Exact Mass: 688.4580000000001

Exact Mass Matches: 688.4580000000001

Found 371 metabolites which its exact mass value is equals to given mass value 688.4580000000001, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


DG(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C45H68O5 (688.5066478)


DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propan-2-yl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H68O5 (688.5066478)


DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

(2S)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C45H68O5 (688.5066478)


DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

(2S)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H68O5 (688.5066478)


DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

(2S)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

(2S)-3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:4n6/0:0/22:6n3)

(2R)-2-Hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid

C45H68O5 (688.5066478)


DG(20:4n6/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:4n6/0:0/22:6n3), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The arachidonic acid moiety is derived from animal fats and eggs, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(22:5n6/0:0/20:5n3)

(2S)-2-Hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propyl (4Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoic acid

C45H68O5 (688.5066478)


DG(22:5n6/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(22:5n6/0:0/20:5n3), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:4n3/0:0/22:6n3)

(2R)-2-Hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid

C45H68O5 (688.5066478)


DG(20:4n3/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:4n3/0:0/22:6n3), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The eicosatetraenoic acid moiety is derived from fish oils, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:5n3/0:0/22:5n3)

(2S)-2-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H68O5 (688.5066478)


DG(20:5n3/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:5n3/0:0/22:5n3), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

PA(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z))

[(2R)-2,3-bis[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C39H61O8P (688.4103836)


PA(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:1(11Z)/15:0)

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H73O8P (688.5042788)


PA(20:1(11Z)/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/15:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

HYDROCHLORIDE SALT

2,2-dimethyl-4-oxo-4-{[1,2,14,18,18-pentamethyl-5-(5-methylpyridine-3-amido)-7-oxo-8-(propan-2-yl)pentacyclo[11.8.0.0^{2,10}.0^{5,9}.0^{14,19}]henicos-8-en-17-yl]oxy}butanoic acid

C42H60N2O6 (688.4451140000001)


   

PA(13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O10P (688.431512)


PA(13:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/13:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O10P (688.431512)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/13:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(16:0/18:1(12Z)-O(9S,10R))

[(2R)-3-(hexadecanoyloxy)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C37H69O9P (688.4678954)


PA(16:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C37H69O9P (688.4678954)


PA(18:1(12Z)-O(9S,10R)/16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/16:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(16:0/18:1(9Z)-O(12,13))

[(2R)-3-(hexadecanoyloxy)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C37H69O9P (688.4678954)


PA(16:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C37H69O9P (688.4678954)


PA(18:1(9Z)-O(12,13)/16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/16:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O10P (688.431512)


PA(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O10P (688.431512)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O10P (688.431512)


PA(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O10P (688.431512)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-16:0/18:1(12Z)-O(9S,10R))

[(2R)-3-[(14-methylpentadecanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C37H69O9P (688.4678954)


PA(i-16:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-16:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/i-16:0)

[(2R)-2-[(14-methylpentadecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C37H69O9P (688.4678954)


PA(18:1(12Z)-O(9S,10R)/i-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/i-16:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-16:0/18:1(9Z)-O(12,13))

[(2R)-3-[(14-methylpentadecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C37H69O9P (688.4678954)


PA(i-16:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-16:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/i-16:0)

[(2R)-2-[(14-methylpentadecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C37H69O9P (688.4678954)


PA(18:1(9Z)-O(12,13)/i-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/i-16:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   

3beta-hydroxyurs-12-en-28-oic acid 3-O-beta-D-glucuranopyranoside 6-O-butyl ester

3beta-hydroxyurs-12-en-28-oic acid 3-O-beta-D-glucuranopyranoside 6-O-butyl ester

C40H64O9 (688.4550094)


   
   

oleanolic acid 3-O-beta-D-glucuronopyranoside-6-O-butyl ester

oleanolic acid 3-O-beta-D-glucuronopyranoside-6-O-butyl ester

C40H64O9 (688.4550094)


   

21-O-(2,3-Dihydroxy-2-methylbutanoyl),22-angeloyl-(3beta,16alpha,21beta,22alpha)-12-Oleanene-3,16,21,22,28-pentol

21-O-(2,3-Dihydroxy-2-methylbutanoyl),22-angeloyl-(3beta,16alpha,21beta,22alpha)-12-Oleanene-3,16,21,22,28-pentol

C40H64O9 (688.4550094)


   

2-O-acetyl-3-O-(4-O-acetyl)-alpha-L-arabinopyranosylmaslinic acid

2-O-acetyl-3-O-(4-O-acetyl)-alpha-L-arabinopyranosylmaslinic acid

C39H60O10 (688.418626)


   

cimigenol-3-O-[2?-O-(E)-2-butenoyl]-alpha?L-arabinopyranoside

cimigenol-3-O-[2?-O-(E)-2-butenoyl]-alpha?L-arabinopyranoside

C39H60O10 (688.418626)


   
   

2-O-acetyl-3-O-(3-O-acetyl)-alpha-L-arabinopyranosylmaslinic acid

2-O-acetyl-3-O-(3-O-acetyl)-alpha-L-arabinopyranosylmaslinic acid

C39H60O10 (688.418626)


   

6alpha-acetoxy-23alpha-ethoxy-16beta,23(R)-epoxy-24,25,26,27-tetranor-9,19-cyclolanosta-3-O-[beta-D-(4-trans-2-butenoyl)xylopyranoside]|tomentoside III

6alpha-acetoxy-23alpha-ethoxy-16beta,23(R)-epoxy-24,25,26,27-tetranor-9,19-cyclolanosta-3-O-[beta-D-(4-trans-2-butenoyl)xylopyranoside]|tomentoside III

C39H60O10 (688.418626)


   

21-O-(2,3-dihydroxy-2-methylbutyroyl),22-O-angeloyl-jegosapogenol

21-O-(2,3-dihydroxy-2-methylbutyroyl),22-O-angeloyl-jegosapogenol

C40H64O9 (688.4550094)


   

DG(20:5/22:5/0:0)[iso2]

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycerol

C45H68O5 (688.5066478)


   

DG(20:4/22:6/0:0)[iso2]

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C45H68O5 (688.5066478)


   

Diglyceride

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

C45H68O5 (688.5066478)


   

PG(12:0/18:3(6Z,9Z,12Z))

1-dodecanoyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C36H65O10P (688.431512)


   

PG(12:0/18:3(9Z,12Z,15Z))

1-dodecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C36H65O10P (688.431512)


   

PG(18:3(6Z,9Z,12Z)/12:0)

1-(6Z,9Z,12Z-octadecatrienoyl)-2-dodecanoyl-glycero-3-phospho-(1-sn-glycerol)

C36H65O10P (688.431512)


   

PG(18:3(9Z,12Z,15Z)/12:0)

1-(9Z,12Z,15Z-octadecatrienoyl)-2-dodecanoyl-glycero-3-phospho-(1-sn-glycerol)

C36H65O10P (688.431512)


   

PA(13:0/22:1(11Z))

1-tridecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(14:1(9Z)/21:0)

1-(9Z-tetradecenoyl)-2-heneicosanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(15:0/20:1(11Z))

1-pentadecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(15:1(9Z)/20:0)

1-(9Z-pentadecenoyl)-2-eicosanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(16:0/19:1(9Z))

1-hexadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(16:1(9Z)/19:0)

1-(9Z-hexadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(17:1(9Z)/18:0)

1-(9Z-heptadecenoyl)-2-octadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(18:0/17:1(9Z))

1-octadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(18:1(9Z)/17:0)

1-(9Z-octadecenoyl)-2-heptadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z))

1,2-di-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-sn-glycero-3-phosphate

C39H61O8P (688.4103836)


   

PA(19:0/16:1(9Z))

1-nonadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(19:1(9Z)/16:0)

1-(9Z-nonadecenoyl)-2-hexadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(20:0/15:1(9Z))

1-eicosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(20:1(11Z)/15:0)

1-(11Z-eicosenoyl)-2-pentadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(21:0/14:1(9Z))

1-heneicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(22:1(11Z)/13:0)

1-(11Z-docosenoyl)-2-tridecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(17:0/18:1(9Z))

1-heptadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

DG 42:10

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycerol

C45H68O5 (688.5066478)


   

PG 30:3

1-(9Z,12Z,15Z-octadecatrienoyl)-2-dodecanoyl-glycero-3-phospho-(1-sn-glycerol)

C36H65O10P (688.431512)


   

PA 35:1

1-heneicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA 36:8

1,2-di-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-sn-glycero-3-phosphate

C39H61O8P (688.4103836)


   
   
   

HYDROGEN HEXABROMOPLATINATE(IV) HYDRATE

HYDROGEN HEXABROMOPLATINATE(IV) HYDRATE

Br6H4OPt (688.5010144)


   
   

dioctyldineodecanoatetin

dioctyldineodecanoatetin

C36H72O4Sn (688.4452302)


   

1-Oleoyl-2-heptadecanoyl-sn-glycero-3-phosphate

1-Oleoyl-2-heptadecanoyl-sn-glycero-3-phosphate

C38H73O8P (688.5042788)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as oleoyl and heptadecanoyl respectively.

   
   

PA(16:0/18:1(12Z)-O(9S,10R))

PA(16:0/18:1(12Z)-O(9S,10R))

C37H69O9P (688.4678954)


   

PA(18:1(12Z)-O(9S,10R)/16:0)

PA(18:1(12Z)-O(9S,10R)/16:0)

C37H69O9P (688.4678954)


   

PA(i-16:0/18:1(12Z)-O(9S,10R))

PA(i-16:0/18:1(12Z)-O(9S,10R))

C37H69O9P (688.4678954)


   

PA(18:1(12Z)-O(9S,10R)/i-16:0)

PA(18:1(12Z)-O(9S,10R)/i-16:0)

C37H69O9P (688.4678954)


   

PA(i-16:0/18:1(9Z)-O(12,13))

PA(i-16:0/18:1(9Z)-O(12,13))

C37H69O9P (688.4678954)


   

PA(18:1(9Z)-O(12,13)/i-16:0)

PA(18:1(9Z)-O(12,13)/i-16:0)

C37H69O9P (688.4678954)


   

[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropyl] hexadecanoate

[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropyl] hexadecanoate

C37H69O9P (688.4678954)


   

[(2R)-1-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] hexadecanoate

[(2R)-1-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] hexadecanoate

C37H69O9P (688.4678954)


   

PA(13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C36H65O10P (688.431512)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/13:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/13:0)

C36H65O10P (688.431512)


   

PA(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C36H65O10P (688.431512)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0)

C36H65O10P (688.431512)


   

PA(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C36H65O10P (688.431512)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0)

C36H65O10P (688.431512)


   

Veraguamide C

Veraguamide C

C37H60N4O8 (688.441092)


A natural product found in Symploca hydnoides and Oscillatoria margaritifera PAC-17-FEB-10-2.

   

1-Heptadecanoyl-2-stearoyl-sn-glycero-3-phosphate(2-)

1-Heptadecanoyl-2-stearoyl-sn-glycero-3-phosphate(2-)

C38H73O8P-2 (688.5042788)


   

1,2-Diacyl-3-alpha-d-glucuronopyranosyl-sn-glycerol taurineamide

1,2-Diacyl-3-alpha-d-glucuronopyranosyl-sn-glycerol taurineamide

C37H68O11 (688.4761378000001)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C37H69O9P (688.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] tridecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] tridecanoate

C37H69O9P (688.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C37H69O9P (688.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C37H69O9P (688.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate

C37H69O9P (688.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C37H69O9P (688.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C37H69O9P (688.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-tridec-9-enoate

C37H69O9P (688.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] pentadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] pentadecanoate

C37H69O9P (688.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] undecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] undecanoate

C37H69O9P (688.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C37H69O9P (688.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

C37H69O9P (688.4678954)


   

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H65N2O6P (688.4580000000001)


   

[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H65N2O6P (688.4580000000001)


   

[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H65N2O6P (688.4580000000001)


   

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C45H68O5 (688.5066478)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C45H68O5 (688.5066478)


   

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C45H68O5 (688.5066478)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C45H68O5 (688.5066478)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

6-(2-Dodecanoyloxy-3-hexadecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

6-(2-Dodecanoyloxy-3-hexadecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

C37H68O11 (688.4761378000001)


   

3,4,5-Trihydroxy-6-(3-pentadecanoyloxy-2-tridecanoyloxypropoxy)oxane-2-carboxylic acid

3,4,5-Trihydroxy-6-(3-pentadecanoyloxy-2-tridecanoyloxypropoxy)oxane-2-carboxylic acid

C37H68O11 (688.4761378000001)


   

[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H65N2O6P (688.4580000000001)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C36H65O10P (688.431512)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C36H65O10P (688.431512)


   

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C36H65O10P (688.431512)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C36H65O10P (688.431512)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C36H65O10P (688.431512)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C36H65O10P (688.431512)


   

(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (Z)-hexacos-15-enoate

(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (Z)-hexacos-15-enoate

C38H73O8P (688.5042788)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C36H65O10P (688.431512)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C38H73O8P (688.5042788)


   

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-henicos-11-enoate

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-henicos-11-enoate

C38H73O8P (688.5042788)


   

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] henicosanoate

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] henicosanoate

C38H73O8P (688.5042788)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C38H73O8P (688.5042788)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C36H65O10P (688.431512)


   

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-icos-11-enoate

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-icos-11-enoate

C38H73O8P (688.5042788)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C36H65O10P (688.431512)


   

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] docosanoate

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] docosanoate

C38H73O8P (688.5042788)


   

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate

C38H73O8P (688.5042788)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C39H61O8P (688.4103836)


   

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-octadec-9-enoate

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-octadec-9-enoate

C38H73O8P (688.5042788)


   

[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H68O5 (688.5066478)


   

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-docos-13-enoate

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-docos-13-enoate

C38H73O8P (688.5042788)


   

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate

C38H73O8P (688.5042788)


   

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C36H65O10P (688.431512)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C39H61O8P (688.4103836)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C39H61O8P (688.4103836)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C36H65O10P (688.431512)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C36H65O10P (688.431512)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C39H61O8P (688.4103836)


   

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


   

(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (Z)-tetracos-13-enoate

(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (Z)-tetracos-13-enoate

C38H73O8P (688.5042788)


   

2-[[(2R)-3-dodecanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-dodecanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[hydroxy-[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C36H65O10P (688.431512)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] octadec-17-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] octadec-17-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C36H65O10P (688.431512)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C38H73O8P (688.5042788)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C38H73O8P (688.5042788)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C39H61O8P (688.4103836)


   

2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H68O5 (688.5066478)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] octadec-17-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] octadec-17-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

C38H73O8P (688.5042788)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C36H65O10P (688.431512)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] henicosanoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] henicosanoate

C38H73O8P (688.5042788)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C38H73O8P (688.5042788)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C38H73O8P (688.5042788)


   

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (E)-tetracos-15-enoate

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (E)-tetracos-15-enoate

C38H73O8P (688.5042788)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

C38H73O8P (688.5042788)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C36H65O10P (688.431512)


   

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

C38H73O8P (688.5042788)


   

2-[[(2S)-2-dodecanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-dodecanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

C38H73O8P (688.5042788)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-13-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-13-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C36H65O10P (688.431512)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C39H61O8P (688.4103836)


   

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (E)-icos-13-enoate

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (E)-icos-13-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

C38H73O8P (688.5042788)


   

2-[hydroxy-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C36H65O10P (688.431512)


   

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (E)-icos-11-enoate

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (E)-icos-11-enoate

C38H73O8P (688.5042788)


   

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

C38H73O8P (688.5042788)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

C39H61O8P (688.4103836)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate

C38H73O8P (688.5042788)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C39H61O8P (688.4103836)


   

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H68O5 (688.5066478)


   

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (E)-docos-13-enoate

C38H73O8P (688.5042788)


   

2-[hydroxy-[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

C45H68O5 (688.5066478)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

C38H73O8P (688.5042788)


   

[1-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C39H60O10 (688.418626)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate

C38H73O8P (688.5042788)


   

2-[hydroxy-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

C38H73O8P (688.5042788)


   

2-[hydroxy-[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C36H65O10P (688.431512)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C38H73O8P (688.5042788)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] henicosanoate

C38H73O8P (688.5042788)


   

2-[hydroxy-[(2R)-3-[(E)-pentadec-9-enoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(E)-pentadec-9-enoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

C38H73O8P (688.5042788)


   

2-[hydroxy-[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

C38H73O8P (688.5042788)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H61O8P (688.4103836)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C39H61O8P (688.4103836)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C36H65O10P (688.431512)


   

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (E)-tetracos-15-enoate

C38H73O8P (688.5042788)


   

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C45H68O5 (688.5066478)


   

2-[hydroxy-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C39H61O8P (688.4103836)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C39H61O8P (688.4103836)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

C45H68O5 (688.5066478)


   

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (E)-docos-13-enoate

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (E)-docos-13-enoate

C38H73O8P (688.5042788)


   

2-[hydroxy-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C36H65O10P (688.431512)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C36H65O10P (688.431512)


   

[1-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C39H60O10 (688.418626)


   

2-[hydroxy-[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[[3-dodecanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-dodecanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[[3-decanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[hydroxy-[3-pentanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-pentanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H71NO8P+ (688.4917035999999)


   

2-[carboxy-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C40H66NO8+ (688.4788176000001)


   

1-(11Z-eicosenoyl)-2-pentadecanoyl-glycero-3-phosphate

1-(11Z-eicosenoyl)-2-pentadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

C45H68O5 (688.5066478)


   

DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

C45H68O5 (688.5066478)


   

DG(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

DG(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

C45H68O5 (688.5066478)


   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

C45H68O5 (688.5066478)


   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

C45H68O5 (688.5066478)


   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

C45H68O5 (688.5066478)


   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

C45H68O5 (688.5066478)


   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

C45H68O5 (688.5066478)


   

1-Arachidonoyl-3-docosahexaenoyl-sn-glycerol

1-Arachidonoyl-3-docosahexaenoyl-sn-glycerol

C45H68O5 (688.5066478)


   

1-Osbondoyl-3-eicosapentaenoyl-sn-glycerol

1-Osbondoyl-3-eicosapentaenoyl-sn-glycerol

C45H68O5 (688.5066478)


   

1-Eicsoatetraenoyl-3-docosahexaenoyl-sn-glycerol

1-Eicsoatetraenoyl-3-docosahexaenoyl-sn-glycerol

C45H68O5 (688.5066478)


   

1-Eicosapentaenoyl-3-docosapentaenoyl-sn-glycerol

1-Eicosapentaenoyl-3-docosapentaenoyl-sn-glycerol

C45H68O5 (688.5066478)


   

1-(9Z-pentadecenoyl)-2-eicosanoyl-glycero-3-phosphate

1-(9Z-pentadecenoyl)-2-eicosanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-tridecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

1-tridecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-Heptadecanoyl-2-stearoyl-sn-glycero-3-phosphate(2-)

1-Heptadecanoyl-2-stearoyl-sn-glycero-3-phosphate(2-)

C38H73O8P (688.5042788)


A 1,2-diacyl-sn-glycerol 3-phosphate(2-) in which the phosphatidyl acyl groups at postions 1 and 2 are specified as heptadecanoyl and stearoyl respectively.

   

1-(9Z-hexadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

1-(9Z-hexadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-(9Z-heptadecenoyl)-2-octadecanoyl-glycero-3-phosphate

1-(9Z-heptadecenoyl)-2-octadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-octadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

1-octadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-(9Z-nonadecenoyl)-2-hexadecanoyl-glycero-3-phosphate

1-(9Z-nonadecenoyl)-2-hexadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-heneicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

1-heneicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-(9Z-tetradecenoyl)-2-heneicosanoyl-glycero-3-phosphate

1-(9Z-tetradecenoyl)-2-heneicosanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-hexadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

1-hexadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-nonadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

1-nonadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-eicosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

1-eicosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-heptadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphate

1-heptadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-pentadecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

1-pentadecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-(11Z-docosenoyl)-2-tridecanoyl-glycero-3-phosphate

1-(11Z-docosenoyl)-2-tridecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-dodecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

1-dodecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C36H65O10P (688.431512)


   

diacylglycerol 42:10

diacylglycerol 42:10

C45H68O5 (688.5066478)


A diglyceride in which the two acyl groups contain a total of 42 carbons and 10 double bonds.

   

oleandomycin(1+)

oleandomycin(1+)

C35H62NO12 (688.4271792)


The conjugate acid of oleandomycin arising from protonation of the tertiary amino group; major species at pH 7.3.

   

1-heptadecanoyl-2-oleoyl-sn-glycero-3-phosphate

1-heptadecanoyl-2-oleoyl-sn-glycero-3-phosphate

C38H73O8P (688.5042788)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as heptadecanoyl and oleoyl respectively.

   

TG(42:10)

TG(20:4(1)_10:2_12:4)

C45H68O5 (688.5066478)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PEt(33:1)

PEt(17:1_16:0)

C38H73O8P (688.5042788)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PMe(34:1)

PMe(16:0_18:1)

C38H73O8P (688.5042788)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PG P-14:0/17:2 or PG O-14:1/17:2

PG P-14:0/17:2 or PG O-14:1/17:2

C37H69O9P (688.4678954)


   
   

PG P-16:1/15:1 or PG O-16:2/15:1

PG P-16:1/15:1 or PG O-16:2/15:1

C37H69O9P (688.4678954)


   
   
   

PG P-31:2 or PG O-31:3

PG P-31:2 or PG O-31:3

C37H69O9P (688.4678954)


   
   
   
   
   
   
   
   
   
   
   
   
   

1,3-bis({2,4,7-trimethyl-octahydrocyclopenta[c]pyridin-6-yl}) 2-(4-hydroxy-3-methoxyphenyl)-4-(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate

1,3-bis({2,4,7-trimethyl-octahydrocyclopenta[c]pyridin-6-yl}) 2-(4-hydroxy-3-methoxyphenyl)-4-(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate

C41H56N2O7 (688.4087306000001)


   

3,15-dihydroxy-16-[5-hydroxy-8-(3-hydroxy-4,6-dimethyloct-6-en-2-yl)-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

3,15-dihydroxy-16-[5-hydroxy-8-(3-hydroxy-4,6-dimethyloct-6-en-2-yl)-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

C40H64O9 (688.4550094)


   

trimethylsilyl 2,6a,6b,9,9,12a-hexamethyl-10-[(trimethylsilyl)oxy]-2-{[(trimethylsilyl)oxy]methyl}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

trimethylsilyl 2,6a,6b,9,9,12a-hexamethyl-10-[(trimethylsilyl)oxy]-2-{[(trimethylsilyl)oxy]methyl}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C39H72O4Si3 (688.4738152)


   

1,2,6,6,10,19,22-heptamethyl-16-oxo-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-21-oxahexacyclo[12.11.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁸,²³]pentacos-14-en-8-yl acetate

1,2,6,6,10,19,22-heptamethyl-16-oxo-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-21-oxahexacyclo[12.11.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁸,²³]pentacos-14-en-8-yl acetate

C39H60O10 (688.418626)


   

1,3-bis[(4r,4as,6r,7s,7ar)-2,4,7-trimethyl-octahydrocyclopenta[c]pyridin-6-yl] (1r,2r,3r,4s)-2-(4-hydroxy-3-methoxyphenyl)-4-(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate

1,3-bis[(4r,4as,6r,7s,7ar)-2,4,7-trimethyl-octahydrocyclopenta[c]pyridin-6-yl] (1r,2r,3r,4s)-2-(4-hydroxy-3-methoxyphenyl)-4-(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate

C41H56N2O7 (688.4087306000001)