Exact Mass: 704.4417

Exact Mass Matches: 704.4417

Found 343 metabolites which its exact mass value is equals to given mass value 704.4417, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Voacamine

methyl (1S,15S,17S,18S)-17-ethyl-6-[(1R,12R,14R,15E)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0^{3,11}.0^{4,9}]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0^{2,10}.0^{4,9}.0^{13,18}]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


Voacamine is only found in individuals that have used or taken this drug. It is an alkaloid isolated from the bark of the Pescheria fuchsiae folia tree. It is an antimalarial drug approved for use in several African countries. Voacamine is also under investigation for use in modulating multidrug-resistance in tumor cells. Voacamine is possibly a substrate for P-glycoprotein (P-gp), an efflux pump responsible for multidrug resistance in tumor cells. Voacamine may compete with anticancer drugs such as doxorubicin for P-gp transport, decreasing removal of doxorubicin. Voacamine is a citraconoyl group. Voacamine is an alkaloid isolated from the bark of the Pescheria fuchsiae folia tree. It is an antimalarial drug approved for use in several African countries. Voacamine is also under investigation for use in modulating multidrug-resistance in tumor cells. Voacamine is a natural product found in Voacanga schweinfurthii, Voacanga africana, and other organisms with data available. Voacamine, an indole alkaloid, exhibits potent cannabinoid CB1 receptor antagonistic activity[1]. Voacamine also inhibits P-glycoprotein (P-gp) action in multidrug-resistant tumor cells[1].

   

PG(a-13:0/18:2(9Z,11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methyldodecanoyl)oxy]-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphinic acid

C37H69O10P (704.4628)


PG(a-13:0/18:2(9Z,11Z)) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(a-13:0/18:2(9Z,11Z)), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of (9Z,11Z)-octadecadienoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(i-13:0/18:2(9Z,11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(11-methyldodecanoyl)oxy]-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphinic acid

C37H69O10P (704.4628)


PG(i-13:0/18:2(9Z,11Z)) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-13:0/18:2(9Z,11Z)), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of (9Z,11Z)-octadecadienoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PA(13:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(13:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/PGF2alpha), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/13:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(PGF2alpha/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/13:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(13:0/PGE1)

[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(13:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/PGE1), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/13:0)

[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(PGE1/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/13:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(13:0/PGD1)

[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(13:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/PGD1), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/13:0)

[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(PGD1/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/13:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(15:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/5-iso PGF2VI), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/15:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(5-iso PGF2VI/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/15:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(16:1(9Z)/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(9Z)-hexadec-9-enoyloxy]propoxy]phosphonic acid

C37H69O10P (704.4628)


PA(16:1(9Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:1(9Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/16:1(9Z))

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(9Z)-hexadec-9-enoyloxy]propoxy]phosphonic acid

C37H69O10P (704.4628)


PA(18:1(12Z)-2OH(9,10)/16:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/16:1(9Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(a-13:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/PGF2alpha), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/a-13:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(PGF2alpha/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/a-13:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/PGE1)

[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(a-13:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/PGE1), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/a-13:0)

[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(PGE1/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/a-13:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/PGD1)

[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(a-13:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/PGD1), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/a-13:0)

[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(PGD1/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/a-13:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(a-15:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/5-iso PGF2VI), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/a-15:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(5-iso PGF2VI/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/a-15:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(i-13:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/PGF2alpha), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/i-13:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(PGF2alpha/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/i-13:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/PGE1)

[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(i-13:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/PGE1), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/i-13:0)

[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(PGE1/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/i-13:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/PGD1)

[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(i-13:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/PGD1), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/i-13:0)

[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(PGD1/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/i-13:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(i-15:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/5-iso PGF2VI), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/i-15:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C36H65O11P (704.4264)


PA(5-iso PGF2VI/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/i-15:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/18:2(10E,12Z)+=O(9))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C36H65O11P (704.4264)


PG(i-12:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(10E,12Z)+=O(9)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C36H65O11P (704.4264)


PG(18:2(10E,12Z)+=O(9)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(10E,12Z)+=O(9)/i-12:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/18:2(9Z,11E)+=O(13))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C36H65O11P (704.4264)


PG(i-12:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,11E)+=O(13)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C36H65O11P (704.4264)


PG(18:2(9Z,11E)+=O(13)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,11E)+=O(13)/i-12:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/18:3(10,12,15)-OH(9))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C36H65O11P (704.4264)


PG(i-12:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(10,12,15)-OH(9)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C36H65O11P (704.4264)


PG(18:3(10,12,15)-OH(9)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(10,12,15)-OH(9)/i-12:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/18:3(9,11,15)-OH(13))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C36H65O11P (704.4264)


PG(i-12:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(9,11,15)-OH(13)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C36H65O11P (704.4264)


PG(18:3(9,11,15)-OH(13)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(9,11,15)-OH(13)/i-12:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   
   

Cimiracemoside M

Cimiracemoside M

C39H60O11 (704.4135)


   

Soulieoside A

Soulieoside A

C39H60O11 (704.4135)


   

Soulieoside B

Soulieoside B

C39H60O11 (704.4135)


   
   

Hebelomic acid F

Hebelomic acid F

C39H60O11 (704.4135)


   
   

12-methoxy-11-(16-methoxycarbonyl-17-nor-vobasan-3-yl)-ibogamine-18-carboxylic acid methyl ester|12-Methoxy-11-[3R,16S)-16-methoxycarbonyl-17-nor-vobasan-3-yl]-ibogamin-18-carbonsaeure-methylester|12-methoxy-11-[3R,16S)-16-methoxycarbonyl-17-nor-vobasan-3-yl]-ibogamine-18-carboxylic acid methyl ester|Voacamidin|Voacamidine

12-methoxy-11-(16-methoxycarbonyl-17-nor-vobasan-3-yl)-ibogamine-18-carboxylic acid methyl ester|12-Methoxy-11-[3R,16S)-16-methoxycarbonyl-17-nor-vobasan-3-yl]-ibogamin-18-carbonsaeure-methylester|12-methoxy-11-[3R,16S)-16-methoxycarbonyl-17-nor-vobasan-3-yl]-ibogamine-18-carboxylic acid methyl ester|Voacamidin|Voacamidine

C43H52N4O5 (704.3938)


   
   

25-O-acetylcimigenol-3-O-[3-O-acetyl]-beta-D-xylopyranoside|3,25-O-diacetylcimigenol-3-O-beta-D-xylopyranoside

25-O-acetylcimigenol-3-O-[3-O-acetyl]-beta-D-xylopyranoside|3,25-O-diacetylcimigenol-3-O-beta-D-xylopyranoside

C39H60O11 (704.4135)


   
   

quinatoside D

quinatoside D

C39H60O11 (704.4135)


   

25-O-acetylcimigenol-3-O-[4-O-acetyl]-beta-D-xylopyranoside|4,25-O-diacetylcimigenol-3-O-beta-D-xylopyranoside

25-O-acetylcimigenol-3-O-[4-O-acetyl]-beta-D-xylopyranoside|4,25-O-diacetylcimigenol-3-O-beta-D-xylopyranoside

C39H60O11 (704.4135)


   
   

30-Noroleanolic acid-3-O-??-D-xylosyl(1鈥樏傗垎2)-??-L-arabinopyranoside

30-Noroleanolic acid-3-O-??-D-xylosyl(1鈥樏傗垎2)-??-L-arabinopyranoside

C39H60O11 (704.4135)


   

bistabercarpamines B

bistabercarpamines B

C43H52N4O5 (704.3938)


   

stigmasta-7,16,25(26)-triene-3-O-beta-D-glucopyranosyl-(1->5)-O-beta-D-xylofuranoside

stigmasta-7,16,25(26)-triene-3-O-beta-D-glucopyranosyl-(1->5)-O-beta-D-xylofuranoside

C40H64O10 (704.4499)


   

cimigenol-3-O-[2,4-O-diacetyl-alpha-L-arabinopyranoside]

cimigenol-3-O-[2,4-O-diacetyl-alpha-L-arabinopyranoside]

C39H60O11 (704.4135)


   

cimigenol-3-O-[3,4-O-diacetyl-alpha-L-arabinopyranoside]

cimigenol-3-O-[3,4-O-diacetyl-alpha-L-arabinopyranoside]

C39H60O11 (704.4135)


   
   
   
   

12-methoxy-14-(16-methoxycarbonyl-17-nor-vobasan-3-yl)-ibogamine-18-carboxylic acid methyl ester|Voacamine

12-methoxy-14-(16-methoxycarbonyl-17-nor-vobasan-3-yl)-ibogamine-18-carboxylic acid methyl ester|Voacamine

C43H52N4O5 (704.3938)


   

O-[alpha-L-Rhamnopyranosyl-(1鈥樏傗垎5)-beta-D-xylofuranoside]-3beta-12-Ursen-3-ol

O-[alpha-L-Rhamnopyranosyl-(1鈥樏傗垎5)-beta-D-xylofuranoside]-3beta-12-Ursen-3-ol

C41H68O9 (704.4863)


   
   
   

Voacamine

Voacamine

C43H52N4O5 (704.3938)


Annotation level-1 Voacamine, an indole alkaloid, exhibits potent cannabinoid CB1 receptor antagonistic activity[1]. Voacamine also inhibits P-glycoprotein (P-gp) action in multidrug-resistant tumor cells[1].

   

PG(13:0/18:2(9Z,12Z))

1-tridecanoyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H69O10P (704.4628)


   

PG(14:0/17:2(9Z,12Z))

1-tetradecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H69O10P (704.4628)


   

PG(14:1(9Z)/17:1(9Z))

1-(9Z-tetradecenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H69O10P (704.4628)


   

PG(15:1(9Z)/16:1(9Z))

1-(9Z-pentadecenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H69O10P (704.4628)


   

PG(16:1(9Z)/15:1(9Z))

1-(9Z-hexadecenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H69O10P (704.4628)


   

PG(17:1(9Z)/14:1(9Z))

1-(9Z-heptadecenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H69O10P (704.4628)


   

PG(17:2(9Z,12Z)/14:0)

1-(9Z,12Z-heptadecadienoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H69O10P (704.4628)


   

PG(18:2(9Z,12Z)/13:0)

1-(9Z,12Z-octadecadienoyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H69O10P (704.4628)


   

PA(15:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(9Z-pentadecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C40H65O8P (704.4417)


   

PA(17:2(9Z,12Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(9Z,12Z-heptadecadienoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C40H65O8P (704.4417)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/17:2(9Z,12Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C40H65O8P (704.4417)


   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/15:1(9Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C40H65O8P (704.4417)


   

PA(P-16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(1Z-hexadecenyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C41H69O7P (704.4781)


   

PG 31:2

1-(9Z,12Z-heptadecadienoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H69O10P (704.4628)


   

PA 37:7

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C40H65O8P (704.4417)


   

PA O-38:7

1-(1Z-hexadecenyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C41H69O7P (704.4781)


   

cimicifoetiside B

(23R,24S)-25-acetoxy-15alpha-hydroxy-16beta,23:16alpha,24-diepoxy-9beta,19-cyclolanostan-3beta-yl 2-O-acetyl-alpha-L-arabinopyranoside

C39H60O11 (704.4135)


   

Barium Stearate

Barium Stearate

C36H70BaO4 (704.4326)


   

erythromycin D(1+)

erythromycin D(1+)

C36H66NO12+ (704.4585)


An erythromycin cation resulting from the protonation of the tertiary amino group of erythromycin D; the major species at pH 7.3.

   

Phosphatidylserine (1-myristoyl, 2-palmitoleoyl)

Phosphatidylserine (1-myristoyl, 2-palmitoleoyl)

C36H67NO10P- (704.4502)


   

PA(13:0/PGF2alpha)

PA(13:0/PGF2alpha)

C36H65O11P (704.4264)


   

PA(PGF2alpha/13:0)

PA(PGF2alpha/13:0)

C36H65O11P (704.4264)


   

PA(a-13:0/PGF2alpha)

PA(a-13:0/PGF2alpha)

C36H65O11P (704.4264)


   

PA(PGF2alpha/a-13:0)

PA(PGF2alpha/a-13:0)

C36H65O11P (704.4264)


   

PA(i-13:0/PGF2alpha)

PA(i-13:0/PGF2alpha)

C36H65O11P (704.4264)


   

PA(PGF2alpha/i-13:0)

PA(PGF2alpha/i-13:0)

C36H65O11P (704.4264)


   

PA(a-13:0/PGE1)

PA(a-13:0/PGE1)

C36H65O11P (704.4264)


   

PA(PGE1/a-13:0)

PA(PGE1/a-13:0)

C36H65O11P (704.4264)


   

PA(a-13:0/PGD1)

PA(a-13:0/PGD1)

C36H65O11P (704.4264)


   

PA(PGD1/a-13:0)

PA(PGD1/a-13:0)

C36H65O11P (704.4264)


   

PA(i-13:0/PGE1)

PA(i-13:0/PGE1)

C36H65O11P (704.4264)


   

PA(PGE1/i-13:0)

PA(PGE1/i-13:0)

C36H65O11P (704.4264)


   

PA(i-13:0/PGD1)

PA(i-13:0/PGD1)

C36H65O11P (704.4264)


   

PA(PGD1/i-13:0)

PA(PGD1/i-13:0)

C36H65O11P (704.4264)


   
   
   
   
   

PA(15:0/5-iso PGF2VI)

PA(15:0/5-iso PGF2VI)

C36H65O11P (704.4264)


   

PA(5-iso PGF2VI/15:0)

PA(5-iso PGF2VI/15:0)

C36H65O11P (704.4264)


   

PA(a-15:0/5-iso PGF2VI)

PA(a-15:0/5-iso PGF2VI)

C36H65O11P (704.4264)


   

PA(5-iso PGF2VI/a-15:0)

PA(5-iso PGF2VI/a-15:0)

C36H65O11P (704.4264)


   

PA(i-15:0/5-iso PGF2VI)

PA(i-15:0/5-iso PGF2VI)

C36H65O11P (704.4264)


   

PA(5-iso PGF2VI/i-15:0)

PA(5-iso PGF2VI/i-15:0)

C36H65O11P (704.4264)


   

PG(i-12:0/18:2(10E,12Z)+=O(9))

PG(i-12:0/18:2(10E,12Z)+=O(9))

C36H65O11P (704.4264)


   

PG(18:2(10E,12Z)+=O(9)/i-12:0)

PG(18:2(10E,12Z)+=O(9)/i-12:0)

C36H65O11P (704.4264)


   

PG(i-12:0/18:2(9Z,11E)+=O(13))

PG(i-12:0/18:2(9Z,11E)+=O(13))

C36H65O11P (704.4264)


   

PG(18:2(9Z,11E)+=O(13)/i-12:0)

PG(18:2(9Z,11E)+=O(13)/i-12:0)

C36H65O11P (704.4264)


   

PA(16:1(9Z)/18:1(12Z)-2OH(9,10))

PA(16:1(9Z)/18:1(12Z)-2OH(9,10))

C37H69O10P (704.4628)


   

PA(18:1(12Z)-2OH(9,10)/16:1(9Z))

PA(18:1(12Z)-2OH(9,10)/16:1(9Z))

C37H69O10P (704.4628)


   

PG(i-12:0/18:3(10,12,15)-OH(9))

PG(i-12:0/18:3(10,12,15)-OH(9))

C36H65O11P (704.4264)


   

PG(18:3(10,12,15)-OH(9)/i-12:0)

PG(18:3(10,12,15)-OH(9)/i-12:0)

C36H65O11P (704.4264)


   

PG(i-12:0/18:3(9,11,15)-OH(13))

PG(i-12:0/18:3(9,11,15)-OH(13))

C36H65O11P (704.4264)


   

PG(18:3(9,11,15)-OH(13)/i-12:0)

PG(18:3(9,11,15)-OH(13)/i-12:0)

C36H65O11P (704.4264)


   

methyl 17-ethyl-6-[(15Z)-15-ethylidene-18-methoxycarbonyl-17-methyl-10,17-diazatetracyclo[12.3.1.03,11.04,9]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl 17-ethyl-6-[(15Z)-15-ethylidene-18-methoxycarbonyl-17-methyl-10,17-diazatetracyclo[12.3.1.03,11.04,9]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

methyl (1S,15R,17S,18S)-17-ethyl-6-[(1R,15E,18S)-15-ethylidene-18-methoxycarbonyl-17-methyl-10,17-diazatetracyclo[12.3.1.03,11.04,9]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1S,15R,17S,18S)-17-ethyl-6-[(1R,15E,18S)-15-ethylidene-18-methoxycarbonyl-17-methyl-10,17-diazatetracyclo[12.3.1.03,11.04,9]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

Mgdg O-8:0_24:6

Mgdg O-8:0_24:6

C41H68O9 (704.4863)


   

Mgdg O-26:6_6:0

Mgdg O-26:6_6:0

C41H68O9 (704.4863)


   

Dgdg O-16:3_4:0

Dgdg O-16:3_4:0

C35H60O14 (704.3983)


   

Dgdg O-18:3_2:0

Dgdg O-18:3_2:0

C35H60O14 (704.3983)


   

Mgdg O-28:6_4:0

Mgdg O-28:6_4:0

C41H68O9 (704.4863)


   

Mgdg O-24:6_8:0

Mgdg O-24:6_8:0

C41H68O9 (704.4863)


   

Mgdg O-18:5_14:1

Mgdg O-18:5_14:1

C41H68O9 (704.4863)


   

Mgdg O-14:1_18:5

Mgdg O-14:1_18:5

C41H68O9 (704.4863)


   

Mgdg O-16:4_16:2

Mgdg O-16:4_16:2

C41H68O9 (704.4863)


   

Mgdg O-22:6_10:0

Mgdg O-22:6_10:0

C41H68O9 (704.4863)


   

Mgdg O-16:3_16:3

Mgdg O-16:3_16:3

C41H68O9 (704.4863)


   

Mgdg O-16:2_16:4

Mgdg O-16:2_16:4

C41H68O9 (704.4863)


   

Mgdg O-10:0_22:6

Mgdg O-10:0_22:6

C41H68O9 (704.4863)


   

PE-Cer 18:3;2O/20:4

PE-Cer 18:3;2O/20:4

C40H69N2O6P (704.4893)


   

PE-Cer 12:0;2O/26:7

PE-Cer 12:0;2O/26:7

C40H69N2O6P (704.4893)


   

PE-Cer 22:3;2O/16:4

PE-Cer 22:3;2O/16:4

C40H69N2O6P (704.4893)


   

PE-Cer 12:1;2O/26:6

PE-Cer 12:1;2O/26:6

C40H69N2O6P (704.4893)


   

PE-Cer 14:2;2O/24:5

PE-Cer 14:2;2O/24:5

C40H69N2O6P (704.4893)


   

PE-Cer 12:2;2O/26:5

PE-Cer 12:2;2O/26:5

C40H69N2O6P (704.4893)


   

PE-Cer 20:2;2O/18:5

PE-Cer 20:2;2O/18:5

C40H69N2O6P (704.4893)


   

PE-Cer 14:3;2O/24:4

PE-Cer 14:3;2O/24:4

C40H69N2O6P (704.4893)


   

PE-Cer 16:3;2O/22:4

PE-Cer 16:3;2O/22:4

C40H69N2O6P (704.4893)


   

PE-Cer 20:3;2O/18:4

PE-Cer 20:3;2O/18:4

C40H69N2O6P (704.4893)


   

PE-Cer 16:2;2O/22:5

PE-Cer 16:2;2O/22:5

C40H69N2O6P (704.4893)


   

PE-Cer 16:1;2O/22:6

PE-Cer 16:1;2O/22:6

C40H69N2O6P (704.4893)


   

PE-Cer 18:2;2O/20:5

PE-Cer 18:2;2O/20:5

C40H69N2O6P (704.4893)


   

PE-Cer 14:1;2O/24:6

PE-Cer 14:1;2O/24:6

C40H69N2O6P (704.4893)


   

[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxynon-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxynon-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H69N2O6P (704.4893)


   

[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H69N2O6P (704.4893)


   

[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]undec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]undec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H69N2O6P (704.4893)


   

[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxynonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxynonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H69N2O6P (704.4893)


   

[(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H69N2O6P (704.4893)


   

[(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H69N2O6P (704.4893)


   

[(4E,8E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H69N2O6P (704.4893)


   

[(4E,8E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H69N2O6P (704.4893)


   

[(4E,8E,12E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H69N2O6P (704.4893)


   

PMeOH 16:3_20:4

PMeOH 16:3_20:4

C40H65O8P (704.4417)


   

PEtOH 13:1_22:6

PEtOH 13:1_22:6

C40H65O8P (704.4417)


   

PEtOH 17:2_18:5

PEtOH 17:2_18:5

C40H65O8P (704.4417)


   

PMeOH 18:3_18:4

PMeOH 18:3_18:4

C40H65O8P (704.4417)


   

PMeOH 20:3_16:4

PMeOH 20:3_16:4

C40H65O8P (704.4417)


   

PMeOH 18:2_18:5

PMeOH 18:2_18:5

C40H65O8P (704.4417)


   

PMeOH 14:1_22:6

PMeOH 14:1_22:6

C40H65O8P (704.4417)


   

PMeOH 16:2_20:5

PMeOH 16:2_20:5

C40H65O8P (704.4417)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C40H64O10 (704.4499)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C40H64O10 (704.4499)


   

[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxynonyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxynonyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H69N2O6P (704.4893)


   

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C37H69O10P (704.4628)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C37H69O10P (704.4628)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C37H69O10P (704.4628)


   

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C37H69O10P (704.4628)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C37H69O10P (704.4628)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C37H69O10P (704.4628)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C37H69O10P (704.4628)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C37H69O10P (704.4628)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C37H69O10P (704.4628)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C37H69O10P (704.4628)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C37H69O10P (704.4628)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C37H69O10P (704.4628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C37H69O10P (704.4628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C37H69O10P (704.4628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C37H69O10P (704.4628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C37H69O10P (704.4628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-octadec-9-enoate

C37H69O10P (704.4628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C37H69O10P (704.4628)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C40H65O8P (704.4417)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C37H69O10P (704.4628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C37H69O10P (704.4628)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

C40H65O8P (704.4417)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C37H69O10P (704.4628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C37H69O10P (704.4628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C37H69O10P (704.4628)


   

[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C40H65O8P (704.4417)


   

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C37H69O10P (704.4628)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C40H65O8P (704.4417)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-hexadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-hexadec-9-enoate

C37H69O10P (704.4628)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoate

C40H65O8P (704.4417)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C37H69O10P (704.4628)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate

C40H65O8P (704.4417)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate

C37H69O10P (704.4628)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C37H69O10P (704.4628)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C37H69O10P (704.4628)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C40H65O8P (704.4417)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (9E,12E)-heptadeca-9,12-dienoate

C37H69O10P (704.4628)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-hexadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-hexadec-9-enoate

C37H69O10P (704.4628)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-hexadec-7-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-hexadec-7-enoate

C37H69O10P (704.4628)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (9E,11E)-henicosa-9,11-dienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (9E,11E)-henicosa-9,11-dienoate

C40H65O8P (704.4417)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-heptadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-heptadec-9-enoate

C37H69O10P (704.4628)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C37H69O10P (704.4628)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (9E,11E)-octadeca-9,11-dienoate

C37H69O10P (704.4628)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (9E,12E)-octadeca-9,12-dienoate

C37H69O10P (704.4628)


   

[1-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C40H64O10 (704.4499)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C37H69O10P (704.4628)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

C37H69O10P (704.4628)


   

[1-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C40H64O10 (704.4499)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C37H69O10P (704.4628)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H63NO8P+ (704.4291)


   

[1-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C40H64O10 (704.4499)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E)-henicosa-9,11,13-trienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E)-henicosa-9,11,13-trienoate

C40H65O8P (704.4417)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-hexadec-7-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-hexadec-7-enoate

C37H69O10P (704.4628)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C37H69O10P (704.4628)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C40H65O8P (704.4417)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (2E,4E)-octadeca-2,4-dienoate

C37H69O10P (704.4628)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (5E,8E)-icosa-5,8-dienoate

C37H69O10P (704.4628)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C40H65O8P (704.4417)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (6E,9E)-octadeca-6,9-dienoate

C37H69O10P (704.4628)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-heptadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-heptadec-9-enoate

C37H69O10P (704.4628)


   

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H67NO7P+ (704.4655)


   

2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H67NO7P+ (704.4655)


   

phosphatidylserine 30:1(1-)

phosphatidylserine 30:1(1-)

C36H67NO10P (704.4502)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 30 carbons in total and 1 double bond.

   

BisMePA(36:7)

BisMePA(16:2(1)_20:5)

C41H69O7P (704.4781)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   

MGDG O-31:7;O

MGDG O-31:7;O

C40H64O10 (704.4499)


   

MGDG O-32:6

MGDG O-32:6

C41H68O9 (704.4863)


   
   
   
   
   
   
   

PA O-16:1/22:6

PA O-16:1/22:6

C41H69O7P (704.4781)


   

PA O-16:2/22:5

PA O-16:2/22:5

C41H69O7P (704.4781)


   

PA O-18:2/20:5

PA O-18:2/20:5

C41H69O7P (704.4781)


   

PA P-16:0/22:6

PA P-16:0/22:6

C41H69O7P (704.4781)


   

PA P-16:0/22:6 or PA O-16:1/22:6

PA P-16:0/22:6 or PA O-16:1/22:6

C41H69O7P (704.4781)


   

PA P-16:1/22:5

PA P-16:1/22:5

C41H69O7P (704.4781)


   

PA P-16:1/22:5 or PA O-16:2/22:5

PA P-16:1/22:5 or PA O-16:2/22:5

C41H69O7P (704.4781)


   

PA P-18:1/20:5

PA P-18:1/20:5

C41H69O7P (704.4781)


   

PA P-18:1/20:5 or PA O-18:2/20:5

PA P-18:1/20:5 or PA O-18:2/20:5

C41H69O7P (704.4781)


   
   

PA P-38:6 or PA O-38:7

PA P-38:6 or PA O-38:7

C41H69O7P (704.4781)


   

PA 14:1/22:7;O

PA 14:1/22:7;O

C39H61O9P (704.4053)


   

PA 16:0/18:2;O2

PA 16:0/18:2;O2

C37H69O10P (704.4628)


   

PA 16:1/18:1;O2

PA 16:1/18:1;O2

C37H69O10P (704.4628)


   

PA 22:0/11:3;O3

PA 22:0/11:3;O3

C36H65O11P (704.4264)


   

PA 22:0/12:2;O2

PA 22:0/12:2;O2

C37H69O10P (704.4628)


   
   
   
   
   
   
   
   

PG O-18:0/13:3;O

PG O-18:0/13:3;O

C37H69O10P (704.4628)


   
   
   

PG P-18:0/12:3;O2

PG P-18:0/12:3;O2

C36H65O11P (704.4264)


   

PG P-18:1/12:2;O2

PG P-18:1/12:2;O2

C36H65O11P (704.4264)


   

PG P-20:0/11:2;O

PG P-20:0/11:2;O

C37H69O10P (704.4628)


   
   
   
   
   
   
   
   
   
   
   
   
   
   

CerPE 16:1;O2/22:6

CerPE 16:1;O2/22:6

C40H69N2O6P (704.4893)


   

CerPE 16:2;O2/22:5

CerPE 16:2;O2/22:5

C40H69N2O6P (704.4893)


   

CerPE 18:2;O2/20:5

CerPE 18:2;O2/20:5

C40H69N2O6P (704.4893)


   
   
   
   

ST 29:0;O8;GlcA

ST 29:0;O8;GlcA

C35H60O14 (704.3983)


   

(4as,6as,6br,8as,10s,12ar,12bs,14bs)-10-{[(2r,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8as,10s,12ar,12bs,14bs)-10-{[(2r,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C39H60O11 (704.4135)


   

1-[(1s,12s,13s,18r)-8-{[(1r,12r,13r,16s,17r,18s)-16-hydroxy-3,16,20-trimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8-tetraen-17-yl]methyl}-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-17-yl]ethanone

1-[(1s,12s,13s,18r)-8-{[(1r,12r,13r,16s,17r,18s)-16-hydroxy-3,16,20-trimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8-tetraen-17-yl]methyl}-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-17-yl]ethanone

C43H52N4O5 (704.3938)


   

1-[8-({16-hydroxy-3,16,20-trimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8-tetraen-17-yl}methyl)-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-17-yl]ethanone

1-[8-({16-hydroxy-3,16,20-trimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8-tetraen-17-yl}methyl)-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-17-yl]ethanone

C43H52N4O5 (704.3938)


   

methyl (1s,2r,5s,11r,12s,15e,24r,25r,26r,28s,40r)-15-ethylidene-34-methoxy-10,24,30,39-tetramethyl-4,6-dioxa-10,17,30,39-tetraazaundecacyclo[26.10.1.1¹⁴,²⁰.0²,²⁶.0⁵,²⁵.0⁷,²³.0⁹,²¹.0¹¹,²⁰.0¹²,¹⁷.0²⁹,³⁷.0³¹,³⁶]tetraconta-7(23),8,21,29(37),31,33,35-heptaene-40-carboxylate

methyl (1s,2r,5s,11r,12s,15e,24r,25r,26r,28s,40r)-15-ethylidene-34-methoxy-10,24,30,39-tetramethyl-4,6-dioxa-10,17,30,39-tetraazaundecacyclo[26.10.1.1¹⁴,²⁰.0²,²⁶.0⁵,²⁵.0⁷,²³.0⁹,²¹.0¹¹,²⁰.0¹²,¹⁷.0²⁹,³⁷.0³¹,³⁶]tetraconta-7(23),8,21,29(37),31,33,35-heptaene-40-carboxylate

C43H52N4O5 (704.3938)


   

methyl (1s,15r,17s,18s)-17-ethyl-5-[(1s,12s,14r,15e,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1s,15r,17s,18s)-17-ethyl-5-[(1s,12s,14r,15e,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

methyl 17-ethyl-7-[(15z)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl 17-ethyl-7-[(15z)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

1-{4-[11-(acetyloxy)-11-(3,5-dihydroxyphenyl)-10-methylundecan-5-yl]-3,5-dihydroxyphenyl}-7-chloro-2-methylundecyl acetate

1-{4-[11-(acetyloxy)-11-(3,5-dihydroxyphenyl)-10-methylundecan-5-yl]-3,5-dihydroxyphenyl}-7-chloro-2-methylundecyl acetate

C40H61ClO8 (704.4055)


   

(1s)-1-[(1s,4r,5r,6r,8r,10r,12s,13r,16r,18s,21r)-18-{[(2s,3r,4s,5r)-3-(acetyloxy)-4,5-dihydroxyoxan-2-yl]oxy}-4,6,12,17,17-pentamethyl-11-oxo-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl]-2-hydroxy-2-methylpropyl acetate

(1s)-1-[(1s,4r,5r,6r,8r,10r,12s,13r,16r,18s,21r)-18-{[(2s,3r,4s,5r)-3-(acetyloxy)-4,5-dihydroxyoxan-2-yl]oxy}-4,6,12,17,17-pentamethyl-11-oxo-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl]-2-hydroxy-2-methylpropyl acetate

C39H60O11 (704.4135)


   

1,3-bis(acetyloxy)-7-(3-ethenyl-4-hydroxybut-2-en-1-yl)-5,9-dihydroxy-7,8-dimethyl-1h,3h,5h,6h,6ah,8h,9h,10h-naphtho[1,8a-c]furan-10-yl hexadecanoate

1,3-bis(acetyloxy)-7-(3-ethenyl-4-hydroxybut-2-en-1-yl)-5,9-dihydroxy-7,8-dimethyl-1h,3h,5h,6h,6ah,8h,9h,10h-naphtho[1,8a-c]furan-10-yl hexadecanoate

C40H64O10 (704.4499)


   

methyl (1r,15s,17r,18r)-17-ethyl-7-[(1s,12r,14r,15e,18r)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1r,15s,17r,18r)-17-ethyl-7-[(1s,12r,14r,15e,18r)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

1,3-bis(acetyloxy)-7-(3-ethenyl-4-hydroxybut-2-en-1-yl)-5,10-dihydroxy-7,8-dimethyl-1h,3h,5h,6h,6ah,8h,9h,10h-naphtho[1,8a-c]furan-9-yl hexadecanoate

1,3-bis(acetyloxy)-7-(3-ethenyl-4-hydroxybut-2-en-1-yl)-5,10-dihydroxy-7,8-dimethyl-1h,3h,5h,6h,6ah,8h,9h,10h-naphtho[1,8a-c]furan-9-yl hexadecanoate

C40H64O10 (704.4499)


   

10-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-6a,6b,9,9,12a-pentamethyl-2-methylidene-3,4,4a,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4-carboxylic acid

10-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-6a,6b,9,9,12a-pentamethyl-2-methylidene-3,4,4a,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4-carboxylic acid

C39H60O11 (704.4135)


   

methyl 15-ethylidene-34-methoxy-10,24,30,39-tetramethyl-4,6-dioxa-10,17,30,39-tetraazaundecacyclo[26.10.1.1¹⁴,²⁰.0²,²⁶.0⁵,²⁵.0⁷,²³.0⁹,²¹.0¹¹,²⁰.0¹²,¹⁷.0²⁹,³⁷.0³¹,³⁶]tetraconta-7(23),8,21,29(37),31,33,35-heptaene-40-carboxylate

methyl 15-ethylidene-34-methoxy-10,24,30,39-tetramethyl-4,6-dioxa-10,17,30,39-tetraazaundecacyclo[26.10.1.1¹⁴,²⁰.0²,²⁶.0⁵,²⁵.0⁷,²³.0⁹,²¹.0¹¹,²⁰.0¹²,¹⁷.0²⁹,³⁷.0³¹,³⁶]tetraconta-7(23),8,21,29(37),31,33,35-heptaene-40-carboxylate

C43H52N4O5 (704.3938)


   

(1r,3r)-3-[(1s,3r,6s,8r,11r,12s,13r,15r,16r)-6-{[(2r,3r,4r,5s)-5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-13-hydroxy-7,7,12,16-tetramethyl-14-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-1-[(2s)-3,3-dimethyloxiran-2-yl]butyl acetate

(1r,3r)-3-[(1s,3r,6s,8r,11r,12s,13r,15r,16r)-6-{[(2r,3r,4r,5s)-5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-13-hydroxy-7,7,12,16-tetramethyl-14-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-1-[(2s)-3,3-dimethyloxiran-2-yl]butyl acetate

C39H60O11 (704.4135)


   

1-[(12s,13r,18r)-7-{[(12s,13r,18r)-16-hydroxy-3,16,20-trimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8-tetraen-17-yl]methyl}-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-17-yl]ethanone

1-[(12s,13r,18r)-7-{[(12s,13r,18r)-16-hydroxy-3,16,20-trimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8-tetraen-17-yl]methyl}-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-17-yl]ethanone

C43H52N4O5 (704.3938)


   

(2r,4as,6as,6br,8as,9r,10s,12s,12as,12bs,14bs)-10-(acetyloxy)-9-({[(2r,3r,4s,5r,6s)-5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}methyl)-12-hydroxy-2,4a,6a,6b,12a-pentamethyl-3,4,5,6,7,8,8a,9,10,11,12,12b,13,14b-tetradecahydro-1h-picene-2-carboxylic acid

(2r,4as,6as,6br,8as,9r,10s,12s,12as,12bs,14bs)-10-(acetyloxy)-9-({[(2r,3r,4s,5r,6s)-5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}methyl)-12-hydroxy-2,4a,6a,6b,12a-pentamethyl-3,4,5,6,7,8,8a,9,10,11,12,12b,13,14b-tetradecahydro-1h-picene-2-carboxylic acid

C39H60O11 (704.4135)


   

(2r,4as,6as,6br,8as,9r,10s,12s,12as,12bs,14bs)-9-({[(2r,3r,4r,5r,6s)-3,5-bis(acetyloxy)-4-hydroxy-6-methyloxan-2-yl]oxy}methyl)-10,12-dihydroxy-2,4a,6a,6b,12a-pentamethyl-3,4,5,6,7,8,8a,9,10,11,12,12b,13,14b-tetradecahydro-1h-picene-2-carboxylic acid

(2r,4as,6as,6br,8as,9r,10s,12s,12as,12bs,14bs)-9-({[(2r,3r,4r,5r,6s)-3,5-bis(acetyloxy)-4-hydroxy-6-methyloxan-2-yl]oxy}methyl)-10,12-dihydroxy-2,4a,6a,6b,12a-pentamethyl-3,4,5,6,7,8,8a,9,10,11,12,12b,13,14b-tetradecahydro-1h-picene-2-carboxylic acid

C39H60O11 (704.4135)


   

methyl (1s,15r,17s,18s)-17-ethyl-8-[(1s,12r,14r,15e,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1s,15r,17s,18s)-17-ethyl-8-[(1s,12r,14r,15e,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

3-[({[(1s)-1-[(4-carbamimidamidobutyl)-c-hydroxycarbonimidoyl]-3-methylbutyl]-c-hydroxycarbonimidoyl}methyl)(sulfo)amino]-n-(5-carbamimidamidopentyl)dodecanimidic acid

3-[({[(1s)-1-[(4-carbamimidamidobutyl)-c-hydroxycarbonimidoyl]-3-methylbutyl]-c-hydroxycarbonimidoyl}methyl)(sulfo)amino]-n-(5-carbamimidamidopentyl)dodecanimidic acid

C31H64N10O6S (704.4731)


   

(3r,8r)-3-{[(7s)-7-[(5ar,5br,11as,13bs)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]-2,3,4-trihydroxyoctyl]oxy}-4,8-dihydroxy-2,6-dioxabicyclo[3.2.1]octan-7-one

(3r,8r)-3-{[(7s)-7-[(5ar,5br,11as,13bs)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]-2,3,4-trihydroxyoctyl]oxy}-4,8-dihydroxy-2,6-dioxabicyclo[3.2.1]octan-7-one

C41H68O9 (704.4863)


   

2-[(1s,2r,3s,4r,7r,9s,12r,14s,17r,18r,19r,21r,22s)-9-{[(2s,3r,4r,5r)-5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-2-hydroxy-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-22-yl]propan-2-yl acetate

2-[(1s,2r,3s,4r,7r,9s,12r,14s,17r,18r,19r,21r,22s)-9-{[(2s,3r,4r,5r)-5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-2-hydroxy-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-22-yl]propan-2-yl acetate

C39H60O11 (704.4135)


   

methyl (1s,15s,17s,18s)-17-ethyl-5-[(1s,12r,14s,15e)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1s,15s,17s,18s)-17-ethyl-5-[(1s,12r,14s,15e)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

2-[(1s,2r,3s,4r,7r,9s,12r,14s,17r,18r,19r,21r,22s)-9-{[(2s,3r,4s,5r)-4-(acetyloxy)-3,5-dihydroxyoxan-2-yl]oxy}-2-hydroxy-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-22-yl]propan-2-yl acetate

2-[(1s,2r,3s,4r,7r,9s,12r,14s,17r,18r,19r,21r,22s)-9-{[(2s,3r,4s,5r)-4-(acetyloxy)-3,5-dihydroxyoxan-2-yl]oxy}-2-hydroxy-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-22-yl]propan-2-yl acetate

C39H60O11 (704.4135)


   

3-(6-{[5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-13-hydroxy-7,7,12,16-tetramethyl-14-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl)-1-(3,3-dimethyloxiran-2-yl)butyl acetate

3-(6-{[5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-13-hydroxy-7,7,12,16-tetramethyl-14-oxopentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl)-1-(3,3-dimethyloxiran-2-yl)butyl acetate

C39H60O11 (704.4135)


   

3-[(7-{5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl}-2,3,4-trihydroxyoctyl)oxy]-4,8-dihydroxy-2,6-dioxabicyclo[3.2.1]octan-7-one

3-[(7-{5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl}-2,3,4-trihydroxyoctyl)oxy]-4,8-dihydroxy-2,6-dioxabicyclo[3.2.1]octan-7-one

C41H68O9 (704.4863)


   

methyl (1s,15r,17s,18s)-17-ethyl-6-[(1s,12s,14r,15e,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1s,15r,17s,18s)-17-ethyl-6-[(1s,12s,14r,15e,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

methyl (1s,2r,5s,11r,12s,14r,15z,20r,24r,25r,26r,28s,40s)-15-ethylidene-34-methoxy-10,24,30,39-tetramethyl-4,6-dioxa-10,17,30,39-tetraazaundecacyclo[26.10.1.1¹⁴,²⁰.0²,²⁶.0⁵,²⁵.0⁷,²³.0⁹,²¹.0¹¹,²⁰.0¹²,¹⁷.0²⁹,³⁷.0³¹,³⁶]tetraconta-7(23),8,21,29(37),31,33,35-heptaene-40-carboxylate

methyl (1s,2r,5s,11r,12s,14r,15z,20r,24r,25r,26r,28s,40s)-15-ethylidene-34-methoxy-10,24,30,39-tetramethyl-4,6-dioxa-10,17,30,39-tetraazaundecacyclo[26.10.1.1¹⁴,²⁰.0²,²⁶.0⁵,²⁵.0⁷,²³.0⁹,²¹.0¹¹,²⁰.0¹²,¹⁷.0²⁹,³⁷.0³¹,³⁶]tetraconta-7(23),8,21,29(37),31,33,35-heptaene-40-carboxylate

C43H52N4O5 (704.3938)


   

1-[(1s,12s,13r,18r)-7-{[(1s,12s,13r,16r,17s,18r)-16-hydroxy-3,16,20-trimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8-tetraen-17-yl]methyl}-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-17-yl]ethanone

1-[(1s,12s,13r,18r)-7-{[(1s,12s,13r,16r,17s,18r)-16-hydroxy-3,16,20-trimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8-tetraen-17-yl]methyl}-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-17-yl]ethanone

C43H52N4O5 (704.3938)


   

(4s,4ar,6ar,6bs,8ar,10r,12as,12bs,14bs)-10-{[(2r,3s,4r,5s)-4,5-dihydroxy-3-{[(2r,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-3,4,4a,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4-carboxylic acid

(4s,4ar,6ar,6bs,8ar,10r,12as,12bs,14bs)-10-{[(2r,3s,4r,5s)-4,5-dihydroxy-3-{[(2r,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-3,4,4a,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4-carboxylic acid

C39H60O11 (704.4135)


   

methyl (1r,15r,17s,18s)-17-ethyl-8-[(1r,12r,14s,15e,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1r,15r,17s,18s)-17-ethyl-8-[(1r,12r,14s,15e,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

methyl 17-ethyl-5-[(15e)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl 17-ethyl-5-[(15e)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

(2r,3r,4s,5s,6r)-3-(acetyloxy)-2-[(acetyloxy)methyl]-5-(hexanoyloxy)-6-[(2r,3s)-2,3,4-trihydroxybutoxy]oxan-4-yl hexadecanoate

(2r,3r,4s,5s,6r)-3-(acetyloxy)-2-[(acetyloxy)methyl]-5-(hexanoyloxy)-6-[(2r,3s)-2,3,4-trihydroxybutoxy]oxan-4-yl hexadecanoate

C36H64O13 (704.4347)


   

2-[(1s,2r,3s,4r,7r,9s,12r,14s,17r,18r,19r,21r,22s)-9-{[(2s,3r,4s,5r)-3-(acetyloxy)-4,5-dihydroxyoxan-2-yl]oxy}-2-hydroxy-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-22-yl]propan-2-yl acetate

2-[(1s,2r,3s,4r,7r,9s,12r,14s,17r,18r,19r,21r,22s)-9-{[(2s,3r,4s,5r)-3-(acetyloxy)-4,5-dihydroxyoxan-2-yl]oxy}-2-hydroxy-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-22-yl]propan-2-yl acetate

C39H60O11 (704.4135)


   

(2e)-4-[(2-hydroxy-2-{3-hydroxy-4-[(4e,6e,12e,14e)-10-hydroxy-3-methoxy-7,9,11,13,15-pentamethyl-16-oxo-1-oxacyclohexadeca-4,6,12,14-tetraen-2-yl]pentan-2-yl}-6-isopropyl-5-methyloxan-4-yl)oxy]-4-oxobut-2-enoic acid

(2e)-4-[(2-hydroxy-2-{3-hydroxy-4-[(4e,6e,12e,14e)-10-hydroxy-3-methoxy-7,9,11,13,15-pentamethyl-16-oxo-1-oxacyclohexadeca-4,6,12,14-tetraen-2-yl]pentan-2-yl}-6-isopropyl-5-methyloxan-4-yl)oxy]-4-oxobut-2-enoic acid

C39H60O11 (704.4135)


   

4-{17-acetyl-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-7-yl}-3-[13-(hydroxymethyl)-3,16-dimethyl-3,16-diazatetracyclo[10.3.1.0²,¹⁰.0⁴,⁹]hexadeca-2(10),4,6,8-tetraen-14-yl]butan-2-one

4-{17-acetyl-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-7-yl}-3-[13-(hydroxymethyl)-3,16-dimethyl-3,16-diazatetracyclo[10.3.1.0²,¹⁰.0⁴,⁹]hexadeca-2(10),4,6,8-tetraen-14-yl]butan-2-one

C43H52N4O5 (704.3938)


   

methyl 17-ethyl-5-[15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl 17-ethyl-5-[15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

methyl 17-ethyl-5-[(12s,15z)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl 17-ethyl-5-[(12s,15z)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

(1r,3s,5s,6ar,7r,8r,9s,10s,10ar)-1,3-bis(acetyloxy)-7-[(2z)-3-ethenyl-4-hydroxybut-2-en-1-yl]-5,10-dihydroxy-7,8-dimethyl-1h,3h,5h,6h,6ah,8h,9h,10h-naphtho[1,8a-c]furan-9-yl hexadecanoate

(1r,3s,5s,6ar,7r,8r,9s,10s,10ar)-1,3-bis(acetyloxy)-7-[(2z)-3-ethenyl-4-hydroxybut-2-en-1-yl]-5,10-dihydroxy-7,8-dimethyl-1h,3h,5h,6h,6ah,8h,9h,10h-naphtho[1,8a-c]furan-9-yl hexadecanoate

C40H64O10 (704.4499)


   

10-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C39H60O11 (704.4135)


   

methyl (1s,15r,17s,18s)-17-ethyl-7-[(1s,12r,14r,15z,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1s,15r,17s,18s)-17-ethyl-7-[(1s,12r,14r,15z,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

(1r,2s,7s)-7-{4-[(1r,2s)-1-(acetyloxy)-7-chloro-2-methylundecyl]-2,6-dihydroxyphenyl}-1-(3,5-dihydroxyphenyl)-2-methylundecyl acetate

(1r,2s,7s)-7-{4-[(1r,2s)-1-(acetyloxy)-7-chloro-2-methylundecyl]-2,6-dihydroxyphenyl}-1-(3,5-dihydroxyphenyl)-2-methylundecyl acetate

C40H61ClO8 (704.4055)


   

(1r,3s,5s,6ar,7r,8r,9s,10s,10ar)-1,3-bis(acetyloxy)-7-[(2z)-3-ethenyl-4-hydroxybut-2-en-1-yl]-5,9-dihydroxy-7,8-dimethyl-1h,3h,5h,6h,6ah,8h,9h,10h-naphtho[1,8a-c]furan-10-yl hexadecanoate

(1r,3s,5s,6ar,7r,8r,9s,10s,10ar)-1,3-bis(acetyloxy)-7-[(2z)-3-ethenyl-4-hydroxybut-2-en-1-yl]-5,9-dihydroxy-7,8-dimethyl-1h,3h,5h,6h,6ah,8h,9h,10h-naphtho[1,8a-c]furan-10-yl hexadecanoate

C40H64O10 (704.4499)


   

3-(acetyloxy)-2-[(acetyloxy)methyl]-5-(hexanoyloxy)-6-(2,3,4-trihydroxybutoxy)oxan-4-yl hexadecanoate

3-(acetyloxy)-2-[(acetyloxy)methyl]-5-(hexanoyloxy)-6-(2,3,4-trihydroxybutoxy)oxan-4-yl hexadecanoate

C36H64O13 (704.4347)


   

methyl (1s,15r,17s,18s)-17-ethyl-6-[(1r,15e,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1s,15r,17s,18s)-17-ethyl-6-[(1r,15e,18s)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

methyl (1r,15r,17r)-17-ethyl-6-[(1s,12r,14r,15e)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1r,15r,17r)-17-ethyl-6-[(1s,12r,14r,15e)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H52N4O5 (704.3938)


   

(3s)-4-{[(1r,3ar,5ar,7r,8r,9as,11ar)-7-(acetyloxy)-1-[(2r,3r,6s)-2-(acetyloxy)-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-8-yl]oxy}-3-hydroxy-3-methyl-4-oxobutanoic acid

(3s)-4-{[(1r,3ar,5ar,7r,8r,9as,11ar)-7-(acetyloxy)-1-[(2r,3r,6s)-2-(acetyloxy)-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-8-yl]oxy}-3-hydroxy-3-methyl-4-oxobutanoic acid

C39H60O11 (704.4135)


   

1-[(1s,12s,13r,18r)-7-{[(1s,12s,13r,16s,17r,18r)-16-hydroxy-3,16,20-trimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8-tetraen-17-yl]methyl}-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-17-yl]ethanone

1-[(1s,12s,13r,18r)-7-{[(1s,12s,13r,16s,17r,18r)-16-hydroxy-3,16,20-trimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8-tetraen-17-yl]methyl}-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-17-yl]ethanone

C43H52N4O5 (704.3938)


   

cimiracemoside l

cimiracemoside l

C39H60O11 (704.4135)


   

1-[7-({16-hydroxy-3,16,20-trimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8-tetraen-17-yl}methyl)-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-17-yl]ethanone

1-[7-({16-hydroxy-3,16,20-trimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8-tetraen-17-yl}methyl)-6-methoxy-3,20-dimethyl-15-oxa-3,20-diazapentacyclo[10.7.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]icosa-2(10),4,6,8,16-pentaen-17-yl]ethanone

C43H52N4O5 (704.3938)


   

4-({2-hydroxy-2-[3-hydroxy-4-(10-hydroxy-3-methoxy-7,9,11,13,15-pentamethyl-16-oxo-1-oxacyclohexadeca-4,6,12,14-tetraen-2-yl)pentan-2-yl]-6-isopropyl-5-methyloxan-4-yl}oxy)-4-oxobut-2-enoic acid

4-({2-hydroxy-2-[3-hydroxy-4-(10-hydroxy-3-methoxy-7,9,11,13,15-pentamethyl-16-oxo-1-oxacyclohexadeca-4,6,12,14-tetraen-2-yl)pentan-2-yl]-6-isopropyl-5-methyloxan-4-yl}oxy)-4-oxobut-2-enoic acid

C39H60O11 (704.4135)