Exact Mass: 700.5281
Exact Mass Matches: 700.5281
Found 500 metabolites which its exact mass value is equals to given mass value 700.5281
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PA(18:1(9Z)/18:1(9Z))
PA(18:1(9Z)/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/18:1(9Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of oleic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-CoA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776).
PA(18:0/18:2(9Z,12Z))
PA(18:0/18:2(9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/18:2(9Z,12Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the linoleic acid moiety is derived from seed oils. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-coA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776). [HMDB] PA(18:0/18:2(9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/18:2(9Z,12Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the linoleic acid moiety is derived from seed oils. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-CoA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776).
PA(18:1(11Z)/18:1(11Z))
PA(18:1(11Z)/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/18:1(11Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-coA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776). [HMDB] PA(18:1(11Z)/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/18:1(11Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-CoA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776).
PA(18:1(11Z)/18:1(9Z))
PA(18:1(11Z)/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/18:1(9Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-CoA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776).
PA(18:1(9Z)/18:1(11Z))
PA(18:1(9Z)/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/18:1(11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-CoA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776).
9-Octadecenoic acid 1-[(phosphonoxy)methyl]-1,2-ethanediyl ester
9-Octadecenoic acid 1-[(phosphonoxy)methyl]-1,2-ethanediyl ester is classified as a Natural Food Constituent (code WA) in the DF Classified as a Natural Food Constituent (code WA) in the DFC
PA(14:1(9Z)/22:1(13Z))
PA(14:1(9Z)/22:1(13Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/22:1(13Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:2(9Z,12Z)/18:0)
PA(18:2(9Z,12Z)/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:2(9Z,12Z)/18:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:1(11Z)/16:1(9Z))
PA(20:1(11Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/16:1(9Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:1(13Z)/14:1(9Z))
PA(22:1(13Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:1(13Z)/14:1(9Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:2(13Z,16Z)/14:0)
PA(22:2(13Z,16Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:2(13Z,16Z)/14:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(16:0/20:2(11Z,14Z))
PA(16:0/20:2(11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/20:2(11Z,14Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:2(11Z,14Z)/16:0)
PA(20:2(11Z,14Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:2(11Z,14Z)/16:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
DG(11D3/11D3/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11D3/11D3/0:0), in particular, consists of one chain of 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(11D3/9D5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11D3/9D5/0:0), in particular, consists of one chain of 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(11D5/9D3/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11D5/9D3/0:0), in particular, consists of one chain of 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(11M3/11M5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11M3/11M5/0:0), in particular, consists of one chain of 11-(3-methyl-5-propylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 11-(3-methyl-5-pentylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(11M5/11M3/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11M5/11M3/0:0), in particular, consists of one chain of 11-(3-methyl-5-pentylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 11-(3-methyl-5-propylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(11M5/9M5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11M5/9M5/0:0), in particular, consists of one chain of 11-(3-methyl-5-pentylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(9D3/11D5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(9D3/11D5/0:0), in particular, consists of one chain of 9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoic acid at the C-1 position and one chain of 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(9D5/11D3/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(9D5/11D3/0:0), in particular, consists of one chain of 9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoic acid at the C-1 position and one chain of 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(9D5/9D5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(9D5/9D5/0:0), in particular, consists of one chain of 9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoic acid at the C-1 position and one chain of 9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(9M5/11M5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(9M5/11M5/0:0), in particular, consists of one chain of 9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid at the C-1 position and one chain of 11-(3-methyl-5-pentylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
PA(14:0/22:2(13Z,16Z))
PA(14:0/22:2(13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/22:2(13Z,16Z)), in particular, consists of one tetradecanoyl chain to the C-1 atom, and one 13Z,16Z-docosadienoyl to the C-2 atom. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
SM(d18:1/16:1(9Z))
Sphingomyelin (d18:1/16:1(9Z)) or SM(d18:1/16:1(9Z)) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. SM(d18:1/16:1(9Z)) consists of a sphingosine backbone and a palmitoleic acid chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d18:2(4E,14Z)/16:0)
Sphingomyelin (d18:2(4E,14Z)/16:0) or SM(d18:2(4E,14Z)/16:0) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. SM(d18:2(4E,14Z)/16:0) consists of a sphinga-4E,14Z-dienine backbone and a palmitic acid chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
1,2-Ethanediamine propylene oxide ethylene oxide polymer
DG(18:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(18:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:0/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(18:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/18:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(18:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:0/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(18:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/18:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-18:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(i-18:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-18:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-18:0/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-18:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(i-18:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/i-18:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/i-18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-18:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(i-18:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-18:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-18:0/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-18:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(i-18:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/i-18:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/i-18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
dammar-9(11),24-dien-3beta-ol-3alpha-L-arabinosyl-7alpha-octanoate
SM d34:2
Found in mouse lung; TwoDicalId=240; MgfFile=160901_Lung_AA_Neg_17_never; MgfId=745 Found in mouse heart; TwoDicalId=1038; MgfFile=160902_Heart_DHA_Neg_12_never; MgfId=715 Found in mouse spleen; TwoDicalId=448; MgfFile=160729_spleen_AA_18_Neg; MgfId=663 Found in mouse kidney; TwoDicalId=61; MgfFile=160827_Kidney_normal_Neg_01_sute; MgfId=901
(2-{[2-[hexadec-9-enamido]-3-hydroxyoctadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium
PE-Cer(d14:2(4E,6E)/22:1(13Z)(2OH))
PE-Cer(d16:2(4E,6E)/20:1(11Z)(2OH))
Dioleoyl phosphatidic acid
A phosphatidic acid in which the phosphatidyl acyl groups are both oleoyl.
Ecdysone 22-palmitoleate
[(4E,8E)-2-(hexadecanoylamino)-3-hydroxyoctadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-hydroxypropyl] 9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoate
[(2S)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-hydroxypropyl] 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoate
[(2S)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-hydroxypropyl] 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoate
[(2S)-3-hydroxy-2-[9-(3-methyl-5-pentylfuran-2-yl)nonanoyloxy]propyl] 11-(3-methyl-5-pentylfuran-2-yl)undecanoate
[(2S)-1-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-hydroxypropan-2-yl] 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoate
[(2S)-1-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-hydroxypropan-2-yl] 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoate
[(2S)-1-hydroxy-3-[9-(3-methyl-5-pentylfuran-2-yl)nonanoyloxy]propan-2-yl] 11-(3-methyl-5-pentylfuran-2-yl)undecanoate
[(2S)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-hydroxypropyl] 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoate
[(2S)-3-hydroxy-2-[11-(3-methyl-5-pentylfuran-2-yl)undecanoyloxy]propyl] 11-(3-methyl-5-propylfuran-2-yl)undecanoate
[(2S)-3-hydroxy-2-[11-(3-methyl-5-propylfuran-2-yl)undecanoyloxy]propyl] 11-(3-methyl-5-pentylfuran-2-yl)undecanoate
DG(18:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:0/0:0)
DG(18:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/18:0)
DG(18:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:0/0:0)
DG(18:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/18:0)
DG(i-18:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-18:0/0:0)
DG(i-18:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/i-18:0)
DG(i-18:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-18:0/0:0)
DG(i-18:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/i-18:0)
[1-hydroxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate
[1-hydroxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate
[(4E,8E)-3-hydroxy-2-(nonanoylamino)pentacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[(E)-2-[[(Z)-hexacos-15-enoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-(propanoylamino)hentriaconta-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-(octanoylamino)hexacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
[(4E,8E)-2-(heptanoylamino)-3-hydroxyheptacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-2-acetamido-3-hydroxydotriaconta-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[(4E,8E)-2-(hexanoylamino)-3-hydroxyoctacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[(4E,8E)-2-(butanoylamino)-3-hydroxytriaconta-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-(pentanoylamino)nonacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]pentadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyoctadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]henicos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxyheptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxytridecyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyheptadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-hydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]decyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-2-(henicosanoylamino)-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxyoctadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-2-(decanoylamino)-3-hydroxytetracosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(Z)-tetracos-13-enoyl]amino]dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxydodecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]hexadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-(undecanoylamino)tricosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(Z)-docos-13-enoyl]amino]-3-hydroxydodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(Z)-henicos-11-enoyl]amino]-3-hydroxytridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-2-(docosanoylamino)-3-hydroxydodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-hexacos-15-enoate
[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-tetracos-13-enoate
[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-docos-13-enoate
[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-henicos-11-enoate
[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate
[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-hexadec-9-enoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] pentadecanoate
[2-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate
[2-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate
[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-octadec-9-enoate
[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-icos-11-enoate
[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-heptadec-9-enoate
[(E,2S,3R)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxyoctadec-4-enyl] 2-[tris(trideuteriomethyl)azaniumyl]ethyl phosphate
[2-[[(15Z,18Z)-hexacosa-15,18-dienoyl]amino]-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(Z)-icos-11-enoyl]amino]tetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-(pentadecanoylamino)nonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-(tridecanoylamino)henicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(Z)-nonadec-9-enoyl]amino]pentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-2-(heptadecanoylamino)-3-hydroxyheptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-(tetradecanoylamino)icosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-2-(dodecanoylamino)-3-hydroxydocosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]icos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-(octadecanoylamino)hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]tetradecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-(icosanoylamino)tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-(nonadecanoylamino)pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]nonadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(Z)-hexadec-7-enoyl]amino]-3-hydroxyoctadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]henicos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxydocos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyoctadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(Z)-octadec-11-enoyl]amino]hexadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(8E,12E,16E)-3,4-dihydroxy-2-(pentadecanoylamino)octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(8E,12E)-3,4-dihydroxy-2-[[(Z)-pentadec-9-enoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-hexadec-9-enoate
[(E,2S,3R)-3-hydroxy-2-[[(E)-octadec-9-enoyl]amino]hexadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E,2S,3R)-2-[[(E)-hexadec-9-enoyl]amino]-3-hydroxyoctadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-7-enoate
[(E,2S,3R)-3-hydroxy-2-[[(E)-icos-11-enoyl]amino]tetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-carboxy-3-[2-dodecanoyloxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[(E,2S,3R)-2-[[(E)-heptadec-9-enoyl]amino]-3-hydroxyheptadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-4-enoate
[1-carboxy-3-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-icos-13-enoate
[1-carboxy-3-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(E,2S,3R)-2-[[(E)-heptadec-9-enoyl]amino]-3-hydroxyheptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-11-enoate
[1-carboxy-3-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-icos-11-enoate
[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[(2S,3R,4E,6E)-3-hydroxy-2-(nonadecanoylamino)pentadeca-4,6-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-4-enoate
[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-hexadec-9-enoate
[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[(2S,3R,4E,8E)-3-hydroxy-2-(pentadecanoylamino)nonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] pentadecanoate
[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-hexadec-7-enoate
[(2R,3S,4E,8E)-3-hydroxy-2-(tridecanoylamino)henicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-carboxy-3-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-dodecanoyloxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-decanoyloxy-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate
[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-6-enoate
[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-6-enoate
[1-carboxy-3-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-icos-13-enoate
[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-7-enoate
[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-9-enoate
[(E,2S,3R)-2-[[(E)-hexadec-9-enoyl]amino]-3-hydroxyoctadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-13-enoate
[(E,2S,3R)-3-hydroxy-2-[[(E)-icos-11-enoyl]amino]tetradec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S,3R,4E,8E)-2-(heptadecanoylamino)-3-hydroxyheptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadec-17-enoate
[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-9-enoate
[(E,2S,3R)-3-hydroxy-2-[[(E)-octadec-9-enoyl]amino]hexadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S,3R,4E,8E)-3-hydroxy-2-(tetradecanoylamino)icosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-carboxy-3-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-icos-11-enoate
[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadec-17-enoate
[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate
[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-13-enoate
[(2R,3S,4E,8E)-2-(dodecanoylamino)-3-hydroxydocosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S,3R,4E,8E)-2-(hexadecanoylamino)-3-hydroxyoctadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[2,3-bis[[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy]propoxy]-1-carboxypropyl]-trimethylazanium
[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-9-enoate
[(2S,3R,4E,6E)-3-hydroxy-2-(icosanoylamino)tetradeca-4,6-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[(2S,3R)-3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S,3R,4E,8E)-3-hydroxy-2-(octadecanoylamino)hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-heptadec-9-enoate
[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2S,3R,4E,6E)-3-hydroxy-2-(octadecanoylamino)hexadeca-4,6-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-carboxy-3-[2-decanoyloxy-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]propyl]-trimethylazanium
[(2S,3R,4E,8E)-3-hydroxy-2-(icosanoylamino)tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S,3R,4E,8E)-3-hydroxy-2-(nonadecanoylamino)pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-hexadec-7-enoate
[1-carboxy-3-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate
[(2S,3R,4E,14E)-2-(hexadecanoylamino)-3-hydroxyoctadeca-4,14-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-11-enoate
2-[hydroxy-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[3-[2,3-bis[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy]propoxy]-1-carboxypropyl]-trimethylazanium
[1-carboxy-3-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]propyl]-trimethylazanium
2-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-nonoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[carboxy-[3-[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]oxy-2-hydroxypropoxy]methoxy]ethyl-trimethylazanium
2-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]-2-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-pentadecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-heptanoyloxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-undecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
N-(9Z-hexadecenoyl)sphingosine-1-phosphocholine
A N-hexadecenoylsphingosine-1-phosphocholine in which the amino group of sphingosine is in amide linkage with a 9Z-hexadecenoyl fatty acid.
N-(tricosanoyl)-[(4E,6E)-tetradecasphingadienine]-1-phosphoethanolamine
A ceramide phosphoethanolamine (37:2) in which the acyl and sphingoid base specified is tricosanoyl and (4E,6E)-tetradecasphingadienine respectively.
N-(docosanoyl)-4E,6E-pentadecasphingadienine-1-phosphoethanolamine
N-(heneicosanoyl)-4E,6E-hexadecasphingadienine-1-phosphoethanolamine
N-(9Z-octadecenoyl)-hexadecasphing-4-enine-1-phosphocholine
N-hexadecanoylsphingadienine-1-phosphocholine
A sphingomyelin 34:2 obtained by formal condensation of the carboxy group of hexadecanoic acid with the amino group of any sphingadienine-1-phosphocholine.
sphingomyelin 34:2
A sphingomyelin in which the total number of carbons in the sphingoid base (R1) and fatty acyl (R2) groups is 34 with 2 double bonds.
ceramide phosphoethanolamine (37:2)
A ceramide phosphoethanolamine in which the sphingoid base and acyl group contains a total of 37 carbon atoms and 2 double bonds.
N-hexadecenoylsphingosine-1-phosphocholine
A sphingomyelin in which the ceramide N-acyl group contains 16 carbons and 1 double bond. A sphingomyelin 34:2 in which the ceramide N-acyl group contains 16 carbons and 1 double bond.
sphingomyelin d18:1/16:1
A sphingomyelin d18:1 in which the fatty acyl group contains 16 carbons and 1 double bond
MGMG(31:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
AcHexZyE(10:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
AcHexStE(8:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
BisMePA(35:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved