Exact Mass: 712.4103836
Exact Mass Matches: 712.4103836
Found 227 metabolites which its exact mass value is equals to given mass value 712.4103836
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Digitalin
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent
PA(14:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
C37H61O11P (712.3951285999999)
PA(14:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:1(9Z))
C37H61O11P (712.3951285999999)
PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:1(9Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(15:0/PGJ2)
PA(15:0/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/PGJ2), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGJ2/15:0)
PA(PGJ2/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/15:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(a-15:0/PGJ2)
PA(a-15:0/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/PGJ2), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGJ2/a-15:0)
PA(PGJ2/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/a-15:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-15:0/PGJ2)
PA(i-15:0/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/PGJ2), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGJ2/i-15:0)
PA(PGJ2/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/i-15:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
3-[(1R,3R,10S,13R,14S,17R)-3-[(2R)-5-(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one
3-[(1R,3R,5R,8R,10S,13R,14S,17R)-1,14-dihydroxy-3-[(2S,3S,4R,5S,6R)-3-hydroxy-4-methoxy-6-methyl-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one
cyclo-(L-Pro-L-Ser-L-Trp-L-Leu-L-Ala-Gly-L-Thr)|tunicyclin C
C35H52N8O8 (712.3907912000001)
3-Glutaroyl-L-arginine ester-Cinobufagin
C37H52N4O10 (712.3683252000001)
4-deoleandrosyl-6,8a-seco-6,8a-deoxy-5-oxoavermectin B1a
3beta-(O4(?)-beta-D-Glucopyranosyl-O3-methyl-beta-D-fucopyranosyloxy)-11alpha,14-dihydroxy-5beta,14beta-card-20(22)-enolid|3beta-(O4(?)-beta-D-glucopyranosyl-O3-methyl-beta-D-fucopyranosyloxy)-11alpha,14-dihydroxy-5beta,14beta-card-20(22)-enolide|sargenoside
(20R)-18,20-epoxy-digitoxigenin beta-D-glucosyl-(1->4)-alpha-L-thevetoside
3beta-[7-((S)-1-Carboxy-4-guanidino-butylcarbamoyl)-heptanoyloxy]-14,15beta-epoxy-5-hydroxy-5beta,14beta-bufa-20,22-dienolid|3beta-[7-((S)-1-carboxy-4-guanidino-butylcarbamoyl)-heptanoyloxy]-14,15beta-epoxy-5-hydroxy-5beta,14beta-bufa-20,22-dienolide|marinobufotoxin
(25R)-3-O-(2-hydroxybutyryl)-5alpha-spirostane-2alpha,3beta,5,6beta-tetrol 2-O-beta-D-glucopyranoside
11-O-acetyl-3-O-<6-deoxy-3-O-methyl-beta-D-allopyranosyl-(1->4)-beta-D-canaropyranosyl>-17beta-marsdenin|11-O-acetyl-3-O-[6-deoxy-3-O-methyl-beta-D-allopyranosyl-(1->4)-beta-D-canaropyranosyl]-17beta-marsdenin
1alpha,14beta-dihydroxy-5beta-card-20(22)-enolide 3-O-[O-beta-D-glucopyranosyl-(1?2)-beta-D-digitalopyranoside]
3beta-(O4-beta-D-Glucopyranosyl-O3-methyl-beta-D-fucopyranosyloxy)-5,14-dihydroxy-5beta,14beta-card-20(22)-enolid|3beta-(O4-beta-D-glucopyranosyl-O3-methyl-beta-D-fucopyranosyloxy)-5,14-dihydroxy-5beta,14beta-card-20(22)-enolide|corchorusoside C|periplogenin 3-O-(4-O-beta-glucopyranosyl-beta-digitalopyranoside)
12-O-acetyl-3-O-<6-deoxy-3-O-methyl-beta-D-allopyranosyl-(1->4)-beta-D-canaropyranosyl>-17beta-marsdenin|12-O-acetyl-3-O-[6-deoxy-3-O-methyl-beta-D-allopyranosyl-(1->4)-beta-D-canaropyranosyl]-17beta-marsdenin
cinobufagin 3-glutaroyl-L-arginine ester
C37H52N4O10 (712.3683252000001)
petuniasterone B 7,22-dinicotinate
C42H52N2O8 (712.3723472000001)
C36H56O14_Card-20(22)-enolide, 3-[(6-deoxy-4-O-beta-D-glucopyranosyl-3-O-methyl-alpha-D-talopyranosyl)oxy]-1,14-dihydroxy-, (1beta,3beta,5beta,9xi)
C36H56O14_Card-20(22)-enolide, 3-[[(1R)-4-O-(6-deoxy-3-O-methylhexopyranosyl)hexopyranosyl]oxy]-1,14-dihydroxy-, (1beta,3beta,8xi,9xi)
3-[(1R,3R,10S,13R,14S,17R)-3-[(2R)-5-(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one_54.5\\%
3-[(1R,3R,10S,13R,14S,17R)-3-[(2R)-5-(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one_major
PG(12:0/20:5(5Z,8Z,11Z,14Z,17Z))
PG(14:1(9Z)/18:4(6Z,9Z,12Z,15Z))
PG(18:4(6Z,9Z,12Z,15Z)/14:1(9Z))
PG(20:5(5Z,8Z,11Z,14Z,17Z)/12:0)
2alpha-Hydroxymaprounic acid 2,3-bis-p-hydroxybenzoate
A pentacyclic triterpenoid that is the diester obtained by the condensation of the hydroxy groups of 2alpha-hydroxymaprounic acid with p-hydroxybenzoic acid. Isolated from Maprounea africana, it exhibits inhibitory activity against HIV-1 reverse transcriptase.
[(2S,3R,4S,6R)-2-[[(1S,2R,3R,6E,8S,9S,10S,12R,14E,16S)-3-ethyl-2-[[(2R,3R,4R,5R,6R)-5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl]oxymethyl]-8,10,12-trimethyl-5,13-dioxo-4,17-dioxabicyclo[14.1.0]heptadeca-6,14-dien-9-yl]oxy]-3-hydroxy-6-methyloxan-4-yl]-dimethylazanium
[(2S,3R,4S,6R)-2-[[(3E,5S,6S,7S,9R,11E,13E,15S,16R)-16-ethyl-15-hydroxy-15-[[(2R,3R,4R,5R,6R)-5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl]oxymethyl]-5,7,9-trimethyl-2,10-dioxo-1-oxacyclohexadeca-3,11,13-trien-6-yl]oxy]-3-hydroxy-6-methyloxan-4-yl]-dimethylazanium
PA(14:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
C37H61O11P (712.3951285999999)
PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:1(9Z))
C37H61O11P (712.3951285999999)
[2-Hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] hexacosanoate
[1-Hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] dodecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] pentadecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] undecanoate
[1-Decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] hexadecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] tridecanoate
[1-Dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate
[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexadec-9-enoate
[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] hexadecanoate
[1-Hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] nonadecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] docosanoate
[1-Butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] henicosanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] heptadecanoate
[1-Heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] octadecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] icosanoate
[1-Dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tridecanoate
[1-Decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentadecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] tetradecanoate
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (Z)-hexadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-Acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tricosanoate
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] tetradecanoate
[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (4E,7E)-hexadeca-4,7-dienoate
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (E)-hexadec-7-enoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] tetradecanoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] pentadecanoate
[(2R)-2-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] pentadecanoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] hexadecanoate
1-tridecanoyl-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)
1-dodecanoyl-2-tridecanoyl-sn-glycero-3-phospho-(1-myo-inositol)
3-[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2,3a-dihydroxy-7-{[(2r,3r,4r,5s,6r)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
4-{2,3a-dihydroxy-7-[(3-hydroxy-4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one
6-[2,3-bis(acetyloxy)-4',5,6-trihydroxy-[1,1'-bi(cyclohexane)]-4-yl]-14-hydroxy-12-methoxy-11-oxo-10,13-bis(sec-butyl)-2,9-dioxa-1,12-diazatricyclo[8.4.0.0³,⁸]tetradec-13-en-1-ium-1-olate
C35H56N2O13 (712.3782206000001)
4-[(1s,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2,3a-dihydroxy-7-{[(2r,3r,4r,5s,6r)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r,4e)-6-hydroperoxy-2-hydroxy-6-methylhept-4-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate
(1r,3s,6s,9s,12s,18s,23as)-4,7,10,13,16-pentahydroxy-18-[(1s)-1-hydroxyethyl]-3-(hydroxymethyl)-6-(1h-indol-3-ylmethyl)-1,12-dimethyl-9-(2-methylpropyl)-1h,2h,3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one
C35H52N8O8 (712.3907912000001)
(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r,4e)-6-hydroperoxy-2-hydroxy-6-methylhept-4-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate
[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r,5s)-5-hydroperoxy-2-hydroxy-6-methylhept-6-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate
4-[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2,3a-dihydroxy-7-{[(2r,3r,4r,5r,6r)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
(1's,2s,4'r,5s,6r,9's,10'e,12'e,14's,15's,16'e,19'r)-6-[(2s)-butan-2-yl]-9'-hydroxy-15'-{[(2r,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-5,6',10',14',16'-pentamethyl-5,6-dihydro-2',20'-dioxaspiro[pyran-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraene-3',7'-dione
4-[(1r,3as,3br,5ar,7s,9as,9bs,10r,11ar)-3a,10-dihydroxy-7-{[(2r,3r,4r,5s,6r)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,15'r,16'r,18'r,19'r)-18',19'-dihydroxy-5,7',9',13'-tetramethyl-15'-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-yl (2r)-2-hydroxybutanoate
4-{3a,10-dihydroxy-7-[(3-hydroxy-4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one
18',19'-dihydroxy-5,7',9',13'-tetramethyl-15'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-yl 2-hydroxybutanoate
2-[(1s,6r,9s,12r,15s,18r,26r)-31-hydroxy-12-(methoxycarbonyl)-6,9,12,15,18,23,27,32-octamethyl-2,25-dioxaoctacyclo[24.5.3.0¹,²⁶.0³,²⁴.0⁵,²².0⁶,¹⁹.0⁹,¹⁸.0¹⁰,¹⁵]tetratriaconta-3,5(22),20,23,32-pentaen-30-yl]prop-2-enoic acid
(10'z,12'z,16'z)-9'-hydroxy-15'-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-5,6',10',14',16'-pentamethyl-6-(sec-butyl)-5,6-dihydro-2',20'-dioxaspiro[pyran-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraene-3',7'-dione
2-{[1-(6-hydroperoxy-2-hydroxy-6-methylhept-4-en-2-yl)-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate
(1r,3as,3bs,4r,9s,9ar,9bs,11ar)-9-(acetyloxy)-9a,11a-dimethyl-7-oxo-1-[(2s,3r)-3-(pyridine-3-carbonyloxy)-4-[(2s)-2,3,3-trimethyloxiran-2-yl]butan-2-yl]-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-yl pyridine-3-carboxylate
C42H52N2O8 (712.3723472000001)
2'-hydroxy-16'-[(3-hydroxy-4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-13'-methyl-7'-oxaspiro[oxolane-3,6'-pentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icosan]-5-one
4-[(1r,2s,3as,3br,5ar,7s,9as,9br,11ar)-2,3a-dihydroxy-7-{[(2r,4r,5s)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3s,5s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
(1'r,2's,3r,5's,9'r,12's,13's,16's,18'r)-2'-hydroxy-16'-{[(2r,3s,4s,5s,6s)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-13'-methyl-7'-oxaspiro[oxolane-3,6'-pentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icosan]-5-one
4-[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2,3a-dihydroxy-7-{[(2s,3r,4r,5s,6s)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
9'-hydroxy-15'-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-5,6',10',14',16'-pentamethyl-6-(sec-butyl)-5,6-dihydro-2',20'-dioxaspiro[pyran-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraene-3',7'-dione
2-{[1-(5-hydroperoxy-2-hydroxy-6-methylhept-6-en-2-yl)-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate
(6-{[1-(5-hydroperoxy-2-hydroxy-6-methylhept-6-en-2-yl)-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate
4-[(1s,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2,3a-dihydroxy-7-{[(2r,3r,4r,5r,6r)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
(3s)-n-(2-{[(2z,3ar,7r,7as)-4,7-dihydroxy-1h,3h,3ah,6h,7h,7ah-imidazo[4,5-c]pyridin-2-ylidene]methyl}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)-3-amino-6-{[(4s)-4-amino-7-{[(3s)-3,6-diamino-1-hydroxyhexylidene]amino}hept-1-en-2-yl]amino}hexanimidic acid
C32H60N10O8 (712.4595360000001)
4-[(1r,3as,3br,5ar,7r,9r,9as,9bs,11ar)-3a,9-dihydroxy-7-{[(2r,3r,4s,5r,6s)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
(1r,3ar,5r,5ar,5br,7ar,9s,11as,11br,12r,13ar,13bs)-5-(benzoyloxy)-9-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-12-yl 4-hydroxy-3-methoxybenzoate
4,7,10,13,16-pentahydroxy-18-(1-hydroxyethyl)-3-(hydroxymethyl)-6-(1h-indol-3-ylmethyl)-1,12-dimethyl-9-(2-methylpropyl)-1h,2h,3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one
C35H52N8O8 (712.3907912000001)
(2s)-5-carbamimidamido-2-[(1-hydroxy-8-{[(1r,2s,4r,6r,7r,10s,11r,14s,16s)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-8-oxooctylidene)amino]pentanoic acid
2-[(5-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-5-oxopentylidene)amino]-5-carbamimidamidopentanoic acid
C37H52N4O10 (712.3683252000001)
4-{3a,9-dihydroxy-7-[(3-hydroxy-4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one
3-{2,3a-dihydroxy-7-[(3-hydroxy-4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one
5-(benzoyloxy)-9-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-12-yl 4-hydroxy-3-methoxybenzoate
9-(acetyloxy)-9a,11a-dimethyl-7-oxo-1-[3-(pyridine-3-carbonyloxy)-4-(2,3,3-trimethyloxiran-2-yl)butan-2-yl]-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-yl pyridine-3-carboxylate
C42H52N2O8 (712.3723472000001)
(6-{[1-(6-hydroperoxy-2-hydroxy-6-methylhept-4-en-2-yl)-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate
(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r,5s)-5-hydroperoxy-2-hydroxy-6-methylhept-6-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate
(1r,3ar,5s,5ar,5br,7ar,9s,11as,11br,12r,13ar,13br)-5-(benzoyloxy)-9-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-12-yl 4-hydroxy-3-methoxybenzoate
2-{3'-hydroxy-4'-[(3s)-3-{[(2r)-1-hydroxy-3-(c-hydroxycarbonimidoyl)-2-[(1-hydroxytetradecylidene)amino]propylidene]amino}butyl]-6'-oxospiro[cyclopropane-1,1'-pyrrolo[3,4-c]pyridin]-5'-ylmethyl}-1,3-thiazole-4-carboxylic acid
C36H52N6O7S (712.3618002000001)
(2s)-2-[(5-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-5-oxopentylidene)amino]-5-carbamimidamidopentanoic acid
C37H52N4O10 (712.3683252000001)