PA 36:2 (BioDeep_00000633305)

   

LipidSearch


代谢物信息卡片


1-octadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphate

化学式: C39H73O8P (700.5042788)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(lipidsearch) 23.32%

分子结构信息

SMILES: CCCCCCCCC=CCCCCCCCC(=O)OCC(COP(=O)(O)O)OC(=O)CCCCCCCC=CCCCCCCCC
InChI: InChI=1S/C39H73O8P/c1-3-5-7-9-11-13-15-17-19-21-23-25-27-29-31-33-38(40)45-35-37(36-46-48(42,43)44)47-39(41)34-32-30-28-26-24-22-20-18-16-14-12-10-8-6-4-2/h17-20,37H,3-16,21-36H2,1-2H3,(H2,42,43,44)/b19-17-,20-18-/t37-/m1/s1

描述信息

同义名列表

42 个代谢物同义名

1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphate; 1,2-Dioleoyl-sn-glycero-3-phosphate; PA(18:1(9Z)/18:1(9Z)); PA(18:1_18:1); PA(36:2); PA 36:2; 1-(9Z,12Z-octadecadienoyl)-2-octadecanoyl-glycero-3-phosphate; PA(18:2(9Z,12Z)/18:0); PA(18:0_18:2); 1-(13Z,16Z-docosadienoyl)-2-tetradecanoyl-glycero-3-phosphate; PA(22:2(13Z,16Z)/14:0); PA(14:0_22:2); 1-(11Z-docosenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphate; PA(22:1(11Z)/14:1(9Z)); PA(14:1_22:1); 1-(11Z,14Z-eicosadienoyl)-2-hexadecanoyl-glycero-3-phosphate; PA(20:2(11Z,14Z)/16:0); PA(16:0_20:2); 1-(11Z-eicosenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphate; PA(20:1(11Z)/16:1(9Z)); PA(16:1_20:1); 1-(9Z-nonadecenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphate; PA(19:1(9Z)/17:1(9Z)); PA(17:1_19:1); 1-nonadecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate; PA(19:0/17:2(9Z,12Z)); PA(17:2_19:0); 1-(9Z,12Z-heptadecadienoyl)-2-nonadecanoyl-glycero-3-phosphate; PA(17:2(9Z,12Z)/19:0); 1-(9Z-heptadecenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphate; PA(17:1(9Z)/19:1(9Z)); 1-(9Z-hexadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphate; PA(16:1(9Z)/20:1(11Z)); 1-hexadecanoyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphate; PA(16:0/20:2(11Z,14Z)); 1-(9Z-tetradecenoyl)-2-(11Z-docosenoyl)-glycero-3-phosphate; PA(14:1(9Z)/22:1(11Z)); 1-tetradecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphate; PA(14:0/22:2(13Z,16Z)); 1-octadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphate; PA(18:0/18:2(9Z,12Z)); PA(18:0/18:2)



数据库引用编号

39 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

175 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(175)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Elżbieta Rudolphi-Szydło, Maria Filek, Barbara Dyba, Zbigniew Miszalski, Maria Zembala. Antioxidative action of polyamines in protection of phospholipid membranes exposed to ozone stress. Acta biochimica Polonica. 2020 May; 67(2):259-262. doi: 10.18388/abp.2020_5230. [PMID: 32436672]
  • Ruili Zhang, Chaoqiang Qiao, Qian Jia, Yongdong Wang, Huimin Huang, Wanwan Chang, He Wang, Hao Zhang, Zhongliang Wang. Highly Stable and Long-Circulating Metal-Organic Frameworks Nanoprobes for Sensitive Tumor Detection In Vivo. Advanced healthcare materials. 2019 10; 8(19):e1900761. doi: 10.1002/adhm.201900761. [PMID: 31368240]
  • Y-F Chen, K-Y Tsang, W-F Chang, Z-A Fan. Differential dependencies on [Ca2+] and temperature of the monolayer spontaneous curvatures of DOPE, DOPA and cardiolipin: effects of modulating the strength of the inter-headgroup repulsion. Soft matter. 2015 May; 11(20):4041-53. doi: 10.1039/c5sm00577a. [PMID: 25907686]
  • Jun Li, Yang Yang, Leaf Huang. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. Journal of controlled release : official journal of the Controlled Release Society. 2012 Feb; 158(1):108-14. doi: 10.1016/j.jconrel.2011.10.020. [PMID: 22056915]
  • Mary F Roberts, Alfred G Redfield, Udayan Mohanty. Phospholipid reorientation at the lipid/water interface measured by high resolution 31P field cycling NMR spectroscopy. Biophysical journal. 2009 Jul; 97(1):132-41. doi: 10.1016/j.bpj.2009.03.057. [PMID: 19580751]
  • Emily R Lamberson, Lee R Cambrea, Jean-Christophe Rochet, Jennifer S Hovis. Path dependence of three-phase or two-phase end points in fluid binary lipid mixtures. The journal of physical chemistry. B. 2009 Mar; 113(11):3431-6. doi: 10.1021/jp810326w. [PMID: 19243147]
  • Martin Stöckl, Patricia Fischer, Erich Wanker, Andreas Herrmann. Alpha-synuclein selectively binds to anionic phospholipids embedded in liquid-disordered domains. Journal of molecular biology. 2008 Feb; 375(5):1394-404. doi: 10.1016/j.jmb.2007.11.051. [PMID: 18082181]
  • Guillaume Andre, Robert Brasseur, Yves F Dufrêne. Probing the interaction forces between hydrophobic peptides and supported lipid bilayers using AFM. Journal of molecular recognition : JMR. 2007 Nov; 20(6):538-45. doi: 10.1002/jmr.837. [PMID: 17891753]
  • Ayman K Hamouda, Mitesh Sanghvi, Daniel Sauls, Tina K Machu, Michael P Blanton. Assessing the lipid requirements of the Torpedo californica nicotinic acetylcholine receptor. Biochemistry. 2006 Apr; 45(13):4327-37. doi: 10.1021/bi052281z. [PMID: 16566607]
  • Edgar E Kooijman, Karen M Carter, Emma G van Laar, Vladimir Chupin, Koert N J Burger, Ben de Kruijff. What makes the bioactive lipids phosphatidic acid and lysophosphatidic acid so special?. Biochemistry. 2005 Dec; 44(51):17007-15. doi: 10.1021/bi0518794. [PMID: 16363814]
  • Shah Md Masum, Shu Jie Li, Tarek S Awad, Masahito Yamazaki. Effect of positively charged short peptides on stability of cubic phases of monoolein/dioleoylphosphatidic acid mixtures. Langmuir : the ACS journal of surfaces and colloids. 2005 Jun; 21(12):5290-7. doi: 10.1021/la0469607. [PMID: 15924452]
  • Edgar E Kooijman, Vladimir Chupin, Nola L Fuller, Michael M Kozlov, Ben de Kruijff, Koert N J Burger, Peter R Rand. Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry. 2005 Feb; 44(6):2097-102. doi: 10.1021/bi0478502. [PMID: 15697235]
  • Shu Jie Li, Masakito Yamazaki. Low concentration of dioleoylphosphatidic acid induces an inverted hexagonal (H II) phase transition in dipalmitoleoylphosphatidylethanolamine membranes. Biophysical chemistry. 2004 Apr; 109(1):149-55. doi: 10.1016/j.bpc.2003.10.025. [PMID: 15059667]
  • Anke Niedernberg, Sorin Tunaru, Andree Blaukat, Ali Ardati, Evi Kostenis. Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63. Cellular signalling. 2003 Apr; 15(4):435-46. doi: 10.1016/s0898-6568(02)00119-5. [PMID: 12618218]
  • Peter Terry Mayer, Tian-Xiang Xiang, Riku Niemi, Bradley D Anderson. A hydrophobicity scale for the lipid bilayer barrier domain from peptide permeabilities: nonadditivities in residue contributions. Biochemistry. 2003 Feb; 42(6):1624-36. doi: 10.1021/bi026701l. [PMID: 12578376]
  • S J Li, Y Yamashita, M Yamazaki. Effect of electrostatic interactions on phase stability of cubic phases of membranes of monoolein/dioleoylphosphatidic acid mixtures. Biophysical journal. 2001 Aug; 81(2):983-93. doi: 10.1016/s0006-3495(01)75756-6. [PMID: 11463640]
  • A Kostrzewa, T Páli, W Froncisz, D Marsh. Membrane location of spin-labeled cytochrome c determined by paramagnetic relaxation agents. Biochemistry. 2000 May; 39(20):6066-74. doi: 10.1021/bi992559l. [PMID: 10821679]
  • J E Baenziger, M L Morris, T E Darsaut, S E Ryan. Effect of membrane lipid composition on the conformational equilibria of the nicotinic acetylcholine receptor. The Journal of biological chemistry. 2000 Jan; 275(2):777-84. doi: 10.1074/jbc.275.2.777. [PMID: 10625607]
  • M Traïkia, D E Warschawski, M Recouvreur, J Cartaud, P F Devaux. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance. European biophysics journal : EBJ. 2000; 29(3):184-95. doi: 10.1007/s002490000077. [PMID: 10968210]
  • K A Dalton, J D Pilot, S Mall, J M East, A G Lee. Anionic phospholipids decrease the rate of slippage on the Ca(2+)-ATPase of sarcoplasmic reticulum. The Biochemical journal. 1999 Sep; 342 ( Pt 2)(?):431-8. doi: 10.1042/bj3420431. [PMID: 10455031]
  • J M Holopainen, J Y Lehtonen, P K Kinnunen. Evidence for the extended phospholipid conformation in membrane fusion and hemifusion. Biophysical journal. 1999 Apr; 76(4):2111-20. doi: 10.1016/s0006-3495(99)77367-4. [PMID: 10096906]
  • D E Raines, N S Krishnan. Agonist binding and affinity state transitions in reconstituted nicotinic acetylcholine receptors revealed by single and sequential mixing stopped-flow fluorescence spectroscopies. Biochimica et biophysica acta. 1998 Sep; 1374(1-2):83-93. doi: 10.1016/s0005-2736(98)00133-3. [PMID: 9814855]
  • K A Dalton, S Mall, J D Pilot, J M East, A G Lee. Anionic lipids and accumulation of Ca2+ by a Ca(2+)-ATPase. Biochemical Society transactions. 1998 Aug; 26(3):S234. doi: 10.1042/bst026s234. [PMID: 9765953]
  • C D Oja, S C Semple, A Chonn, P R Cullis. Influence of dose on liposome clearance: critical role of blood proteins. Biochimica et biophysica acta. 1996 May; 1281(1):31-7. doi: 10.1016/0005-2736(96)00003-x. [PMID: 8652601]
  • N Méthot, C N Demers, J E Baenziger. Structure of both the ligand- and lipid-dependent channel-inactive states of the nicotinic acetylcholine receptor probed by FTIR spectroscopy and hydrogen exchange. Biochemistry. 1995 Nov; 34(46):15142-9. doi: 10.1021/bi00046a021. [PMID: 7578128]
  • F A de Wolf, K Nicolay, B de Kruijff. Effect of doxorubicin on the order of the acyl chains of anionic and zwitterionic phospholipids in liquid-crystalline mixed model membranes: absence of drug-induced segregation of lipids into extended domains. Biochemistry. 1992 Sep; 31(38):9252-62. doi: 10.1021/bi00153a019. [PMID: 1390711]
  • J E Ferguson, M R Hanley. Phosphatidic acid and lysophosphatidic acid stimulate receptor-regulated membrane currents in the Xenopus laevis oocyte. Archives of biochemistry and biophysics. 1992 Sep; 297(2):388-92. doi: 10.1016/0003-9861(92)90689-t. [PMID: 1379791]
  • M P McCarthy, M A Moore. Effects of lipids and detergents on the conformation of the nicotinic acetylcholine receptor from Torpedo californica. The Journal of biological chemistry. 1992 Apr; 267(11):7655-63. doi: 10.1016/s0021-9258(18)42565-3. [PMID: 1560000]
  • P Pinnaduwage, L Huang. Stable target-sensitive immunoliposomes. Biochemistry. 1992 Mar; 31(11):2850-5. doi: 10.1021/bi00126a002. [PMID: 1372514]
  • G Lindblom, L Rilfors, J B Hauksson, I Brentel, M Sjölund, B Bergenståhl. Effect of head-group structure and counterion condensation on phase equilibria in anionic phospholipid-water systems studied by 2H, 23Na, and 31P NMR and X-ray diffraction. Biochemistry. 1991 Nov; 30(45):10938-48. doi: 10.1021/bi00109a019. [PMID: 1932019]
  • R B Spruijt, M R Böhmer, J Wilschut, M A Hemminga. Interaction of non-enveloped plant viruses and their viral coat proteins with phospholipid vesicles. Biochimica et biophysica acta. 1991 Jun; 1065(2):217-24. doi: 10.1016/0005-2736(91)90233-x. [PMID: 2059653]
  • L Lebeau, E Regnier, P Schultz, J C Wang, C Mioskowski, P Oudet. Two-dimensional crystallization of DNA gyrase B subunit on specifically designed lipid monolayers. FEBS letters. 1990 Jul; 267(1):38-42. doi: 10.1016/0014-5793(90)80282-n. [PMID: 2163898]
  • J Sun, M Petersheim. Lanthanide(III)-phosphatidic acid complexes: binding site heterogeneity and phase separation. Biochimica et biophysica acta. 1990 May; 1024(1):159-66. doi: 10.1016/0005-2736(90)90219-e. [PMID: 2110832]
  • M Woźniak, E Kossowska, J Purzycka-Preis, M M Zydowo. The influence of phosphatidate bilayers on pig heart AMP deaminase. Crucial role of pH-dependent lipid-phase transition. The Biochemical journal. 1988 Nov; 255(3):977-81. doi: 10.1042/bj2550977. [PMID: 3214434]
  • E D Eanes, A W Hailer, B R Heywood. Modulation of calcium phosphate formation by phosphatidate-containing anionic liposomes. Calcified tissue international. 1988 Oct; 43(4):226-34. doi: 10.1007/bf02555139. [PMID: 3145128]
  • E B Smaal, K Nicolay, J G Mandersloot, J de Gier, B de Kruijff. 2H-NMR, 31P-NMR and DSC characterization of a novel lipid organization in calcium-dioleoylphosphatidate membranes. Implications for the mechanism of the phosphatidate calcium transmembrane shuttle. Biochimica et biophysica acta. 1987 Mar; 897(3):453-66. doi: 10.1016/0005-2736(87)90442-1. [PMID: 3814595]
  • W Li, T S Aurora, T H Haines, H Z Cummins. Elasticity of synthetic phospholipid vesicles and submitochondrial particles during osmotic swelling. Biochemistry. 1986 Dec; 25(25):8220-9. doi: 10.1021/bi00373a015. [PMID: 3814581]
  • M D Houslay, L Needham, N J Dodd, A M Grey. Acidic phospholipid species inhibit adenylate cyclase activity in rat liver plasma membranes. The Biochemical journal. 1986 Apr; 235(1):237-43. doi: 10.1042/bj2350237. [PMID: 3741383]
  • E B Smaal, J G Mandersloot, B de Kruijff, J de Gier. Essential adaptation of the calcium influx assay into liposomes with entrapped arsenazo III for studies on the possible calcium translocating properties of acidic phospholipids. Biochimica et biophysica acta. 1985 Jun; 816(2):418-22. doi: 10.1016/0005-2736(85)90511-5. [PMID: 3924100]
  • R Brasseur, B de Kruijff, J M Ruysschaert. Mode of organization of lipid aggregates: a conformational analysis. Bioscience reports. 1984 Mar; 4(3):259-67. doi: 10.1007/bf01119662. [PMID: 6547066]
  • S B Farren, M J Hope, P R Cullis. Polymorphic phase preferences of phosphatidic acid: A 31P and 2H NMR study. Biochemical and biophysical research communications. 1983 Mar; 111(2):675-82. doi: 10.1016/0006-291x(83)90359-5. [PMID: 6838577]