Exact Mass: 703.5175

Exact Mass Matches: 703.5175

Found 500 metabolites which its exact mass value is equals to given mass value 703.5175, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PE(P-18:0/16:0)

(2-aminoethoxy)[(2R)-2-(hexadecanoyloxy)-3-[(1Z)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C39H78NO7P (703.5516)


PE(P-18:0/16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/16:0), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of palmitic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:0/16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/16:0), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of palmitic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(14:0/16:1(9Z))

(2-{[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C38H74NO8P (703.5152)


PC(14:0/16:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/16:1(9Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(14:1(9Z)/16:0)

(2-{[(2R)-2-(hexadecanoyloxy)-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C38H74NO8P (703.5152)


PC(14:1(9Z)/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:1(9Z)/16:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(15:0/P-16:0)

[2-({2-[(1Z)-hexadec-1-en-1-yloxy]-3-(pentadecanoyloxy)propyl phosphonato}oxy)ethyl]trimethylazanium

C39H78NO7P (703.5516)


PC(15:0/P-16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(15:0/P-16:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(15:0/P-16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(15:0/P-16:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(16:0/14:1(9Z))

(2-{[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C38H74NO8P (703.5152)


PC(16:0/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/14:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(16:0/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/14:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(16:1(9Z)/14:0)

(2-{[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C38H74NO8P (703.5152)


PC(16:1(9Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:1(9Z)/14:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of myristic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PE(15:0/18:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-(pentadecanoyloxy)propoxy]phosphinic acid

C38H74NO8P (703.5152)


PE(15:0/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/18:1(11Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(15:0/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/18:1(11Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(15:0/18:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-(pentadecanoyloxy)propoxy]phosphinic acid

C38H74NO8P (703.5152)


PE(15:0/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/18:1(9Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of oleic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(15:0/18:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(15:0/18:1(9Z)), in particular, consists of one pentadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(16:0/P-18:0)

(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(1Z)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C39H78NO7P (703.5516)


PE(16:0/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/P-18:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(16:0/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/P-18:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(18:0/P-16:0)

(2-aminoethoxy)[(2R)-2-[(1Z)-hexadec-1-en-1-yloxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

C39H78NO7P (703.5516)


PE(18:0/P-16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:0/P-16:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(18:1(11Z)/15:0)

(2-aminoethoxy)[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-(pentadecanoyloxy)propoxy]phosphinic acid

C38H74NO8P (703.5152)


PE(18:1(11Z)/15:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(11Z)/15:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:1(9Z)/15:0)

(2-aminoethoxy)[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-(pentadecanoyloxy)propoxy]phosphinic acid

C38H74NO8P (703.5152)


PE(18:1(9Z)/15:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(9Z)/15:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:1(9Z)/15:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(18:1(9Z)/15:0), in particular, consists of one 9Z-octadecenoyl chain to the C-1 atom, and one pentadecanoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(O-16:0/18:1(9Z))

(2-aminoethoxy)[(2R)-3-(hexadecyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C39H78NO7P (703.5516)


2-(9Z-octadecanoyl)-1-hexadecyl-sn-glycero-3-phosphoethanolamine is an ether lipid. Ether lipids are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. 2-(9Z-octadecanoyl)-1-hexadecyl-sn-glycero-3-phosphoethanolamine is an ether lipid. Ether lipids are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage.

   

PC(P-16:0/15:0)

(2-{[(2R)-3-[(1Z)-hexadec-1-en-1-yloxy]-2-(pentadecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C39H78NO7P (703.5516)


PC(P-16:0/15:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-16:0/15:0), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-16:0/15:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-16:0/15:0), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(P-16:0/18:0)

(2-aminoethoxy)[(2R)-3-[(1Z)-hexadec-1-en-1-yloxy]-2-(octadecanoyloxy)propoxy]phosphinic acid

C39H78NO7P (703.5516)


PE(P-16:0/18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/18:0), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of stearic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-16:0/18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/18:0), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of stearic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(16:0/16:1(9Z))

{2-[(9Z)-hexadec-9-enoyloxy]-3-(hexadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C38H74NO8P (703.5152)


PE-NMe(16:0/16:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:0/16:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-hexadecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(14:0/18:1(9Z))

[2-(methylamino)ethoxy]({2-[(9Z)-octadec-9-enoyloxy]-3-(tetradecanoyloxy)propoxy})phosphinic acid

C38H74NO8P (703.5152)


PE-NMe(14:0/18:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:0/18:1(9Z)), in particular, consists of one tetradecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(14:0/18:1(11Z))

[2-(methylamino)ethoxy]({2-[(11Z)-octadec-11-enoyloxy]-3-(tetradecanoyloxy)propoxy})phosphinic acid

C38H74NO8P (703.5152)


PE-NMe(14:0/18:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:0/18:1(11Z)), in particular, consists of one tetradecanoyl chain to the C-1 atom, and one 11Z-octadecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(14:1(9Z)/18:0)

[2-(methylamino)ethoxy][2-(octadecanoyloxy)-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C38H74NO8P (703.5152)


PE-NMe(14:1(9Z)/18:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:1(9Z)/18:0), in particular, consists of one 9Z-tetradecenoyl chain to the C-1 atom, and one octadecanoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(16:1(9Z)/16:0)

{3-[(9Z)-hexadec-9-enoyloxy]-2-(hexadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C38H74NO8P (703.5152)


PE-NMe(16:1(9Z)/16:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:1(9Z)/16:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:0/14:1(9Z))

[2-(methylamino)ethoxy][3-(octadecanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C38H74NO8P (703.5152)


PE-NMe(18:0/14:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:0/14:1(9Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(11Z)/14:0)

[2-(methylamino)ethoxy]({3-[(11Z)-octadec-11-enoyloxy]-2-(tetradecanoyloxy)propoxy})phosphinic acid

C38H74NO8P (703.5152)


PE-NMe(18:1(11Z)/14:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(11Z)/14:0), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(9Z)/14:0)

[2-(methylamino)ethoxy]({3-[(9Z)-octadec-9-enoyloxy]-2-(tetradecanoyloxy)propoxy})phosphinic acid

C38H74NO8P (703.5152)


PE-NMe(18:1(9Z)/14:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(9Z)/14:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(15:0/16:1(9Z))

[2-(dimethylamino)ethoxy]({2-[(9Z)-hexadec-9-enoyloxy]-3-(pentadecanoyloxy)propoxy})phosphinic acid

C38H74NO8P (703.5152)


PE-NMe2(15:0/16:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions.PE-NMe2(15:0/16:1(9Z)), in particular, consists of one pentadecanoyl chain to the C-1 atom, and one 9Z-hexadecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe2(16:1(9Z)/15:0)

[2-(dimethylamino)ethoxy]({3-[(9Z)-hexadec-9-enoyloxy]-2-(pentadecanoyloxy)propoxy})phosphinic acid

C38H74NO8P (703.5152)


PE-NMe2(16:1(9Z)/15:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(16:1(9Z)/15:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE(14:0/18:1(12Z)-O(9S,10R))

(2-aminoethoxy)[(2R)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-3-(tetradecanoyloxy)propoxy]phosphinic acid

C37H70NO9P (703.4788)


PE(14:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:1(12Z)-O(9S,10R)/14:0)

(2-aminoethoxy)[(2R)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-2-(tetradecanoyloxy)propoxy]phosphinic acid

C37H70NO9P (703.4788)


PE(18:1(12Z)-O(9S,10R)/14:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(12Z)-O(9S,10R)/14:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(14:0/18:1(9Z)-O(12,13))

(2-aminoethoxy)[(2R)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphinic acid

C37H70NO9P (703.4788)


PE(14:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:1(9Z)-O(12,13)/14:0)

(2-aminoethoxy)[(2R)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphinic acid

C37H70NO9P (703.4788)


PE(18:1(9Z)-O(12,13)/14:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(9Z)-O(12,13)/14:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

10E-heptadecenoic acid

(2-{[(2R)-3-(dodecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C38H74NO8P (703.5152)


   

Phosphatidylethanolamine alkyl 16:0-18:1

Phosphatidylethanolamine alkyl 16:0-18:1

C39H78NO7P (703.5516)


   

Aralia cerebroside

Aralia cerebroside

C38H73NO10 (703.5234)


   

Phosphatidylethanolamine alkenyl 18:0-16:0

Phosphatidylethanolamine alkenyl 18:0-16:0

C39H78NO7P (703.5516)


   

PC 30:1

1-tetradecanoyl-2-(9Z-hexadecenoyl)-sn-glycero-3-phosphocholine

C38H74NO8P (703.5152)


Found in mouse lung; TwoDicalId=150; MgfFile=160901_Lung_AA_Neg_17; MgfId=678 Found in mouse muscle; TwoDicalId=461; MgfFile=160824_Muscle_normal_Neg_01; MgfId=657

   

(2-aminoethoxy)[2-(hexadecanoyloxy)-3-[octadec-1-en-1-yloxy]propoxy]phosphinic acid

(2-aminoethoxy)[2-(hexadecanoyloxy)-3-[octadec-1-en-1-yloxy]propoxy]phosphinic acid

C39H78NO7P (703.5516)


   

(2-{[2-[hexadec-9-enoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

(2-{[2-[hexadec-9-enoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C38H74NO8P (703.5152)


   

PC(14:0/16:1)[U]

3,5,8-Trioxa-4-phosphatetracos-17-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxotetradecyl)oxy]methyl]-, inner salt, 4-oxide, (Z)-

C38H74NO8P (703.5152)


   

PE(O-16:0/18:1)

1-hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine

C39H78NO7P (703.5516)


   

Lecithin

1-Palmitoleoyl-2-myristoyl-sn-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

Lecithin

1-(1-Enyl-palmitoyl)-2-pentadecanoyl-sn-glycero-3-phosphocholine

C39H78NO7P (703.5516)


   

PE(33:1)

1-Vaccenoyl-2-pentadecanoyl-sn-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(34:0)

1-(1-Enyl-stearoyl)-2-palmitoyl-sn-glycero-3-phosphoethanolamine

C39H78NO7P (703.5516)


   

PC(13:0/17:1(9Z))

1-tridecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

PC(15:0/15:1(9Z))

1-pentadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

PC(15:1(9Z)/15:0)

1-(9Z-pentadecenoyl)-2-pentadecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

PC(17:1(9Z)/13:0)

1-(9Z-heptadecenoyl)-2-tridecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

PC(18:1(9Z)/12:0)

1-(9Z-octadecenoyl)-2-dodecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

PC(O-16:0/15:1(9Z))

1-hexadecyl-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C39H78NO7P (703.5516)


   

PC(P-18:0/13:0)

1-(1Z-octadecenyl)-2-tridecanoyl-glycero-3-phosphocholine

C39H78NO7P (703.5516)


   

PE(13:0/20:1(11Z))

1-tridecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(14:0/19:1(9Z))

1-tetradecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(14:1(9Z)/19:0)

1-(9Z-tetradecenoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(15:1(9Z)/18:0)

1-(9Z-pentadecenoyl)-2-octadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(16:1(9Z)/17:0)

1-(9Z-hexadecenoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(17:0/16:1(9Z))

1-heptadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(17:1(9Z)/16:0)

1-(9Z-heptadecenoyl)-2-hexadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(18:0/15:1(9Z))

1-octadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(19:0/14:1(9Z))

1-nonadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(19:1(9Z)/14:0)

1-(9Z-nonadecenoyl)-2-tetradecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(20:1(11Z)/13:0)

1-(11Z-eicosenoyl)-2-tridecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(16:0/17:1(9Z))

1-hexadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE(O-20:0/14:1(9Z))

1-eicosyl-2-(9Z-tetradecenoyl)-glycero-3-phosphoethanolamine

C39H78NO7P (703.5516)


   

PE(O-18:0/16:1(9Z))

1-octadecyl-2-(9Z-hexadecenoyl)-glycero-3-phosphoethanolamine

C39H78NO7P (703.5516)


   

PE(P-20:0/14:0)

1-(1Z-eicosenyl)-2-tetradecanoyl-glycero-3-phosphoethanolamine

C39H78NO7P (703.5516)


   

PC O-31:1

1-(1Z-hexadecenyl)-2-pentadecanoyl-glycero-3-phosphocholine

C39H78NO7P (703.5516)


   

PE 33:1

1-hexadecanoyl-2-(9R, 10S-methylene-hexadecanoyl)-sn-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

PE O-34:1

1-hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine

C39H78NO7P (703.5516)


   

3,5,8-Trioxa-4-phosphahexacos-17-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxododecyl)oxy]methyl]-, inner salt, 4-oxide, [R-(Z)]-

3,5,8-Trioxa-4-phosphahexacos-17-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxododecyl)oxy]methyl]-, inner salt, 4-oxide, [R-(Z)]-

C38H74NO8P (703.5152)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexadec-9-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

Phosphatidylethanolamine (1-palmitoyl, 2-cis-9,10-methylene hexadecanoyl)

Phosphatidylethanolamine (1-palmitoyl, 2-cis-9,10-methylene hexadecanoyl)

C38H74NO8P (703.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[8-(2-hexylcyclopropyl)octanoyloxy]propyl] hexadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[8-(2-hexylcyclopropyl)octanoyloxy]propyl] hexadecanoate

C38H74NO8P (703.5152)


   

PE (17:1(10Z)/16:0) zwitterion

PE (17:1(10Z)/16:0) zwitterion

C38H74NO8P (703.5152)


   

1-(1Z-octadecenyl)-sn-glycero-3-phospho-(N-palmitoyl)ethanolamine

1-(1Z-octadecenyl)-sn-glycero-3-phospho-(N-palmitoyl)ethanolamine

C39H78NO7P (703.5516)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (Z)-heptadec-10-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (Z)-heptadec-10-enoate

C38H74NO8P (703.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] icosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] icosanoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-octadec-9-enoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] hexadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] hexadecanoate

C39H78NO7P (703.5516)


   
   

HexCer 9:1;2O/26:5

HexCer 9:1;2O/26:5

C41H69NO8 (703.5023)


   

HexCer 9:0;2O/26:6

HexCer 9:0;2O/26:6

C41H69NO8 (703.5023)


   

NAGly 26:7/17:2

NAGly 26:7/17:2

C45H69NO5 (703.5175)


   

HexCer 13:0;2O/22:6

HexCer 13:0;2O/22:6

C41H69NO8 (703.5023)


   

HexCer 19:2;2O/16:4

HexCer 19:2;2O/16:4

C41H69NO8 (703.5023)


   

HexCer 15:3;2O/20:3

HexCer 15:3;2O/20:3

C41H69NO8 (703.5023)


   

HexCer 17:2;2O/18:4

HexCer 17:2;2O/18:4

C41H69NO8 (703.5023)


   

HexCer 19:3;2O/16:3

HexCer 19:3;2O/16:3

C41H69NO8 (703.5023)


   

HexCer 13:2;2O/22:4

HexCer 13:2;2O/22:4

C41H69NO8 (703.5023)


   

HexCer 17:3;2O/18:3

HexCer 17:3;2O/18:3

C41H69NO8 (703.5023)


   

HexCer 15:1;2O/20:5

HexCer 15:1;2O/20:5

C41H69NO8 (703.5023)


   

HexCer 17:1;2O/18:5

HexCer 17:1;2O/18:5

C41H69NO8 (703.5023)


   

HexCer 15:2;2O/20:4

HexCer 15:2;2O/20:4

C41H69NO8 (703.5023)


   

HexCer 11:0;2O/24:6

HexCer 11:0;2O/24:6

C41H69NO8 (703.5023)


   

HexCer 13:1;2O/22:5

HexCer 13:1;2O/22:5

C41H69NO8 (703.5023)


   

HexCer 11:1;2O/24:5

HexCer 11:1;2O/24:5

C41H69NO8 (703.5023)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (Z)-tetratriacont-23-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (Z)-tetratriacont-23-enoate

C39H78NO7P (703.5516)


   

Lnape 9:0/N-24:1

Lnape 9:0/N-24:1

C38H74NO8P (703.5152)


   

Lnape 7:0/N-26:1

Lnape 7:0/N-26:1

C38H74NO8P (703.5152)


   

Lnape 26:1/N-7:0

Lnape 26:1/N-7:0

C38H74NO8P (703.5152)


   

Lnape 24:1/N-9:0

Lnape 24:1/N-9:0

C38H74NO8P (703.5152)


   

[2-[(Z)-docos-13-enoyl]oxy-3-nonoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-docos-13-enoyl]oxy-3-nonoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

2-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-nonanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-nonanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C41H69NO8 (703.5023)


   

Lnape 15:1/N-18:0

Lnape 15:1/N-18:0

C38H74NO8P (703.5152)


   

Lnape 22:1/N-11:0

Lnape 22:1/N-11:0

C38H74NO8P (703.5152)


   

Lnape 19:1/N-14:0

Lnape 19:1/N-14:0

C38H74NO8P (703.5152)


   

Lnape 17:0/N-16:1

Lnape 17:0/N-16:1

C38H74NO8P (703.5152)


   

Lnape 13:1/N-20:0

Lnape 13:1/N-20:0

C38H74NO8P (703.5152)


   

Lnape 20:1/N-13:0

Lnape 20:1/N-13:0

C38H74NO8P (703.5152)


   

Lnape 19:0/N-14:1

Lnape 19:0/N-14:1

C38H74NO8P (703.5152)


   

Lnape 17:1/N-16:0

Lnape 17:1/N-16:0

C38H74NO8P (703.5152)


   

Lnape 13:0/N-20:1

Lnape 13:0/N-20:1

C38H74NO8P (703.5152)


   

Lnape 12:0/N-21:1

Lnape 12:0/N-21:1

C38H74NO8P (703.5152)


   

Lnape 21:1/N-12:0

Lnape 21:1/N-12:0

C38H74NO8P (703.5152)


   

Lnape 20:0/N-13:1

Lnape 20:0/N-13:1

C38H74NO8P (703.5152)


   

Lnape 11:0/N-22:1

Lnape 11:0/N-22:1

C38H74NO8P (703.5152)


   

Lnape 18:1/N-15:0

Lnape 18:1/N-15:0

C38H74NO8P (703.5152)


   

Lnape 15:0/N-18:1

Lnape 15:0/N-18:1

C38H74NO8P (703.5152)


   

Lnape 14:0/N-19:1

Lnape 14:0/N-19:1

C38H74NO8P (703.5152)


   

Lnape 16:0/N-17:1

Lnape 16:0/N-17:1

C38H74NO8P (703.5152)


   

Lnape 16:1/N-17:0

Lnape 16:1/N-17:0

C38H74NO8P (703.5152)


   

Lnape 14:1/N-19:0

Lnape 14:1/N-19:0

C38H74NO8P (703.5152)


   

Lnape 18:0/N-15:1

Lnape 18:0/N-15:1

C38H74NO8P (703.5152)


   

2-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C41H69NO8 (703.5023)


   

2-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C41H69NO8 (703.5023)


   

2-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C41H69NO8 (703.5023)


   

2-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C41H69NO8 (703.5023)


   

HexCer 8:0;3O/24:1;(2OH)

HexCer 8:0;3O/24:1;(2OH)

C38H73NO10 (703.5234)


   

HexCer 9:0;3O/23:1;(2OH)

HexCer 9:0;3O/23:1;(2OH)

C38H73NO10 (703.5234)


   

HexCer 13:0;3O/19:1;(2OH)

HexCer 13:0;3O/19:1;(2OH)

C38H73NO10 (703.5234)


   

HexCer 12:0;3O/20:1;(2OH)

HexCer 12:0;3O/20:1;(2OH)

C38H73NO10 (703.5234)


   

HexCer 10:0;3O/22:1;(2OH)

HexCer 10:0;3O/22:1;(2OH)

C38H73NO10 (703.5234)


   

HexCer 13:1;3O/19:0;(2OH)

HexCer 13:1;3O/19:0;(2OH)

C38H73NO10 (703.5234)


   

HexCer 12:1;3O/20:0;(2OH)

HexCer 12:1;3O/20:0;(2OH)

C38H73NO10 (703.5234)


   

HexCer 11:0;3O/21:1;(2OH)

HexCer 11:0;3O/21:1;(2OH)

C38H73NO10 (703.5234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octacos-17-enoxy]propan-2-yl] hexanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octacos-17-enoxy]propan-2-yl] hexanoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] (Z)-hexacos-15-enoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] octanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] octanoate

C39H78NO7P (703.5516)


   

[3-[(Z)-hexacos-15-enoxy]-2-pentanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-hexacos-15-enoxy]-2-pentanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[2-heptanoyloxy-3-[(Z)-tetracos-13-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptanoyloxy-3-[(Z)-tetracos-13-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[3-[(Z)-octacos-17-enoxy]-2-propanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-octacos-17-enoxy]-2-propanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[3-[(Z)-docos-13-enoxy]-2-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-docos-13-enoxy]-2-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

1-Pentadecanoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-d7

1-Pentadecanoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-d7

C38H74NO8P (703.5152)


   

(4E,8E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyhexadeca-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyhexadeca-4,8-diene-1-sulfonic acid

C42H73NO5S (703.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-nonadec-9-enoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (Z)-heptadec-9-enoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] tridecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] tridecanoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] henicosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] henicosanoate

C39H78NO7P (703.5516)


   

(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]octadec-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]octadec-4-ene-1-sulfonic acid

C42H73NO5S (703.5209)


   

2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyicosane-1-sulfonic acid

2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyicosane-1-sulfonic acid

C42H73NO5S (703.5209)


   

(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]docosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]docosa-4,8-diene-1-sulfonic acid

C42H73NO5S (703.5209)


   

(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]tetracosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]tetracosa-4,8-diene-1-sulfonic acid

C42H73NO5S (703.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] pentadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] pentadecanoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] decanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] decanoate

C39H78NO7P (703.5516)


   

(4E,8E,12E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxyhexadeca-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxyhexadeca-4,8,12-triene-1-sulfonic acid

C42H73NO5S (703.5209)


   

(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyicosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyicosa-4,8-diene-1-sulfonic acid

C42H73NO5S (703.5209)


   

(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyicos-4-ene-1-sulfonic acid

(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyicos-4-ene-1-sulfonic acid

C42H73NO5S (703.5209)


   

3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]octadecane-1-sulfonic acid

3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]octadecane-1-sulfonic acid

C42H73NO5S (703.5209)


   

(4E,8E,12E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxyicosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxyicosa-4,8,12-triene-1-sulfonic acid

C42H73NO5S (703.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-pentadec-9-enoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] heptadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] heptadecanoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (Z)-docos-13-enoate

C39H78NO7P (703.5516)


   

(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]docos-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]docos-4-ene-1-sulfonic acid

C42H73NO5S (703.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] tetradecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] tetradecanoate

C39H78NO7P (703.5516)


   

(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]docosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]docosa-4,8,12-triene-1-sulfonic acid

C42H73NO5S (703.5209)


   

(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]tetracos-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]tetracos-4-ene-1-sulfonic acid

C42H73NO5S (703.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (Z)-tridec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (Z)-tridec-9-enoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (Z)-tetracos-13-enoate

C39H78NO7P (703.5516)


   

2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyhexadecane-1-sulfonic acid

2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyhexadecane-1-sulfonic acid

C42H73NO5S (703.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-henicos-11-enoate

C39H78NO7P (703.5516)


   

(4E,8E,12E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]octadeca-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]octadeca-4,8,12-triene-1-sulfonic acid

C42H73NO5S (703.5209)


   

(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyhexadec-4-ene-1-sulfonic acid

(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyhexadec-4-ene-1-sulfonic acid

C42H73NO5S (703.5209)


   

(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]tetracosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]tetracosa-4,8,12-triene-1-sulfonic acid

C42H73NO5S (703.5209)


   

(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]octadeca-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]octadeca-4,8-diene-1-sulfonic acid

C42H73NO5S (703.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (Z)-tetradec-9-enoate

C39H78NO7P (703.5516)


   

(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhexacosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhexacosa-4,8-diene-1-sulfonic acid

C42H73NO5S (703.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] nonadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] nonadecanoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] dodecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] dodecanoate

C39H78NO7P (703.5516)


   

(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyhexacosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyhexacosa-4,8,12-triene-1-sulfonic acid

C42H73NO5S (703.5209)


   

[3-[(Z)-heptadec-9-enoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-heptadec-9-enoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexadec-9-enoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[2-hexadecanoyloxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-hexadecanoyloxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[2-octadecanoyloxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-octadecanoyloxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[2-[(Z)-icos-11-enoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-icos-11-enoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[3-dodecoxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecoxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[2-decanoyloxy-3-[(Z)-henicos-11-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-decanoyloxy-3-[(Z)-henicos-11-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[3-heptadecoxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecoxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[3-[(Z)-icos-11-enoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-icos-11-enoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[3-decoxy-2-[(Z)-henicos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decoxy-2-[(Z)-henicos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[2-dodecanoyloxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-dodecanoyloxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[2-[(Z)-octadec-9-enoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-octadec-9-enoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] hexadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] hexadecanoate

C39H78NO7P (703.5516)


   

4-[3-octanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-octanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-hexanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-hexanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[3-decanoyloxy-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-decanoyloxy-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2,3-bis[[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

4-[2,3-bis[[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[3-dodecanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-dodecanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[3-hexadecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-hexadecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

HexCer 18:0;3O/14:1;(2OH)

HexCer 18:0;3O/14:1;(2OH)

C38H73NO10 (703.5234)


   

HexCer 20:0;3O/12:1;(2OH)

HexCer 20:0;3O/12:1;(2OH)

C38H73NO10 (703.5234)


   

HexCer 15:1;3O/17:0;(2OH)

HexCer 15:1;3O/17:0;(2OH)

C38H73NO10 (703.5234)


   

HexCer 14:0;3O/18:1;(2OH)

HexCer 14:0;3O/18:1;(2OH)

C38H73NO10 (703.5234)


   

HexCer 17:1;3O/15:0;(2OH)

HexCer 17:1;3O/15:0;(2OH)

C38H73NO10 (703.5234)


   

HexCer 20:1;3O/12:0;(2OH)

HexCer 20:1;3O/12:0;(2OH)

C38H73NO10 (703.5234)


   

HexCer 19:0;3O/13:1;(2OH)

HexCer 19:0;3O/13:1;(2OH)

C38H73NO10 (703.5234)


   

HexCer 14:1;3O/18:0;(2OH)

HexCer 14:1;3O/18:0;(2OH)

C38H73NO10 (703.5234)


   

HexCer 17:0;3O/15:1;(2OH)

HexCer 17:0;3O/15:1;(2OH)

C38H73NO10 (703.5234)


   

HexCer 18:1;3O/14:0;(2OH)

HexCer 18:1;3O/14:0;(2OH)

C38H73NO10 (703.5234)


   

HexCer 19:1;3O/13:0;(2OH)

HexCer 19:1;3O/13:0;(2OH)

C38H73NO10 (703.5234)


   

HexCer 16:0;3O/16:1;(2OH)

HexCer 16:0;3O/16:1;(2OH)

C38H73NO10 (703.5234)


   

HexCer 16:1;3O/16:0;(2OH)

HexCer 16:1;3O/16:0;(2OH)

C38H73NO10 (703.5234)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[3-[(Z)-hexadec-9-enoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-hexadec-9-enoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[2-heptadecanoyloxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptadecanoyloxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[3-hexadecoxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecoxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-hexadec-9-enoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-icos-11-enoate

C39H78NO7P (703.5516)


   

[3-octadecoxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-octadecoxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[3-[(Z)-octadec-9-enoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-octadec-9-enoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] octadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] octadecanoate

C39H78NO7P (703.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

C38H74NO8P (703.5152)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] icosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] icosanoate

C38H74NO8P (703.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

C38H74NO8P (703.5152)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] octadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] octadecanoate

C38H74NO8P (703.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-icos-11-enoate

C38H74NO8P (703.5152)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] heptadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] heptadecanoate

C38H74NO8P (703.5152)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] nonadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] nonadecanoate

C38H74NO8P (703.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-henicos-11-enoate

C38H74NO8P (703.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-docos-13-enoate

C38H74NO8P (703.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

C38H74NO8P (703.5152)


   

[3-dodecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-9-enoate

C38H74NO8P (703.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-octadec-4-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-octadec-4-enoate

C39H78NO7P (703.5516)


   

[3-pentadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-pentadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[3-hexanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[3-butanoyloxy-2-[(Z)-hexacos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-butanoyloxy-2-[(Z)-hexacos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

C38H74NO8P (703.5152)


   

[2-[(Z)-nonadec-9-enoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-nonadec-9-enoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[3-heptadecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[2-[(Z)-docos-13-enoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-docos-13-enoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[2-[(Z)-henicos-11-enoyl]oxy-3-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-henicos-11-enoyl]oxy-3-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

C38H74NO8P (703.5152)


   

[3-decanoyloxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[3-hexadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-6-enoate

C38H74NO8P (703.5152)


   

4-[3-decanoyloxy-2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-decanoyloxy-2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2S)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] tetradecanoate

[(2S)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] tetradecanoate

C39H78NO7P (703.5516)


   

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-2-hexadecanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-hexadecanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-11-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-11-enoate

C38H74NO8P (703.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] nonadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] nonadecanoate

C38H74NO8P (703.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-7-enoate

C38H74NO8P (703.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-6-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-6-enoate

C38H74NO8P (703.5152)


   

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-3-pentadecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-pentadecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

C38H74NO8P (703.5152)


   

4-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] octadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] octadecanoate

C38H74NO8P (703.5152)


   

4-[2-hexadecanoyloxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-hexadecanoyloxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-13-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-13-enoate

C38H74NO8P (703.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-11-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-11-enoate

C38H74NO8P (703.5152)


   

[(2S)-3-[(E)-icos-1-enoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(E)-icos-1-enoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(14E,16E)-docosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(14E,16E)-docosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-undecanoyloxypropyl] (E)-docos-13-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-undecanoyloxypropyl] (E)-docos-13-enoate

C38H74NO8P (703.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-11-enoate

C38H74NO8P (703.5152)


   

[(2R)-3-decanoyloxy-2-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-decanoyloxy-2-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[3-hexadecanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-hexadecanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] hexadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] hexadecanoate

C39H78NO7P (703.5516)


   

4-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] heptadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] heptadecanoate

C38H74NO8P (703.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] nonadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] nonadecanoate

C38H74NO8P (703.5152)


   

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] octadec-17-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] octadec-17-enoate

C38H74NO8P (703.5152)


   

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] octadec-17-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] octadec-17-enoate

C38H74NO8P (703.5152)


   

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2S)-2-decanoyloxy-3-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-decanoyloxy-3-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-2-pentadecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-pentadecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] heptadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] heptadecanoate

C38H74NO8P (703.5152)


   

4-[2-dodecanoyloxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-dodecanoyloxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-11-enoate

C38H74NO8P (703.5152)


   

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] octadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] octadecanoate

C38H74NO8P (703.5152)


   

4-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[2-[(E)-heptadec-7-enoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-heptadec-7-enoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-7-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-7-enoate

C38H74NO8P (703.5152)


   

4-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2S)-2-decanoyloxy-3-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-decanoyloxy-3-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2S)-3-[(E)-octadec-1-enoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(E)-octadec-1-enoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-4-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-4-enoate

C38H74NO8P (703.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-docos-13-enoate

C38H74NO8P (703.5152)


   

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[3-dodecanoyloxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-dodecanoyloxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[3-[(E)-octadec-11-enoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-octadec-11-enoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-3-dodecanoyloxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[2-[(E)-octadec-11-enoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-octadec-11-enoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-4-enoate

C38H74NO8P (703.5152)


   

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (E)-heptadec-9-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (E)-heptadec-9-enoate

C38H74NO8P (703.5152)


   

4-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(14E,16E)-docosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(14E,16E)-docosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2S)-2-dodecanoyloxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-3-decanoyloxy-2-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-decanoyloxy-2-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[3-[(E)-dodec-5-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-dodec-5-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] octadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] octadecanoate

C39H78NO7P (703.5516)


   

4-[3-[(E)-heptadec-7-enoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-heptadec-7-enoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2,3-bis[[(4E,7E)-hexadeca-4,7-dienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

4-[2,3-bis[[(4E,7E)-hexadeca-4,7-dienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-9-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-9-enoate

C38H74NO8P (703.5152)


   

4-[3-[(E)-dec-4-enoyl]oxy-2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-dec-4-enoyl]oxy-2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2-[(E)-dec-4-enoyl]oxy-3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-dec-4-enoyl]oxy-3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] heptadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] heptadecanoate

C38H74NO8P (703.5152)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-3-hexadecanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-hexadecanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

4-[2-[(E)-dodec-5-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-dodec-5-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-13-enoate

C38H74NO8P (703.5152)


   

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-13-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-13-enoate

C38H74NO8P (703.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] heptadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] heptadecanoate

C38H74NO8P (703.5152)


   

4-[2-decanoyloxy-3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-decanoyloxy-3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-13-enoate

C38H74NO8P (703.5152)


   

4-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

[(2R)-3-[(E)-hexadec-1-enoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-1-enoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H78NO7P (703.5516)


   

4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

4-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C42H73NO7 (703.5387)


   

2-[[(8E,12E)-3,4-dihydroxy-2-(pentadecanoylamino)octadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E)-3,4-dihydroxy-2-(pentadecanoylamino)octadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H76N2O7P+ (703.539)


   

2-[[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxynon-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxynon-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H68N2O6P+ (703.4815)


   

2-[[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytrideca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytrideca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H68N2O6P+ (703.4815)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C40H68N2O6P+ (703.4815)


   

2-[[(E)-3,4-dihydroxy-2-[[(Z)-pentadec-9-enoyl]amino]octadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-3,4-dihydroxy-2-[[(Z)-pentadec-9-enoyl]amino]octadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H76N2O7P+ (703.539)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C40H68N2O6P+ (703.4815)


   

1-tetradecanoyl-2-(9Z-hexadecenoyl)-sn-glycero-3-phosphocholine

1-tetradecanoyl-2-(9Z-hexadecenoyl)-sn-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

1-(1Z-octadecenyl)-2-hexadecanoyl-sn-glycero-3-phosphoethanolamine

1-(1Z-octadecenyl)-2-hexadecanoyl-sn-glycero-3-phosphoethanolamine

C39H78NO7P (703.5516)


A 1-(alk-1-enyl)-2-acyl-sn-glycero-3-phosphoethanolamine in which the alkyl and the acyl groups at positions 1 and 2 are specified as (1Z)-octadecenyl and hexadecanoyl respectively.

   

1-(9Z-tetradecenoyl)-2-hexadecanoyl-glycero-3-phosphocholine

1-(9Z-tetradecenoyl)-2-hexadecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

1-pentadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphoethanolamine

1-pentadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-hexadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine

1-hexadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

1-(9Z-hexadecenoyl)-2-tetradecanoyl-glycero-3-phosphocholine

1-(9Z-hexadecenoyl)-2-tetradecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

1-(9Z-octadecenoyl)-2-pentadecanoyl-glycero-3-phosphoethanolamine

1-(9Z-octadecenoyl)-2-pentadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-Pentadecanoyl-2-vaccenoyl-sn-glycero-3-phosphoethanolamine

1-Pentadecanoyl-2-vaccenoyl-sn-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-Vaccenoyl-2-pentadecanoyl-sn-glycero-3-phosphoethanolamine

1-Vaccenoyl-2-pentadecanoyl-sn-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-Pentadecanoyl-2-(1-enyl-palmitoyl)-sn-glycero-3-phosphocholine

1-Pentadecanoyl-2-(1-enyl-palmitoyl)-sn-glycero-3-phosphocholine

C39H78NO7P (703.5516)


   

1-tridecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

1-tridecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

1-tetradecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

1-tetradecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-tridecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

1-tridecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-(9Z-tetradecenoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

1-(9Z-tetradecenoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-(9Z-pentadecenoyl)-2-octadecanoyl-glycero-3-phosphoethanolamine

1-(9Z-pentadecenoyl)-2-octadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-heptadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphoethanolamine

1-heptadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-(9Z-heptadecenoyl)-2-hexadecanoyl-glycero-3-phosphoethanolamine

1-(9Z-heptadecenoyl)-2-hexadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-octadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

1-octadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-pentadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

1-pentadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

1-(9Z-pentadecenoyl)-2-pentadecanoyl-glycero-3-phosphocholine

1-(9Z-pentadecenoyl)-2-pentadecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

1-(9Z-heptadecenoyl)-2-tridecanoyl-glycero-3-phosphocholine

1-(9Z-heptadecenoyl)-2-tridecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

1-(9Z-octadecenoyl)-2-dodecanoyl-glycero-3-phosphocholine

1-(9Z-octadecenoyl)-2-dodecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5152)


   

1-(9Z-hexadecenoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

1-(9Z-hexadecenoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-nonadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphoethanolamine

1-nonadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-(9Z-nonadecenoyl)-2-tetradecanoyl-glycero-3-phosphoethanolamine

1-(9Z-nonadecenoyl)-2-tetradecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-hexadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

1-hexadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

1-(11Z-eicosenoyl)-2-tridecanoyl-glycero-3-phosphoethanolamine

1-(11Z-eicosenoyl)-2-tridecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5152)


   

phosphatidylcholine 30:1

phosphatidylcholine 30:1

C38H74NO8P (703.5152)


A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 30 carbons in total with 1 double bond.

   

phosphatidylcholine (14:0/16:1)

phosphatidylcholine (14:0/16:1)

C38H74NO8P (703.5152)


A phosphatidylcholine 30:1 in which the fatty acyl groups at positions 1 and 2 are specified as C14:0 and C16:1 respectively.

   

1-Myristoyl-2-palmitoleoyl-sn-glycero-3-phosphocholine

1-Myristoyl-2-palmitoleoyl-sn-glycero-3-phosphocholine

C38H74NO8P (703.5152)


A phosphatidylcholine 30:1 in which the acyl groups at positions 1 and 2 are myristoyl and palmitoleoyl respectively.

   

MePC(29:1)

MePC(16:1_13:0)

C38H74NO8P (703.5152)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MePC(30:1)

MePC(12:0(1)_18:1)

C39H78NO7P (703.5516)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(32:1)

dMePE(16:1(1)_16:0)

C39H78NO7P (703.5516)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(31:1)

dMePE(17:1_14:0)

C38H74NO8P (703.5152)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Hex1Cer(32:1)

Hex1Cer(t18:1_14:0(1+O))

C38H73NO10 (703.5234)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   

PC O-16:0/15:1(9Z)

PC O-16:0/15:1(9Z)

C39H78NO7P (703.5516)


   
   
   
   
   

PC P-14:0/17:0 or PC O-14:1/17:0

PC P-14:0/17:0 or PC O-14:1/17:0

C39H78NO7P (703.5516)


   
   

PC P-16:0/15:0 or PC O-16:1/15:0

PC P-16:0/15:0 or PC O-16:1/15:0

C39H78NO7P (703.5516)


   
   

PC P-18:0/13:0 or PC O-18:1/13:0

PC P-18:0/13:0 or PC O-18:1/13:0

C39H78NO7P (703.5516)


   
   

PC P-20:0/11:0 or PC O-20:1/11:0

PC P-20:0/11:0 or PC O-20:1/11:0

C39H78NO7P (703.5516)


   
   

PC P-31:0 or PC O-31:1

PC P-31:0 or PC O-31:1

C39H78NO7P (703.5516)


   
   
   
   
   
   
   

PC 14:0/16:1(7Z)

PC 14:0/16:1(7Z)

C38H74NO8P (703.5152)


   
   

PC 14:1(9Z)/16:0

PC 14:1(9Z)/16:0

C38H74NO8P (703.5152)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PE P-14:0/20:0 or PE O-14:1/20:0

PE P-14:0/20:0 or PE O-14:1/20:0

C39H78NO7P (703.5516)


   
   

PE P-16:0/18:0 or PE O-16:1/18:0

PE P-16:0/18:0 or PE O-16:1/18:0

C39H78NO7P (703.5516)


   
   

PE P-17:0/17:0 or PE O-17:1/17:0

PE P-17:0/17:0 or PE O-17:1/17:0

C39H78NO7P (703.5516)


   

PE P-18:0/16:0 or PE O-18:1/16:0

PE P-18:0/16:0 or PE O-18:1/16:0

C39H78NO7P (703.5516)


   
   

PE P-20:0/14:0 or PE O-20:1/14:0

PE P-20:0/14:0 or PE O-20:1/14:0

C39H78NO7P (703.5516)


   
   

PE P-22:0/12:0 or PE O-22:1/12:0

PE P-22:0/12:0 or PE O-22:1/12:0

C39H78NO7P (703.5516)


   
   

PE P-34:0 or PE O-34:1

PE P-34:0 or PE O-34:1

C39H78NO7P (703.5516)


   
   
   
   
   
   
   
   

PE 16:0/17:1(9Z)

PE 16:0/17:1(9Z)

C38H74NO8P (703.5152)


   
   
   
   
   

PC 30:1 or PE 33:1

PC 30:1 or PE 33:1

C38H74NO8P (703.5152)


   

CerP 14:1;O2/25:0;O

CerP 14:1;O2/25:0;O

C39H78NO7P (703.5516)


   

CerP 15:0;O2/24:1;O

CerP 15:0;O2/24:1;O

C39H78NO7P (703.5516)


   

CerP 15:1;O2/24:0;O

CerP 15:1;O2/24:0;O

C39H78NO7P (703.5516)


   

CerP 16:1;O2/23:0;O

CerP 16:1;O2/23:0;O

C39H78NO7P (703.5516)


   

CerP 17:0;O2/22:1;O

CerP 17:0;O2/22:1;O

C39H78NO7P (703.5516)


   

CerP 17:1;O2/22:0;O

CerP 17:1;O2/22:0;O

C39H78NO7P (703.5516)


   

CerP 18:1;O2/21:0;O

CerP 18:1;O2/21:0;O

C39H78NO7P (703.5516)


   

CerP 19:0;O2/20:1;O

CerP 19:0;O2/20:1;O

C39H78NO7P (703.5516)


   

CerP 19:1;O2/20:0;O

CerP 19:1;O2/20:0;O

C39H78NO7P (703.5516)


   

CerP 19:1;O2/22:6

CerP 19:1;O2/22:6

C41H70NO6P (703.494)


   

CerP 19:2;O2/22:5

CerP 19:2;O2/22:5

C41H70NO6P (703.494)


   

CerP 20:1;O2/19:0;O

CerP 20:1;O2/19:0;O

C39H78NO7P (703.5516)


   

CerP 21:0;O2/18:1;O

CerP 21:0;O2/18:1;O

C39H78NO7P (703.5516)


   

CerP 21:1;O2/18:0;O

CerP 21:1;O2/18:0;O

C39H78NO7P (703.5516)


   

CerP 21:2;O2/20:5

CerP 21:2;O2/20:5

C41H70NO6P (703.494)


   

CerP 22:1;O2/17:0;O

CerP 22:1;O2/17:0;O

C39H78NO7P (703.5516)


   
   
   

GalCer 15:1;O2/20:5

GalCer 15:1;O2/20:5

C41H69NO8 (703.5023)


   

GalCer 15:2;O2/20:4

GalCer 15:2;O2/20:4

C41H69NO8 (703.5023)


   

GalCer 17:2;O2/18:4

GalCer 17:2;O2/18:4

C41H69NO8 (703.5023)


   

GalCer 35:6;O2

GalCer 35:6;O2

C41H69NO8 (703.5023)


   

GlcCer 15:1;O2/20:5

GlcCer 15:1;O2/20:5

C41H69NO8 (703.5023)


   

GlcCer 15:2;O2/20:4

GlcCer 15:2;O2/20:4

C41H69NO8 (703.5023)


   

GlcCer 17:2;O2/18:4

GlcCer 17:2;O2/18:4

C41H69NO8 (703.5023)


   

GlcCer 35:6;O2

GlcCer 35:6;O2

C41H69NO8 (703.5023)


   

HexCer 15:1;O2/20:5

HexCer 15:1;O2/20:5

C41H69NO8 (703.5023)


   

HexCer 15:2;O2/20:4

HexCer 15:2;O2/20:4

C41H69NO8 (703.5023)


   

HexCer 17:2;O2/18:4

HexCer 17:2;O2/18:4

C41H69NO8 (703.5023)


   
   

HexCer 35:6;O2

HexCer 35:6;O2

C41H69NO8 (703.5023)


   

HexCer 8:0;O3/24:1;O

HexCer 8:0;O3/24:1;O

C38H73NO10 (703.5234)


   
   
   

(2s,3r,4s,5r,6s)-6-{[(2s,3r)-2-[(1,2-dihydroxytetradecylidene)amino]-3-hydroxyoctadecyl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3r,4s,5r,6s)-6-{[(2s,3r)-2-[(1,2-dihydroxytetradecylidene)amino]-3-hydroxyoctadecyl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C38H73NO10 (703.5234)


   

6-({2-[(1,2-dihydroxytetradecylidene)amino]-3-hydroxyoctadecyl}oxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

6-({2-[(1,2-dihydroxytetradecylidene)amino]-3-hydroxyoctadecyl}oxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

C38H73NO10 (703.5234)