Chemical Formula: C38H74NO8P

Chemical Formula C38H74NO8P

Found 211 metabolite its formula value is C38H74NO8P

PC(14:0/16:1(9Z))

(2-{[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C38H74NO8P (703.5151774)


PC(14:0/16:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/16:1(9Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(14:1(9Z)/16:0)

(2-{[(2R)-2-(hexadecanoyloxy)-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C38H74NO8P (703.5151774)


PC(14:1(9Z)/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:1(9Z)/16:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(16:0/14:1(9Z))

(2-{[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C38H74NO8P (703.5151774)


PC(16:0/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/14:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(16:0/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/14:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(16:1(9Z)/14:0)

(2-{[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C38H74NO8P (703.5151774)


PC(16:1(9Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:1(9Z)/14:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of myristic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PE(15:0/18:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-(pentadecanoyloxy)propoxy]phosphinic acid

C38H74NO8P (703.5151774)


PE(15:0/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/18:1(11Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(15:0/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/18:1(11Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(15:0/18:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-(pentadecanoyloxy)propoxy]phosphinic acid

C38H74NO8P (703.5151774)


PE(15:0/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/18:1(9Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of oleic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(15:0/18:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(15:0/18:1(9Z)), in particular, consists of one pentadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:1(11Z)/15:0)

(2-aminoethoxy)[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-(pentadecanoyloxy)propoxy]phosphinic acid

C38H74NO8P (703.5151774)


PE(18:1(11Z)/15:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(11Z)/15:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:1(9Z)/15:0)

(2-aminoethoxy)[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-(pentadecanoyloxy)propoxy]phosphinic acid

C38H74NO8P (703.5151774)


PE(18:1(9Z)/15:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(9Z)/15:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:1(9Z)/15:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(18:1(9Z)/15:0), in particular, consists of one 9Z-octadecenoyl chain to the C-1 atom, and one pentadecanoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE-NMe(16:0/16:1(9Z))

{2-[(9Z)-hexadec-9-enoyloxy]-3-(hexadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C38H74NO8P (703.5151774)


PE-NMe(16:0/16:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:0/16:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-hexadecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(14:0/18:1(9Z))

[2-(methylamino)ethoxy]({2-[(9Z)-octadec-9-enoyloxy]-3-(tetradecanoyloxy)propoxy})phosphinic acid

C38H74NO8P (703.5151774)


PE-NMe(14:0/18:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:0/18:1(9Z)), in particular, consists of one tetradecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(14:0/18:1(11Z))

[2-(methylamino)ethoxy]({2-[(11Z)-octadec-11-enoyloxy]-3-(tetradecanoyloxy)propoxy})phosphinic acid

C38H74NO8P (703.5151774)


PE-NMe(14:0/18:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:0/18:1(11Z)), in particular, consists of one tetradecanoyl chain to the C-1 atom, and one 11Z-octadecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(14:1(9Z)/18:0)

[2-(methylamino)ethoxy][2-(octadecanoyloxy)-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C38H74NO8P (703.5151774)


PE-NMe(14:1(9Z)/18:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:1(9Z)/18:0), in particular, consists of one 9Z-tetradecenoyl chain to the C-1 atom, and one octadecanoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(16:1(9Z)/16:0)

{3-[(9Z)-hexadec-9-enoyloxy]-2-(hexadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C38H74NO8P (703.5151774)


PE-NMe(16:1(9Z)/16:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:1(9Z)/16:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:0/14:1(9Z))

[2-(methylamino)ethoxy][3-(octadecanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C38H74NO8P (703.5151774)


PE-NMe(18:0/14:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:0/14:1(9Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(11Z)/14:0)

[2-(methylamino)ethoxy]({3-[(11Z)-octadec-11-enoyloxy]-2-(tetradecanoyloxy)propoxy})phosphinic acid

C38H74NO8P (703.5151774)


PE-NMe(18:1(11Z)/14:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(11Z)/14:0), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(9Z)/14:0)

[2-(methylamino)ethoxy]({3-[(9Z)-octadec-9-enoyloxy]-2-(tetradecanoyloxy)propoxy})phosphinic acid

C38H74NO8P (703.5151774)


PE-NMe(18:1(9Z)/14:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(9Z)/14:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(15:0/16:1(9Z))

[2-(dimethylamino)ethoxy]({2-[(9Z)-hexadec-9-enoyloxy]-3-(pentadecanoyloxy)propoxy})phosphinic acid

C38H74NO8P (703.5151774)


PE-NMe2(15:0/16:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions.PE-NMe2(15:0/16:1(9Z)), in particular, consists of one pentadecanoyl chain to the C-1 atom, and one 9Z-hexadecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe2(16:1(9Z)/15:0)

[2-(dimethylamino)ethoxy]({3-[(9Z)-hexadec-9-enoyloxy]-2-(pentadecanoyloxy)propoxy})phosphinic acid

C38H74NO8P (703.5151774)


PE-NMe2(16:1(9Z)/15:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(16:1(9Z)/15:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

10E-heptadecenoic acid

(2-{[(2R)-3-(dodecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C38H74NO8P (703.5151774)


   

PC 30:1

1-tetradecanoyl-2-(9Z-hexadecenoyl)-sn-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


Found in mouse lung; TwoDicalId=150; MgfFile=160901_Lung_AA_Neg_17; MgfId=678 Found in mouse muscle; TwoDicalId=461; MgfFile=160824_Muscle_normal_Neg_01; MgfId=657

   

(2-{[2-[hexadec-9-enoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

(2-{[2-[hexadec-9-enoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C38H74NO8P (703.5151774)


   

PC(14:0/16:1)[U]

3,5,8-Trioxa-4-phosphatetracos-17-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxotetradecyl)oxy]methyl]-, inner salt, 4-oxide, (Z)-

C38H74NO8P (703.5151774)


   

Lecithin

1-Palmitoleoyl-2-myristoyl-sn-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

PE(33:1)

1-Vaccenoyl-2-pentadecanoyl-sn-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PC(13:0/17:1(9Z))

1-tridecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

PC(15:0/15:1(9Z))

1-pentadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

PC(15:1(9Z)/15:0)

1-(9Z-pentadecenoyl)-2-pentadecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

PC(17:1(9Z)/13:0)

1-(9Z-heptadecenoyl)-2-tridecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

PC(18:1(9Z)/12:0)

1-(9Z-octadecenoyl)-2-dodecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

PE(13:0/20:1(11Z))

1-tridecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PE(14:0/19:1(9Z))

1-tetradecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PE(14:1(9Z)/19:0)

1-(9Z-tetradecenoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PE(15:1(9Z)/18:0)

1-(9Z-pentadecenoyl)-2-octadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PE(16:1(9Z)/17:0)

1-(9Z-hexadecenoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PE(17:0/16:1(9Z))

1-heptadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PE(17:1(9Z)/16:0)

1-(9Z-heptadecenoyl)-2-hexadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PE(18:0/15:1(9Z))

1-octadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PE(19:0/14:1(9Z))

1-nonadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PE(19:1(9Z)/14:0)

1-(9Z-nonadecenoyl)-2-tetradecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PE(20:1(11Z)/13:0)

1-(11Z-eicosenoyl)-2-tridecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PE(16:0/17:1(9Z))

1-hexadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

PE 33:1

1-hexadecanoyl-2-(9R, 10S-methylene-hexadecanoyl)-sn-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

3,5,8-Trioxa-4-phosphahexacos-17-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxododecyl)oxy]methyl]-, inner salt, 4-oxide, [R-(Z)]-

3,5,8-Trioxa-4-phosphahexacos-17-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxododecyl)oxy]methyl]-, inner salt, 4-oxide, [R-(Z)]-

C38H74NO8P (703.5151774)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexadec-9-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

Phosphatidylethanolamine (1-palmitoyl, 2-cis-9,10-methylene hexadecanoyl)

Phosphatidylethanolamine (1-palmitoyl, 2-cis-9,10-methylene hexadecanoyl)

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[8-(2-hexylcyclopropyl)octanoyloxy]propyl] hexadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[8-(2-hexylcyclopropyl)octanoyloxy]propyl] hexadecanoate

C38H74NO8P (703.5151774)


   

PE (17:1(10Z)/16:0) zwitterion

PE (17:1(10Z)/16:0) zwitterion

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (Z)-heptadec-10-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (Z)-heptadec-10-enoate

C38H74NO8P (703.5151774)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

1-Pentadecanoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-d7

1-Pentadecanoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-d7

C38H74NO8P (703.5151774)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

C38H74NO8P (703.5151774)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] icosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] icosanoate

C38H74NO8P (703.5151774)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

C38H74NO8P (703.5151774)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] octadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] octadecanoate

C38H74NO8P (703.5151774)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-icos-11-enoate

C38H74NO8P (703.5151774)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] heptadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] heptadecanoate

C38H74NO8P (703.5151774)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] nonadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] nonadecanoate

C38H74NO8P (703.5151774)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-henicos-11-enoate

C38H74NO8P (703.5151774)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-docos-13-enoate

C38H74NO8P (703.5151774)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

C38H74NO8P (703.5151774)


   

[3-dodecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-9-enoate

C38H74NO8P (703.5151774)


   

[3-pentadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-pentadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[3-hexanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[3-butanoyloxy-2-[(Z)-hexacos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-butanoyloxy-2-[(Z)-hexacos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

C38H74NO8P (703.5151774)


   

[2-[(Z)-nonadec-9-enoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-nonadec-9-enoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[3-heptadecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[2-[(Z)-docos-13-enoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-docos-13-enoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[2-[(Z)-henicos-11-enoyl]oxy-3-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-henicos-11-enoyl]oxy-3-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

C38H74NO8P (703.5151774)


   

[3-decanoyloxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[3-hexadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-6-enoate

C38H74NO8P (703.5151774)


   

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-2-hexadecanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-hexadecanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-11-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-11-enoate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] nonadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] nonadecanoate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-7-enoate

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-6-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-6-enoate

C38H74NO8P (703.5151774)


   

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-pentadecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-pentadecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] octadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] octadecanoate

C38H74NO8P (703.5151774)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-13-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-13-enoate

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-11-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-11-enoate

C38H74NO8P (703.5151774)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-undecanoyloxypropyl] (E)-docos-13-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-undecanoyloxypropyl] (E)-docos-13-enoate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-11-enoate

C38H74NO8P (703.5151774)


   

[(2R)-3-decanoyloxy-2-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-decanoyloxy-2-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] heptadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] heptadecanoate

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] nonadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] nonadecanoate

C38H74NO8P (703.5151774)


   

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] octadec-17-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] octadec-17-enoate

C38H74NO8P (703.5151774)


   

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] octadec-17-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] octadec-17-enoate

C38H74NO8P (703.5151774)


   

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2S)-2-decanoyloxy-3-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-decanoyloxy-3-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-2-pentadecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-pentadecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] heptadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] heptadecanoate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-11-enoate

C38H74NO8P (703.5151774)


   

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] octadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] octadecanoate

C38H74NO8P (703.5151774)


   

[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-7-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-7-enoate

C38H74NO8P (703.5151774)


   

[(2S)-2-decanoyloxy-3-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-decanoyloxy-3-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-4-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-4-enoate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-docos-13-enoate

C38H74NO8P (703.5151774)


   

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-dodecanoyloxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-4-enoate

C38H74NO8P (703.5151774)


   

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (E)-heptadec-9-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (E)-heptadec-9-enoate

C38H74NO8P (703.5151774)


   

[(2S)-2-dodecanoyloxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-decanoyloxy-2-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-decanoyloxy-2-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-9-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-9-enoate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] heptadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] heptadecanoate

C38H74NO8P (703.5151774)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-3-hexadecanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-hexadecanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-13-enoate

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-13-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-13-enoate

C38H74NO8P (703.5151774)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] heptadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] heptadecanoate

C38H74NO8P (703.5151774)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-13-enoate

C38H74NO8P (703.5151774)


   

1-tetradecanoyl-2-(9Z-hexadecenoyl)-sn-glycero-3-phosphocholine

1-tetradecanoyl-2-(9Z-hexadecenoyl)-sn-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

1-(9Z-tetradecenoyl)-2-hexadecanoyl-glycero-3-phosphocholine

1-(9Z-tetradecenoyl)-2-hexadecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

1-pentadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphoethanolamine

1-pentadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-hexadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine

1-hexadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

1-(9Z-hexadecenoyl)-2-tetradecanoyl-glycero-3-phosphocholine

1-(9Z-hexadecenoyl)-2-tetradecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

1-(9Z-octadecenoyl)-2-pentadecanoyl-glycero-3-phosphoethanolamine

1-(9Z-octadecenoyl)-2-pentadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-Pentadecanoyl-2-vaccenoyl-sn-glycero-3-phosphoethanolamine

1-Pentadecanoyl-2-vaccenoyl-sn-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-Vaccenoyl-2-pentadecanoyl-sn-glycero-3-phosphoethanolamine

1-Vaccenoyl-2-pentadecanoyl-sn-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-tridecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

1-tridecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

1-tetradecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

1-tetradecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-tridecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

1-tridecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-(9Z-tetradecenoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

1-(9Z-tetradecenoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-(9Z-pentadecenoyl)-2-octadecanoyl-glycero-3-phosphoethanolamine

1-(9Z-pentadecenoyl)-2-octadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-heptadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphoethanolamine

1-heptadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-(9Z-heptadecenoyl)-2-hexadecanoyl-glycero-3-phosphoethanolamine

1-(9Z-heptadecenoyl)-2-hexadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-octadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

1-octadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-pentadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

1-pentadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

1-(9Z-pentadecenoyl)-2-pentadecanoyl-glycero-3-phosphocholine

1-(9Z-pentadecenoyl)-2-pentadecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

1-(9Z-heptadecenoyl)-2-tridecanoyl-glycero-3-phosphocholine

1-(9Z-heptadecenoyl)-2-tridecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

1-(9Z-octadecenoyl)-2-dodecanoyl-glycero-3-phosphocholine

1-(9Z-octadecenoyl)-2-dodecanoyl-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


   

1-(9Z-hexadecenoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

1-(9Z-hexadecenoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-nonadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphoethanolamine

1-nonadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-(9Z-nonadecenoyl)-2-tetradecanoyl-glycero-3-phosphoethanolamine

1-(9Z-nonadecenoyl)-2-tetradecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-hexadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

1-hexadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

1-(11Z-eicosenoyl)-2-tridecanoyl-glycero-3-phosphoethanolamine

1-(11Z-eicosenoyl)-2-tridecanoyl-glycero-3-phosphoethanolamine

C38H74NO8P (703.5151774)


   

phosphatidylcholine 30:1

phosphatidylcholine 30:1

C38H74NO8P (703.5151774)


A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 30 carbons in total with 1 double bond.

   

phosphatidylcholine (14:0/16:1)

phosphatidylcholine (14:0/16:1)

C38H74NO8P (703.5151774)


A phosphatidylcholine 30:1 in which the fatty acyl groups at positions 1 and 2 are specified as C14:0 and C16:1 respectively.

   

1-Myristoyl-2-palmitoleoyl-sn-glycero-3-phosphocholine

1-Myristoyl-2-palmitoleoyl-sn-glycero-3-phosphocholine

C38H74NO8P (703.5151774)


A phosphatidylcholine 30:1 in which the acyl groups at positions 1 and 2 are myristoyl and palmitoleoyl respectively.

   

MePC(29:1)

MePC(16:1_13:0)

C38H74NO8P (703.5151774)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(31:1)

dMePE(17:1_14:0)

C38H74NO8P (703.5151774)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved