Exact Mass: 710.3665934
Exact Mass Matches: 710.3665934
Found 231 metabolites which its exact mass value is equals to given mass value 710.3665934
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
nudicauline
Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Delphinium alkaloid
Strophanthin
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors
Strophanthin
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors
Andersoline
PA(13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/13:0)
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/13:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/13:0)
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/13:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(a-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(a-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-13:0)
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-13:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(a-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(a-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-13:0)
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-13:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(i-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-13:0)
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-13:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(i-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-13:0)
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-13:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
(1aR,2S,5R,5aS,6S,8aS,9R,10aR)-6-(angelyloxymethyl)-1a,2,5,5a,6,9,10,10a-octahydro-5a-monohydroxy-1,1,7,9-tetramethyl-4-[N-(2-aminobenzoyl)anthraniloyloxy]-11-oxo-1H-2,8a-methanocyclopenta[a]cyclopropa[e]cyclodecen-5-yl ethanoate|3-O-angelyl-5-O-acetyl-20-O-[N-(2-aminobenzoyl)]anthraniloylingenol
C41H46N2O9 (710.3203146000001)
(1aR,2S,5R,5aS,6S,8aS,9R,10aR)-6-[N-(2-aminobenzoyl)anthraniloyloxy]-a,2,5,5a,6,9,10,10a-octahydro-5a-monohydroxy-4-(angelyloxymethyl)-1,1,7,9-tetramethyl-5-(acetyloxy)-11-oxo-1H-2,8a-methanocyclopenta[a]cyclopropa[e]cyclodecen-5-yl ethanoate|3-O-[N-(2-aminobenzoyl)]anthraniloyl-5-O-acetyl-20-O-angelylingenol
C41H46N2O9 (710.3203146000001)
(1aR,2S,5R,5aS,6S,8aS,9R,10aR)-6-[N-(2-aminobenzoyl)anthraniloyloxy]-1a,2,5,5a,6,9,10,10a-octahydro-5a-monohydroxy-1,1,7,9-tetramethyl-5-(anthraniloyloxy)-11-oxo-1H-2,8a-methanocyclopenta[a]cyclopropa[e]cyclodecen-4-yl ethanoate|3-O-angelyl-5-O-[N-(2-aminobenzoyl)]anthraniloyl-20-O-acetylingenol
C41H46N2O9 (710.3203146000001)
Delta16-8beta-hydroxydigitoxigenin beta-odorobioside
(1aR,2S,5R,5aS,6S,8aS,9R,10aR)-5-[N-(2-aminobenzoyl)anthraniloyloxy]-1a,2,5,5a,6,9,10,10a-octahydro-5a-monohydroxy-4-(angelyloxymethyl)-1,1,7,9-tetramethyl-11-oxo-1H-2,8a-methanocyclopenta[a]cyclopropa[e]cyclodecen-6-yl ethanoate 3|3-O-acetyl-5-O-[N-(2-aminobenzoyl)]anthraniloyl-20-O-angelyingenol
C41H46N2O9 (710.3203146000001)
(4R,4aS,5R,6S,8aS,9aR)-2,4,4a,5,6,7,8,8a,9,9a-decahydro-4-hydroxy-8a-({(4R,4aS,5R,6S,8aS,9aR)-2,4,4a,5,6,7,8,8a,9,9a-decahydro-8a-hydroxy-3,4a,5-trimethyl-6-[(3-methylbut-2-enoyl)oxy]-2-oxonaphtho[2,3-b]furan-4-yl}oxy)-3,4a,5-trimethyl-2-oxonaphtho[2,3-b]furan-6-yl (2E)-2-methylbut-2-enoate|hertidin E
(3S,6Z,9S,12S,18S,23aS)-18-(1-hydroxyethyl)-3-(hydroxymethyl)-6-[(1H-indol-3-yl)methylidene]-12-methyl-9-(2-methylpropyl)hexadecahydro-1H-pyrrolo[1,2-a] [1,4,7,10,13,16,19]heptaazacyclohenicosine-1,4,7,10,13,16,19-heptone|cyclo-(Pro1-Ser2-Delta-Trp3-Leu4-Ala5-Gly6-Thr7)|tunicyclin G
(1aR,2S,5R,5aS,6S,8aS,9R,10aR)-6-[N-(2-aminobenzoyl)anthraniloyloxy]-1a,2,5,5a,6,9,10,10a-octahydro-5a-monohydroxy-4-(angelyloxymethyl)-1,1,7,9-tetramethyl-11-oxo-1H-2,8a-methanocyclopenta[a]cyclopropa[e]cyclodecen-5-yl ethanoate|3-O-[N-(2-aminobenzoyl)]anthraniloyl-5-O-angelyl-20-O-acetylingenol
C41H46N2O9 (710.3203146000001)
(1aR,2S,5R,5aS,6S,8aS,9R,10aR)-5-(angelyloxymethyl)-1a,2,5,5a,6,9,10,10a-octahydro-5a-monohydroxy-1,1,7,9-tetramethyl-4-[N-(2-aminobenzoyl)anthraniloyl-oxy]-11-oxo-1H-2,8a-methanocyclopenta[a]cyclopropa[e]cyclodecen-6-yl ethanoate|3-O-acetyl-5-O-angelyl-20-[N-(2-aminobenzoyl)]anthranilylingenol
C41H46N2O9 (710.3203146000001)
3,4-dimethoxy pycnocomolide|3,4-Dimethoxy-Pycnocomolide|3,4-dimethoxypycnocomolide
3-beta-[(O-beta-D-glucopyranosyl-(1->3)-4,6-dideoxy-2-O-methyl-beta-D-gulopyranosyl)]-5beta,14beta-dihydroxy-19-oxocard-20(22)enolide
1,1-diacetyl-[15,15]biaspidospermidinyl-16,17,16,17-tetraol
C36H54O14_Card-20(22)-enolide, 3-[(2,6-dideoxy-4-O-beta-D-glucopyranosyl-3-O-methyl-beta-D-ribo-hexopyranosyl)oxy]-5,14-dihydroxy-19-oxo-, (3beta,5beta)
C36H54O14_Card-20(22)-enolide, 3-[(6-deoxy-4-O-hexopyranosyl-3-O-methylhexopyranosyl)oxy]-14-hydroxy-19-oxo
PKOHA-PI
C32H55O15P (710.3278409999999)
PHDdiA-PG
3-O(4-O-beta-D-glucopyranosyl-alpha-L-rhamnopyranosyl)-3beta,14beta,16beta-trihydroxy-5beta-bufa-20,22-dienolide
21H,23H-Porphine-2,7,12,17-tetrapropanoicacid, 3,8,13,18-tetramethyl-, 2,7,12,17-tetramethyl ester
disodium 2,2(or 3,3)-oxybis[5(or 2)-dodecylbenzenesulphonate]
PA(a-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-13:0)
PA(a-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-13:0)
PA(i-13:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-13:0)
PA(i-13:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-13:0)
Strophanthin K
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins
3beta-[(O-beta-D-Glucopyranosyl-(1->3)-4,6-dideoxy-2-O-methyl-beta-D-gulopyranosyl)]-5beta,14beta-dihydroxy-19-oxocard-20(22)enolide
A cardenolide glycoside that is strophanthidin attached to a 4,6-dideoxy-3-O-(beta-D-glucopyranosyl)-2-O-methyl-beta-D-xylo-hexopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Crossosoma bigelovii, it exhibits cytotoxic activity.
[(1S,2S,4S,5R,6S,8R,9R,10R,13S,16S,18S)-6-acetyloxy-11-ethyl-8,9-dihydroxy-4,16,18-trimethoxy-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecan-13-yl]methyl 2-[(3S)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate
[1-Acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] heptadecanoate
[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] dodecanoate
[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tetradecanoate
[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] undecanoate
[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] hexadecanoate
[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] decanoate
[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tridecanoate
[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] pentadecanoate
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate
[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate
[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (Z)-icos-11-enoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-hexadec-9-enoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-heptadec-9-enoate
[1-dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-tetradec-9-enoate
[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (Z)-docos-13-enoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate
[(2R)-2-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-pentadec-9-enoate
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (4E,7E)-hexadeca-4,7-dienoate
[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate
[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-pentadec-9-enoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-tetradec-9-enoate
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (E)-hexadec-7-enoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-tetradec-9-enoate
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (9E,11E,13E)-hexadeca-9,11,13-trienoate
[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-5-hydroxy-3,11,11,14-tetramethyl-4-{[(2e)-2-methylbut-2-enoyl]oxy}-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
(1r,5e,7s,8r,9s,10s,11s,12s,16r,17s,18r,22s,26r,27s,28s)-8-[(1z)-buta-1,3-dien-1-yl]-22,27-dihydroxy-20-(hydroxymethyl)-16,24,28-trimethyl-10-[(1e,3e,5e)-nona-1,3,5-trien-1-yl]-2,14-dioxaheptacyclo[14.13.0.0¹,¹⁷.0⁷,¹².0⁹,¹¹.0¹⁸,²⁷.0²²,²⁶]nonacosa-5,19,24-triene-3,13,23-trione
1-[3,5-bis({[2,6-dihydroxy-4-methoxy-3-methyl-5-(2-methylbutanoyl)phenyl]methyl})-2,4,6-trihydroxyphenyl]-2-methylbutan-1-one
4-[(1r)-1-{3-hexanoyl-2,4,6-trihydroxy-5-[(1r)-1-(2-hydroxy-3,3,5,5-tetramethyl-4,6-dioxocyclohex-1-en-1-yl)-2-methylpropyl]phenyl}-3-methylbutyl]-5-hydroxy-2,2,6,6-tetramethylcyclohex-4-ene-1,3-dione
3a-hydroxy-7-[(3-hydroxy-4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11a-methyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde
n-{2-[({7-[(acetyloxy)methyl]-5-hydroxy-3,11,11,14-tetramethyl-4-[(2-methylbut-2-enoyl)oxy]-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl}oxy)carbonyl]phenyl}-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
(1s,3r,6s,7s,8s,9s,10s,11s,14s,16s)-6-acetyl-14-{[(2r,4r,5r,6r)-5-{[(2s,3r,4r,5r,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-8-hydroxy-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-9-yl acetate
5-ene-methyl-7,12-didehydroxy-cholate-3-o-α-l-rhamnopyranosyl-(1→4)-β-d-glucurono-pyranoside
{"Ingredient_id": "HBIN011525","Ingredient_name": "5-ene-methyl-7,12-didehydroxy-cholate-3-o-\u03b1-l-rhamnopyranosyl-(1\u21924)-\u03b2-d-glucurono-pyranoside","Alias": "NA","Ingredient_formula": "C37H58O13","Ingredient_Smile": "CC1C(C(C(C(O1)OC2C(C(C(OC2C(=O)O)OC3CCC4(C5CCC6(C(C5CC=C4C3)CCC6C(C)CCC(=O)OC)C)C)O)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15242","TCMID_id": "6798","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
atractyloside h
{"Ingredient_id": "HBIN017308","Ingredient_name": "atractyloside h","Alias": "NA","Ingredient_formula": "C32H54O17","Ingredient_Smile": "CC12CCC(CC1C(=C)C(C(C2)OC3C(C(C(C(O3)COC4C(C(CO4)(CO)O)O)O)O)O)O)C(C)(C)OC5C(C(C(C(O5)CO)O)O)O","Ingredient_weight": "710.76","OB_score": "NA","CAS_id": "126054-84-0","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "6486","PubChem_id": "101831406","DrugBank_id": "NA"}
(1s,3br,4r,5as,7r,9s,9as,9br,11as)-4,9-bis(acetyloxy)-1-[(3s,5r,6s)-5,6-dihydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3b,6,6,9a,11a-pentamethyl-1h,2h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl benzoate
n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-6-(acetyloxy)-5-hydroxy-3,11,11,14-tetramethyl-4-{[(2e)-2-methylbut-2-enoyl]oxy}-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-7-yl]methoxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
3a-hydroxy-7-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11a-methyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carboxylic acid
n-[2-({[(1s,4s,5r,6r,9r,10r,12r,14r)-7-[(acetyloxy)methyl]-5-hydroxy-3,11,11,14-tetramethyl-6-{[(2z)-2-methylbut-2-enoyl]oxy}-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
n-{2-[({7-[(acetyloxy)methyl]-5-hydroxy-3,11,11,14-tetramethyl-6-[(2-methylbut-2-enoyl)oxy]-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl}oxy)carbonyl]phenyl}-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-6-(acetyloxy)-5-hydroxy-3,11,11,14-tetramethyl-7-({[(2e)-2-methylbut-2-enoyl]oxy}methyl)-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
(1s,5e,7r,8s,9r,10r,11r,12r,16s,17r,18s,22r,26s,27r,28r)-8-[(1z)-buta-1,3-dien-1-yl]-22,27-dihydroxy-20-(hydroxymethyl)-16,24,28-trimethyl-10-[(1e,3e,5e)-nona-1,3,5-trien-1-yl]-2,14-dioxaheptacyclo[14.13.0.0¹,¹⁷.0⁷,¹².0⁹,¹¹.0¹⁸,²⁷.0²²,²⁶]nonacosa-5,19,24-triene-3,13,23-trione
n-[(3s,9r,12s,13r,16s,19s,22s)-19-benzyl-9-[(2s)-butan-2-yl]-11,18-dihydroxy-16-isopropyl-13,20-dimethyl-2,8,15,21-tetraoxo-14-oxa-1,7,10,17,20-pentaazatricyclo[20.3.0.0³,⁷]pentacosa-10,17-dien-12-yl]ethanimidic acid
4-(1-{3-hexanoyl-2,4,6-trihydroxy-5-[1-(2-hydroxy-3,3,5,5-tetramethyl-4,6-dioxocyclohex-1-en-1-yl)-2-methylpropyl]phenyl}-3-methylbutyl)-5-hydroxy-2,2,6,6-tetramethylcyclohex-4-ene-1,3-dione
(1s,2s,3as,3bs,5ar,7r,9as,9br,11ar)-3a-hydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-2-yl formate
n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-4-(acetyloxy)-5-hydroxy-3,11,11,14-tetramethyl-6-{[(2e)-2-methylbut-2-enoyl]oxy}-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-7-yl]methoxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
methyl 9-hydroxy-7-(2-{[9-hydroxy-7-(2-methoxy-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydro-1h-phenanthren-2-yl]oxy}-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate
[(1r,2s,3r,4s,5r,6s,8r,9r,10r,16s,17r,18s)-6-(acetyloxy)-11-ethyl-8,9-dihydroxy-4,16,18-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate
n-[19-benzyl-11,18-dihydroxy-16-isopropyl-13,20-dimethyl-2,8,15,21-tetraoxo-9-(sec-butyl)-14-oxa-1,7,10,17,20-pentaazatricyclo[20.3.0.0³,⁷]pentacosa-10,17-dien-12-yl]ethanimidic acid
(1s,5e,7e,9r,10r,11s,12r,13z,18s,19r,20s,24r,28s,29r,30r)-10-ethenyl-24,29-dihydroxy-22-(hydroxymethyl)-18,26,30-trimethyl-11-[(1e,3e,5e)-nona-1,3,5-trien-1-yl]-2,16-dioxahexacyclo[16.13.0.0¹,¹⁹.0⁹,¹².0²⁰,²⁹.0²⁴,²⁸]hentriaconta-5,7,13,21,26-pentaene-3,15,25-trione
3a-hydroxy-7-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-2-yl formate
(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2r,4r,5s,6r)-4-methoxy-6-methyl-5-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde
(1s,5e,7e,9z,11r,13r,14s,15z,20s,21r,22s,26r,30s,31r,32r)-26,31-dihydroxy-24-(hydroxymethyl)-20,28,32-trimethyl-13-[(1e,3e,5e)-nona-1,3,5-trien-1-yl]-2,18-dioxahexacyclo[18.13.0.0¹,²¹.0¹¹,¹⁴.0²²,³¹.0²⁶,³⁰]tritriaconta-5,7,9,15,23,28-hexaene-3,17,27-trione
8-(buta-1,3-dien-1-yl)-22,27-dihydroxy-20-(hydroxymethyl)-16,24,28-trimethyl-10-(nona-1,3,5-trien-1-yl)-2,14-dioxaheptacyclo[14.13.0.0¹,¹⁷.0⁷,¹².0⁹,¹¹.0¹⁸,²⁷.0²²,²⁶]nonacosa-5,19,24-triene-3,13,23-trione
(1s,5e,7s,8s,9r,10r,11s,12r,16s,17r,18s,22r,26s,27r,28r)-9-ethenyl-22,27-dihydroxy-20-(hydroxymethyl)-16,24,28-trimethyl-11-[(1e,3e,5e,7e)-undeca-1,3,5,7-tetraen-1-yl]-2,14-dioxaheptacyclo[14.13.0.0¹,¹⁷.0⁷,¹².0⁸,¹⁰.0¹⁸,²⁷.0²²,²⁶]nonacosa-5,19,24-triene-3,13,23-trione
n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-4-(acetyloxy)-5-hydroxy-3,11,11,14-tetramethyl-7-({[(2e)-2-methylbut-2-enoyl]oxy}methyl)-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-5-hydroxy-3,11,11,14-tetramethyl-6-{[(2e)-2-methylbut-2-enoyl]oxy}-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2s,3r,4r,6r)-3-methoxy-6-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde
n-[2-({[6-(acetyloxy)-5-hydroxy-3,11,11,14-tetramethyl-7-{[(2-methylbut-2-enoyl)oxy]methyl}-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
10-ethenyl-24,29-dihydroxy-22-(hydroxymethyl)-18,26,30-trimethyl-12-(nona-1,3,5-trien-1-yl)-2,16-dioxaheptacyclo[16.13.0.0¹,¹⁹.0⁹,¹⁴.0¹¹,¹³.0²⁰,²⁹.0²⁴,²⁸]hentriaconta-5,7,21,26-tetraene-3,15,25-trione
1-{3-[(3-{[2,6-dihydroxy-4-methoxy-3-methyl-5-(3-methylbutanoyl)phenyl]methyl}-2,4,6-trihydroxy-5-(3-methylbutanoyl)phenyl)methyl]-2,4-dihydroxy-6-methoxy-5-methylphenyl}-3-methylbutan-1-one
methyl (1s,4ar,4bs,7e,8r,8as,9r,10ar)-7-(2-{[(1s,2s,4ar,4bs,7e,8r,8as,9r,10as)-9-hydroxy-7-(2-methoxy-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydro-1h-phenanthren-2-yl]oxy}-2-oxoethylidene)-9-hydroxy-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate
[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16s,17r,18s)-6-(acetyloxy)-11-ethyl-8,9-dihydroxy-4,16,18-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate
n-[2-({[4-(acetyloxy)-5-hydroxy-3,11,11,14-tetramethyl-6-[(2-methylbut-2-enoyl)oxy]-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-7-yl]methoxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
(1r,5e,7e,9r,10r,11r,12r,13z,18r,19s,20r,24s,28r,29s,30s)-10-ethenyl-24,29-dihydroxy-22-(hydroxymethyl)-18,26,30-trimethyl-11-[(1e,3e,5e)-nona-1,3,5-trien-1-yl]-2,16-dioxahexacyclo[16.13.0.0¹,¹⁹.0⁹,¹².0²⁰,²⁹.0²⁴,²⁸]hentriaconta-5,7,13,21,26-pentaene-3,15,25-trione
n-[2-({[(1s,4s,5r,6r,9r,10r,12r,14r)-4-(acetyloxy)-5-hydroxy-3,11,11,14-tetramethyl-7-({[(2z)-2-methylbut-2-enoyl]oxy}methyl)-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
n-[2-({[4-(acetyloxy)-5-hydroxy-3,11,11,14-tetramethyl-7-{[(2-methylbut-2-enoyl)oxy]methyl}-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
4,9-bis(acetyloxy)-1-[5,6-dihydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3b,6,6,9a,11a-pentamethyl-1h,2h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl benzoate
(1r,3as,5as,7s,9as,11ar)-7-{[(2r,5r)-6-({[(3r,6s)-4,6-dihydroxy-2-methyloxan-3-yl]oxy}methyl)-3,5-dihydroxy-4-methoxyoxan-2-yl]oxy}-3a,5a-dihydroxy-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde
(1r,3r,4r,7r,9r,10r,12r,13r,19r,21r,23s)-23-{[(2r,3r,4r,5s,6s)-4,5-dihydroxy-3-methoxy-6-methyloxan-2-yl]oxy}-4,9-dihydroxy-12,19-dimethyl-5-oxo-6,25,26-trioxatetracyclo[19.3.1.1⁴,⁷.1¹⁰,¹³]heptacosa-15,17-dien-3-yl butanoate
9-ethenyl-22,27-dihydroxy-20-(hydroxymethyl)-16,24,28-trimethyl-11-(undeca-1,3,5,7-tetraen-1-yl)-2,14-dioxaheptacyclo[14.13.0.0¹,¹⁷.0⁷,¹².0⁸,¹⁰.0¹⁸,²⁷.0²²,²⁶]nonacosa-5,19,24-triene-3,13,23-trione
10-ethenyl-24,29-dihydroxy-22-(hydroxymethyl)-18,26,30-trimethyl-11-(nona-1,3,5-trien-1-yl)-2,16-dioxahexacyclo[16.13.0.0¹,¹⁹.0⁹,¹².0²⁰,²⁹.0²⁴,²⁸]hentriaconta-5,7,13,21,26-pentaene-3,15,25-trione
n-[2-({[(1s,4s,5r,6r,9r,10r,12r,14r)-6-(acetyloxy)-5-hydroxy-3,11,11,14-tetramethyl-7-({[(2z)-2-methylbut-2-enoyl]oxy}methyl)-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16s,17r,18s)-4-(acetyloxy)-11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate
(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a-hydroxy-7-{[(2r,3r,4r,5s,6r)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde
3a,5a-dihydroxy-7-[(3-methoxy-6-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde
2-methyl 4a-(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2s,4ar,6as,6br,8ar,9r,10r,11s,12as,12br,13r,14bs)-10,11,13-trihydroxy-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylate
4,9-bis(acetyloxy)-1-[5-(1,2-dihydroxy-2-methylpropyl)-2-hydroxyoxolan-3-yl]-3b,6,6,9a,11a-pentamethyl-1h,2h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl benzoate
[(5r,6s,8r,9s,13s)-4-(acetyloxy)-11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate
(1s,5e,7e,9r,10r,11r,12s,13r,14r,18s,19r,20s,24r,28s,29r,30r)-10-ethenyl-24,29-dihydroxy-22-(hydroxymethyl)-18,26,30-trimethyl-12-[(1e,3e,5e)-nona-1,3,5-trien-1-yl]-2,16-dioxaheptacyclo[16.13.0.0¹,¹⁹.0⁹,¹⁴.0¹¹,¹³.0²⁰,²⁹.0²⁴,²⁸]hentriaconta-5,7,21,26-tetraene-3,15,25-trione
2-({[4-(15-ethoxy-4,8,10,12-tetramethyl-3,5,7,9,11,13,16-heptaoxaoctadecan-6-yl)tricyclo[3.2.1.1¹,³]nonan-7-yl]methoxy}carbonyl)benzene-1,3-dicarboxylic acid
(4r,4as,5r,6s,8as,9ar)-4-{[(4r,4as,5r,6s,8as,9ar)-4-hydroxy-3,4a,5-trimethyl-6-{[(2e)-2-methylbut-2-enoyl]oxy}-2-oxo-4h,5h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-8a-yl]oxy}-8a-hydroxy-3,4a,5-trimethyl-2-oxo-4h,5h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-6-yl 3-methylbut-2-enoate
[6-(acetyloxy)-11-ethyl-8,9-dihydroxy-4,16,18-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate
(2r,3r,4s,5s,6r)-2-{[(2r,3r,4ar,6r,8ar)-3-hydroxy-8a-methyl-4-methylidene-6-(2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl)-octahydronaphthalen-2-yl]oxy}-6-({[(2r,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-3,4,5-triol
(2r)-1-[3,5-bis({2,6-dihydroxy-4-methoxy-3-methyl-5-[(2r)-2-methylbutanoyl]phenyl}methyl)-2,4,6-trihydroxyphenyl]-2-methylbutan-1-one
n-[2-({[(1s,4s,5r,6r,9r,10r,12r,14r)-4-(acetyloxy)-5-hydroxy-3,11,11,14-tetramethyl-6-{[(2z)-2-methylbut-2-enoyl]oxy}-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-7-yl]methoxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
(1s,5e,7e,9r,10r,11r,12r,13r,14r,18s,19r,20s,24r,28s,29r,30r)-10-ethenyl-24,29-dihydroxy-22-(hydroxymethyl)-18,26,30-trimethyl-12-[(1e,3e,5e)-nona-1,3,5-trien-1-yl]-2,16-dioxaheptacyclo[16.13.0.0¹,¹⁹.0⁹,¹⁴.0¹¹,¹³.0²⁰,²⁹.0²⁴,²⁸]hentriaconta-5,7,21,26-tetraene-3,15,25-trione
[(1s,2s,4s,5r,6s,8r,9r,10r,13s,16s,18s)-6-(acetyloxy)-11-ethyl-8,9-dihydroxy-4,16,18-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate
[(1r,2s,3r,4s,5r,6s,8r,9r,10r,13s,16s,17r,18s)-6-(acetyloxy)-11-ethyl-8,9-dihydroxy-4,16,18-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate
n-[2-({[(1s,4s,5r,6r,9r,10r,12r,14r)-6-(acetyloxy)-5-hydroxy-3,11,11,14-tetramethyl-4-{[(2z)-2-methylbut-2-enoyl]oxy}-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-7-yl]methoxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
(1s,5e,7s,8s,9s,10r,11s,12r,16s,17r,18s,22r,26s,27r,28r)-9-ethenyl-22,27-dihydroxy-20-(hydroxymethyl)-16,24,28-trimethyl-11-[(1e,3e,5e,7e)-undeca-1,3,5,7-tetraen-1-yl]-2,14-dioxaheptacyclo[14.13.0.0¹,¹⁷.0⁷,¹².0⁸,¹⁰.0¹⁸,²⁷.0²²,²⁶]nonacosa-5,19,24-triene-3,13,23-trione
8a-hydroxy-4-({4-hydroxy-3,4a,5-trimethyl-6-[(2-methylbut-2-enoyl)oxy]-2-oxo-4h,5h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-8a-yl}oxy)-3,4a,5-trimethyl-2-oxo-4h,5h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-6-yl 3-methylbut-2-enoate
n-[2-({[(1s,4s,5r,6r,9r,10r,12r,14r)-7-[(acetyloxy)methyl]-5-hydroxy-3,11,11,14-tetramethyl-4-{[(2z)-2-methylbut-2-enoyl]oxy}-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)
(5e,7e)-26,31-dihydroxy-24-(hydroxymethyl)-20,28,32-trimethyl-13-(nona-1,3,5-trien-1-yl)-2,18-dioxahexacyclo[18.13.0.0¹,²¹.0¹¹,¹⁴.0²²,³¹.0²⁶,³⁰]tritriaconta-5,7,9,15,23,28-hexaene-3,17,27-trione
n-[2-({[6-(acetyloxy)-5-hydroxy-3,11,11,14-tetramethyl-4-[(2-methylbut-2-enoyl)oxy]-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-7-yl]methoxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid
C41H46N2O9 (710.3203146000001)