)


   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-15:0)

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-15:0)

C40H67O9P (722.4522462)


   

PA(i-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PA(i-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C40H67O9P (722.4522462)


   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-15:0)

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-15:0)

C40H67O9P (722.4522462)


   

PA(i-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PA(i-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C40H67O9P (722.4522462)


   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-15:0)

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-15:0)

C40H67O9P (722.4522462)


   

PA(i-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PA(i-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C40H67O9P (722.4522462)


   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-15:0)

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-15:0)

C40H67O9P (722.4522462)


   

PA(i-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PA(i-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C40H67O9P (722.4522462)


   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-15:0)

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-15:0)

C40H67O9P (722.4522462)


   
   

Klymollin F

Klymollin F

C40H66O11 (722.4604886000001)


An eunicellin diterpenoid isolated from the soft coral Klyxum molle.

   
   

(1S,2S,3S)-prephytoene diphosphate

(1S,2S,3S)-prephytoene diphosphate

C40H68O7P2 (722.4440038000001)


   

(2S)-1-O-(7Z,10Z)-hexadecadienoyl-2-O-(7Z,10Z)-hexadecadienoyl-3-O-beta-D-galactopyranosyl-sn-glycerol

(2S)-1-O-(7Z,10Z)-hexadecadienoyl-2-O-(7Z,10Z)-hexadecadienoyl-3-O-beta-D-galactopyranosyl-sn-glycerol

C41H70O10 (722.496872)


A galactoglycerolipid that consists of 1,2-diacyl-sn-glycerol having two (7Z,10Z)-hexadecadienoyl as the acyl groups and a beta-D-galactopyranosyl residue attached at position 3. It has been found in Daphnia pulex and exhibits cytotoxic activity.

   

1-Stearoyl-2-arachidonoylphosphatidate(2-)

1-Stearoyl-2-arachidonoylphosphatidate(2-)

C41H71O8P-2 (722.4886296)


   

Phosphoric acid bis[(S)-3-(hexadecanoyloxy)-2-hydroxypropyl] ester

Phosphoric acid bis[(S)-3-(hexadecanoyloxy)-2-hydroxypropyl] ester

C38H75O10P (722.509758)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[(E)-3-hydroxy-2-[[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H75N2O6P (722.5362460000001)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C40H67O9P (722.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C40H67O9P (722.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C40H67O9P (722.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C40H67O9P (722.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C40H67O9P (722.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C40H67O9P (722.4522462)


   

[3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H75N2O6P (722.5362460000001)


   

[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H75N2O6P (722.5362460000001)


   

[(4E,8E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H75N2O6P (722.5362460000001)


   

[(E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyicos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyicos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H75N2O6P (722.5362460000001)


   

[(E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H75N2O6P (722.5362460000001)


   

[(4E,8E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H75N2O6P (722.5362460000001)


   

[2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxydecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxydecyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H75N2O6P (722.5362460000001)


   

[3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H75N2O6P (722.5362460000001)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C41H70O10 (722.496872)


   

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C41H70O10 (722.496872)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate

C41H70O10 (722.496872)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-hexadec-9-enoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-hexadec-9-enoate

C41H70O10 (722.496872)


   

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C41H70O10 (722.496872)


   

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C41H70O10 (722.496872)


   

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C41H70O10 (722.496872)


   

3,4,5-trihydroxy-6-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-tridecanoyloxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-tridecanoyloxypropoxy]oxane-2-carboxylic acid

C40H66O11 (722.4604886000001)


   

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H70O10 (722.496872)


   

6-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C40H66O11 (722.4604886000001)


   

3,4,5-trihydroxy-6-[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

C40H66O11 (722.4604886000001)


   

6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C40H66O11 (722.4604886000001)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate

C41H70O10 (722.496872)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] heptacosanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] heptacosanoate

C38H75O10P (722.509758)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] tetracosanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] tetracosanoate

C38H75O10P (722.509758)


   

[1-[(2-Heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] pentacosanoate

[1-[(2-Heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] pentacosanoate

C38H75O10P (722.509758)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] tricosanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] tricosanoate

C38H75O10P (722.509758)


   

[1-[(2-Hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] hexacosanoate

[1-[(2-Hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] hexacosanoate

C38H75O10P (722.509758)


   

[1-[(2-Decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] docosanoate

[1-[(2-Decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] docosanoate

C38H75O10P (722.509758)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] octadecanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] octadecanoate

C38H75O10P (722.509758)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] nonadecanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] nonadecanoate

C38H75O10P (722.509758)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] heptadecanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] heptadecanoate

C38H75O10P (722.509758)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] henicosanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] henicosanoate

C38H75O10P (722.509758)


   

[1-[(2-Dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] icosanoate

[1-[(2-Dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] icosanoate

C38H75O10P (722.509758)


   

[1-[(2-Hexadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] hexadecanoate

[1-[(2-Hexadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] hexadecanoate

C38H75O10P (722.509758)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] pentacosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] pentacosanoate

C38H75O10P (722.509758)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] tetracosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] tetracosanoate

C38H75O10P (722.509758)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] hexacosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] hexacosanoate

C38H75O10P (722.509758)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] heptacosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] heptacosanoate

C38H75O10P (722.509758)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] tricosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] tricosanoate

C38H75O10P (722.509758)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] heptadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] heptadecanoate

C38H75O10P (722.509758)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] octadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] octadecanoate

C38H75O10P (722.509758)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] nonadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] nonadecanoate

C38H75O10P (722.509758)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] icosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] icosanoate

C38H75O10P (722.509758)


   

[1-Decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] docosanoate

[1-Decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] docosanoate

C38H75O10P (722.509758)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] henicosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] henicosanoate

C38H75O10P (722.509758)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C41H71O8P (722.4886296)


   

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C41H71O8P (722.4886296)


   

[1-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H71O8P (722.4886296)


   

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C41H71O8P (722.4886296)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] icosanoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] icosanoate

C41H71O8P (722.4886296)


   

(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H71O8P (722.4886296)


   

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (11Z,14Z)-icosa-11,14-dienoate

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (11Z,14Z)-icosa-11,14-dienoate

C41H71O8P (722.4886296)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (Z)-docos-13-enoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (Z)-docos-13-enoate

C41H71O8P (722.4886296)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C41H71O8P (722.4886296)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (13Z,16Z)-docosa-13,16-dienoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (13Z,16Z)-docosa-13,16-dienoate

C41H71O8P (722.4886296)


   

[1-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C41H71O8P (722.4886296)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate

C41H71O8P (722.4886296)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] hexadecanoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] hexadecanoate

C38H75O10P (722.509758)


   

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] icosanoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] icosanoate

C38H75O10P (722.509758)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C41H70O10 (722.496872)


   

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H70O10 (722.496872)


   

2-[[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO8P+ (722.4760544)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate

C41H71O8P (722.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C41H71O8P (722.4886296)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H70O10 (722.496872)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C41H71O8P (722.4886296)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate

C41H70O10 (722.496872)


   

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C41H71O8P (722.4886296)


   

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] nonadecanoate

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] nonadecanoate

C38H75O10P (722.509758)


   

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C41H70O10 (722.496872)


   

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C41H70O10 (722.496872)


   

[(2R)-1-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C41H70O10 (722.496872)


   

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

C41H71O8P (722.4886296)


   

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C41H70O10 (722.496872)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO8P+ (722.4760544)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] docosanoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] docosanoate

C38H75O10P (722.509758)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

C41H71O8P (722.4886296)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C44H68NO7+ (722.4995518000001)


   

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C44H68NO7+ (722.4995518000001)


   

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C41H71O8P (722.4886296)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (14E,16E)-docosa-14,16-dienoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (14E,16E)-docosa-14,16-dienoate

C41H71O8P (722.4886296)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] docosanoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] docosanoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C41H71O8P (722.4886296)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C44H68NO7+ (722.4995518000001)


   

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C41H70O10 (722.496872)


   

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C41H71O8P (722.4886296)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H70O10 (722.496872)


   

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]propyl]-trimethylazanium

C44H68NO7+ (722.4995518000001)


   

[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C44H68NO7+ (722.4995518000001)


   

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] henicosanoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] henicosanoate

C38H75O10P (722.509758)


   

[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H71O8P (722.4886296)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E)-hexadeca-4,7-dienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E)-hexadeca-4,7-dienoate

C41H70O10 (722.496872)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C41H71O8P (722.4886296)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C44H68NO7+ (722.4995518000001)


   

[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H71O8P (722.4886296)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (13E,16E,19E)-docosa-13,16,19-trienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (13E,16E,19E)-docosa-13,16,19-trienoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate

C41H71O8P (722.4886296)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C41H70O10 (722.496872)


   

2-[2,3-bis[[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy]propoxy-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[2,3-bis[[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy]propoxy-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO8P+ (722.4760544)


   

[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate

C41H71O8P (722.4886296)


   

[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C41H70O10 (722.496872)


   

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-docos-11-enoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-docos-11-enoate

C41H71O8P (722.4886296)


   

2-[[(2S)-2-decanoyloxy-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-decanoyloxy-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO8P+ (722.4760544)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C41H70O10 (722.496872)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] docosanoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] docosanoate

C38H75O10P (722.509758)


   

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H71O8P (722.4886296)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO8P+ (722.4760544)


   

[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C41H70O10 (722.496872)


   

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H70O10 (722.496872)


   

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]propyl]-trimethylazanium

C44H68NO7+ (722.4995518000001)


   

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

2-[[(2R)-3-decanoyloxy-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO8P+ (722.4760544)


   

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C44H68NO7+ (722.4995518000001)


   

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C44H68NO7+ (722.4995518000001)


   

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C41H71O8P (722.4886296)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

C41H71O8P (722.4886296)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-hexadec-7-enoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-hexadec-7-enoate

C41H70O10 (722.496872)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] henicosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] henicosanoate

C38H75O10P (722.509758)


   

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H71O8P (722.4886296)


   

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C44H68NO7+ (722.4995518000001)


   

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H73NO7P+ (722.5124377999998)


   

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H73NO7P+ (722.5124377999998)


   

2-[2,3-bis[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy]propoxy-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[2,3-bis[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy]propoxy-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO8P+ (722.4760544)


   

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C40H69NO8P+ (722.4760544)


   

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H73NO7P+ (722.5124377999998)


   

2-[[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO8P+ (722.4760544)


   

2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO8P+ (722.4760544)


   

[1-carboxy-3-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C44H68NO7+ (722.4995518000001)


   

2-[hydroxy-[3-octanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-octanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C40H69NO8P+ (722.4760544)


   

2-[hydroxy-[3-nonoxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-nonoxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H73NO7P+ (722.5124377999998)


   

2-[hydroxy-[2-nonanoyloxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-nonanoyloxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C41H73NO7P+ (722.5124377999998)


   

2-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H73NO7P+ (722.5124377999998)


   

2-[hydroxy-[3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]-2-pentanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]-2-pentanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H73NO7P+ (722.5124377999998)


   

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-undecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-undecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H73NO7P+ (722.5124377999998)


   

2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H73NO7P+ (722.5124377999998)


   

2-[[2-heptanoyloxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-heptanoyloxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H73NO7P+ (722.5124377999998)


   

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C41H73NO7P+ (722.5124377999998)


   

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C41H73NO7P+ (722.5124377999998)


   

Octaprenyl diphosphate

all-trans-Octaprenyl diphosphate

C40H68O7P2 (722.4440038000001)


A polyprenol diphosphate compound having eight prenyl units with undefined stereochemistry about the double bonds. An all-trans-polyprenyl diphosphate composed from eight isoprenyl units.

   

(2z,6z,10z,14z,18z,22e,26e)-3,7,11,15,19,23,27,31-Octamethyldotriaconta-2,6,10,14,18,22,26,30-Octaen-1-Yl Trihydrogen Diphosphate

(2z,6z,10z,14z,18z,22e,26e)-3,7,11,15,19,23,27,31-Octamethyldotriaconta-2,6,10,14,18,22,26,30-Octaen-1-Yl Trihydrogen Diphosphate

C40H68O7P2 (722.4440038000001)


   

1,2-palmitoyl-sn-glycero-3-phospho-(1-sn-glycerol)

1,2-palmitoyl-sn-glycero-3-phospho-(1-sn-glycerol)

C38H75O10P (722.509758)


A 1,2-diacyl-sn-glycero-3-phospho-(1-sn-glycerol) in which both acyl groups are specified as hexadecanoyl (palmitoyl).

   

1-oleoyl-2-arachidonoyl-sn-glycero-3-phosphate

1-oleoyl-2-arachidonoyl-sn-glycero-3-phosphate

C41H71O8P (722.4886296)


A 1-acyl-2-arachidonoyl-sn-glycero-3-phosphate(2-) in which the 1-acyl substituent is specified as oleoyl.

   

Octadecanoic acid, 3-[[(2,3-dihydroxypropoxy)hydroxyphosphinyl]oxy]-2-[(1-oxotetradecyl)oxy]propyl ester, (R)-

Octadecanoic acid, 3-[[(2,3-dihydroxypropoxy)hydroxyphosphinyl]oxy]-2-[(1-oxotetradecyl)oxy]propyl ester, (R)-

C38H75O10P (722.509758)


   

1-Stearoyl-2-arachidonoylphosphatidate(2-)

1-Stearoyl-2-arachidonoylphosphatidate(2-)

C41H71O8P (722.4886296)


A phosphatidate(2-) obtained by deprotonation of both phosphate OH groups of 1-stearoyl-2-arachidonoylphosphatidic acid; major species at pH 7.3.

   

monogalactosyldiacylglycerol 32:4

monogalactosyldiacylglycerol 32:4

C41H70O10 (722.496872)


   

phosphatidylglycerol 32:0

phosphatidylglycerol 32:0

C38H75O10P (722.509758)


   

1,2-dihexadecanoyl-sn-glycero-3-phosphoglycerol

1,2-dihexadecanoyl-sn-glycero-3-phosphoglycerol

C38H75O10P (722.509758)


A dipalmitoyl phosphatidylglycerol in which the stereocentre of the acylated glycerol portion has R-configuration.

   

dipalmitoyl phosphatidylglycerol

dipalmitoyl phosphatidylglycerol

C38H75O10P (722.509758)


A phosphatidylglycerol in which the phosphatidyl acyl groups are both palmitoyl.

   

1-arachidonoyl-2-oleoyl-sn-glycero-3-phosphate

1-arachidonoyl-2-oleoyl-sn-glycero-3-phosphate

C41H71O8P (722.4886296)


A 1-acyl-2-oleoyl-sn-glycero-3-phosphate(2-) in which the 1-acyl substituent is specified as arachidonoyl.

   

1-Stearoyl-2-arachidonoyl-sn-glycero-3-phosphate(2-)

1-Stearoyl-2-arachidonoyl-sn-glycero-3-phosphate(2-)

C41H71O8P (722.4886296)


A 1-acyl-2-arachidonoyl-sn-glycerol 3-phosphate(2-) obtained by deprotonation of the phosphate OH groups of 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphate; major species at pH 7.3.

   

MGDG(32:4)

MGDG(18:1_14:3)

C41H70O10 (722.496872)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

LBPA(32:0)

LBPA(16:0_16:0)

C38H75O10P (722.509758)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(36:5)

BisMePA(16:0_20:5)

C41H71O8P (722.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PG(16:0_16:0)

PG(16:0_16:0)

C38H75O10P (722.509758)


PANOMIX internal lipid standards

   

PEt(36:5)

PEt(16:1_20:4)

C41H71O8P (722.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

FAHFA 23:6/O-26:7

FAHFA 23:6/O-26:7

C49H70O4 (722.527382)


   

FAHFA 23:7/O-26:6

FAHFA 23:7/O-26:6

C49H70O4 (722.527382)


   

FAHFA 24:6/O-25:7

FAHFA 24:6/O-25:7

C49H70O4 (722.527382)


   

FAHFA 24:7/O-25:6

FAHFA 24:7/O-25:6

C49H70O4 (722.527382)


   

FAHFA 25:6/O-24:7

FAHFA 25:6/O-24:7

C49H70O4 (722.527382)


   

FAHFA 25:7/O-24:6

FAHFA 25:7/O-24:6

C49H70O4 (722.527382)


   

FAHFA 26:6/O-23:7

FAHFA 26:6/O-23:7

C49H70O4 (722.527382)


   

FAHFA 26:7/O-23:6

FAHFA 26:7/O-23:6

C49H70O4 (722.527382)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

1,2-Dioleoyl-sn-glycero-3-phosphate, sodium salt

1,2-Dioleoyl-sn-glycero-3-phosphate, sodium salt

C39H72NaO8P (722.4862242)


1,2-Dioleoyl-sn-glycero-3-phosphate sodium salt (18:1 PA) is an anionic lipid that can be used to prepare liposomes, micelles and artificial membranes[1][2]. 1,2-Dioleoyl-sn-glycero-3-phosphate sodium salt (18:1 PA) is an anionic lipid that can be used to prepare liposomes, micelles and artificial membranes[1][2].