Exact Mass: 688.4550094
Exact Mass Matches: 688.4550094
Found 357 metabolites which its exact mass value is equals to given mass value 688.4550094
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PA(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z))
PA(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:1(11Z)/15:0)
PA(20:1(11Z)/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/15:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
HYDROCHLORIDE SALT
C42H60N2O6 (688.4451140000001)
PA(13:0/20:3(8Z,11Z,14Z)-2OH(5,6))
PA(13:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:3(8Z,11Z,14Z)-2OH(5,6)/13:0)
PA(20:3(8Z,11Z,14Z)-2OH(5,6)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/13:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(16:0/18:1(12Z)-O(9S,10R))
PA(16:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-O(9S,10R)/16:0)
PA(18:1(12Z)-O(9S,10R)/16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/16:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(16:0/18:1(9Z)-O(12,13))
PA(16:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(9Z)-O(12,13)/16:0)
PA(18:1(9Z)-O(12,13)/16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/16:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))
PA(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0)
PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))
PA(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0)
PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-16:0/18:1(12Z)-O(9S,10R))
PA(i-16:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-16:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-O(9S,10R)/i-16:0)
PA(18:1(12Z)-O(9S,10R)/i-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/i-16:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-16:0/18:1(9Z)-O(12,13))
PA(i-16:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-16:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(9Z)-O(12,13)/i-16:0)
PA(18:1(9Z)-O(12,13)/i-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/i-16:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
3beta-hydroxyurs-12-en-28-oic acid 3-O-beta-D-glucuranopyranoside 6-O-butyl ester
oleanolic acid 3-O-beta-D-glucuronopyranoside-6-O-butyl ester
21-O-(2,3-Dihydroxy-2-methylbutanoyl),22-angeloyl-(3beta,16alpha,21beta,22alpha)-12-Oleanene-3,16,21,22,28-pentol
2-O-acetyl-3-O-(4-O-acetyl)-alpha-L-arabinopyranosylmaslinic acid
cimigenol-3-O-[2?-O-(E)-2-butenoyl]-alpha?L-arabinopyranoside
2-O-acetyl-3-O-(3-O-acetyl)-alpha-L-arabinopyranosylmaslinic acid
6alpha-acetoxy-23alpha-ethoxy-16beta,23(R)-epoxy-24,25,26,27-tetranor-9,19-cyclolanosta-3-O-[beta-D-(4-trans-2-butenoyl)xylopyranoside]|tomentoside III
21-O-(2,3-dihydroxy-2-methylbutyroyl),22-O-angeloyl-jegosapogenol
PG(12:0/18:3(6Z,9Z,12Z))
PG(12:0/18:3(9Z,12Z,15Z))
PG(18:3(6Z,9Z,12Z)/12:0)
PG(18:3(9Z,12Z,15Z)/12:0)
PA(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z))
1-Oleoyl-2-heptadecanoyl-sn-glycero-3-phosphate
A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as oleoyl and heptadecanoyl respectively.
[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropyl] hexadecanoate
[(2R)-1-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] hexadecanoate
Veraguamide C
A natural product found in Symploca hydnoides and Oscillatoria margaritifera PAC-17-FEB-10-2.
1-Heptadecanoyl-2-stearoyl-sn-glycero-3-phosphate(2-)
1,2-Diacyl-3-alpha-d-glucuronopyranosyl-sn-glycerol taurineamide
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] tridecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-tridec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] pentadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] undecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate
[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C39H65N2O6P (688.4580000000001)
[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C39H65N2O6P (688.4580000000001)
[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C39H65N2O6P (688.4580000000001)
6-(2-Dodecanoyloxy-3-hexadecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid
3,4,5-Trihydroxy-6-(3-pentadecanoyloxy-2-tridecanoyloxypropoxy)oxane-2-carboxylic acid
[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C39H65N2O6P (688.4580000000001)
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (Z)-hexacos-15-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate
(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-henicos-11-enoate
[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] henicosanoate
[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-icos-11-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] docosanoate
(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate
[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-octadec-9-enoate
(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-docos-13-enoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate
[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (Z)-tetracos-13-enoate
2-[[(2R)-3-dodecanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[hydroxy-[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate
[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] octadec-17-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate
[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate
[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate
[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] octadec-17-enoate
[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate
[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate
[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] henicosanoate
[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate
[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (E)-tetracos-15-enoate
[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-7-enoate
[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate
[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate
2-[[(2S)-2-dodecanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-11-enoate
[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-13-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (E)-icos-13-enoate
[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate
2-[hydroxy-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate
[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (E)-icos-11-enoate
[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate
[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (E)-docos-13-enoate
2-[hydroxy-[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate
[1-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate
2-[hydroxy-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-9-enoate
2-[hydroxy-[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate
[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate
[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate
[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] henicosanoate
2-[hydroxy-[(2R)-3-[(E)-pentadec-9-enoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-4-enoate
2-[hydroxy-[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-6-enoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate
[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (E)-tetracos-15-enoate
2-[hydroxy-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate
[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate
[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (E)-docos-13-enoate
2-[hydroxy-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate
[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate
[1-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
2-[hydroxy-[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[[3-dodecanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[[3-decanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[hydroxy-[3-pentanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C37H71NO8P+ (688.4917035999999)
2-[carboxy-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium
C40H66NO8+ (688.4788176000001)
1-(11Z-eicosenoyl)-2-pentadecanoyl-glycero-3-phosphate
1-(9Z-pentadecenoyl)-2-eicosanoyl-glycero-3-phosphate
1-tridecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate
1-Heptadecanoyl-2-stearoyl-sn-glycero-3-phosphate(2-)
A 1,2-diacyl-sn-glycerol 3-phosphate(2-) in which the phosphatidyl acyl groups at postions 1 and 2 are specified as heptadecanoyl and stearoyl respectively.
1-(9Z-hexadecenoyl)-2-nonadecanoyl-glycero-3-phosphate
1-(9Z-heptadecenoyl)-2-octadecanoyl-glycero-3-phosphate
1-octadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate
1-(9Z-nonadecenoyl)-2-hexadecanoyl-glycero-3-phosphate
1-heneicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate
1-(9Z-tetradecenoyl)-2-heneicosanoyl-glycero-3-phosphate
1-hexadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate
1-nonadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate
1-eicosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate
1-heptadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphate
1-pentadecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate
1-(11Z-docosenoyl)-2-tridecanoyl-glycero-3-phosphate
1-dodecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)
oleandomycin(1+)
The conjugate acid of oleandomycin arising from protonation of the tertiary amino group; major species at pH 7.3.
1-heptadecanoyl-2-oleoyl-sn-glycero-3-phosphate
A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as heptadecanoyl and oleoyl respectively.
PEt(33:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PMe(34:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
1,3-bis({2,4,7-trimethyl-octahydrocyclopenta[c]pyridin-6-yl}) 2-(4-hydroxy-3-methoxyphenyl)-4-(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate
C41H56N2O7 (688.4087306000001)
3,15-dihydroxy-16-[5-hydroxy-8-(3-hydroxy-4,6-dimethyloct-6-en-2-yl)-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-14-methylheptadeca-4,6,8,10,12-pentaenoic acid
trimethylsilyl 2,6a,6b,9,9,12a-hexamethyl-10-[(trimethylsilyl)oxy]-2-{[(trimethylsilyl)oxy]methyl}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
1,2,6,6,10,19,22-heptamethyl-16-oxo-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-21-oxahexacyclo[12.11.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁸,²³]pentacos-14-en-8-yl acetate
1,3-bis[(4r,4as,6r,7s,7ar)-2,4,7-trimethyl-octahydrocyclopenta[c]pyridin-6-yl] (1r,2r,3r,4s)-2-(4-hydroxy-3-methoxyphenyl)-4-(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate
C41H56N2O7 (688.4087306000001)
4-({2-hydroxy-2-[3-hydroxy-4-(10-hydroxy-3,7,9,11,13,15-hexamethyl-16-oxo-1-oxacyclohexadeca-4,6,12,14-tetraen-2-yl)pentan-2-yl]-6-isopropyl-5-methyloxan-4-yl}oxy)-4-oxobut-2-enoic acid
(2s,3r,4s,5r)-2-[2-(6-chlorododecyl)-5-(6-chloropentadecyl)-3-hydroxyphenoxy]oxane-3,4,5-triol
C38H66Cl2O6 (688.4236196000002)
(3s,4z,6e,8z,10e,12z,14s,15s,16s)-16-[(2s,3s,5s,6r,8s,9r,10r)-5,10-dihydroxy-8-[(2r,3s,4s,6e)-3-hydroxy-4,6-dimethyloct-6-en-2-yl]-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-15-hydroxy-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid
10-{[6-(butoxycarbonyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid
1,3-bis[(4r,4as,6r,7s,7as)-2,4,7-trimethyl-octahydrocyclopenta[c]pyridin-6-yl] (1r,2r,3r,4s)-2-(4-hydroxy-3-methoxyphenyl)-4-(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate
C41H56N2O7 (688.4087306000001)
trimethylsilyl (2s,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-2,6a,6b,9,9,12a-hexamethyl-10-[(trimethylsilyl)oxy]-2-{[(trimethylsilyl)oxy]methyl}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
trimethylsilyl 2,2,6a,6b,9,9,12a-heptamethyl-5,10-bis[(trimethylsilyl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(1s,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[6-(butoxycarbonyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid
6-[2,3-bis(tetradecanoyloxy)propoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
(3r,4r,5r,6s)-6-{[(1s,4r,5s,6r,8r,10s,12s,13s,15s,16r,18s,21r)-15-(acetyloxy)-8-ethoxy-4,6,12,17,17-pentamethyl-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-18-yl]oxy}-4,5-dihydroxyoxan-3-yl (2e)-but-2-enoate
10-{[6-(butoxycarbonyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
16-[5,10-dihydroxy-8-(3-hydroxy-4,6-dimethyloct-6-en-2-yl)-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-15-hydroxy-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid
trimethylsilyl (4ar,5r,6as,6br,8ar,10r,12ar,12br,14bs)-2,2,6a,6b,9,9,12a-heptamethyl-5,10-bis[(trimethylsilyl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(2e)-4-{[(2r,4r,5s,6r)-2-hydroxy-2-[(2s,3r,4s)-3-hydroxy-4-[(2s,3s,4e,6e,9s,10s,11r,12e)-10-hydroxy-3,7,9,11,13,15-hexamethyl-16-oxo-1-oxacyclohexadeca-4,6,12,14-tetraen-2-yl]pentan-2-yl]-6-isopropyl-5-methyloxan-4-yl]oxy}-4-oxobut-2-enoic acid
1-{5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalen-1-yl}methyl 3-{5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl}methyl propanedioate
(3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r)-2-[(1r,2r,3ar,5ar,9as,11ar)-2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate
6-{5'-[7-(1-hydroxy-2,3-dimethoxy-2-methylbutyl)-3,9-dimethoxy-2,4,10-trimethyl-1,6-dioxaspiro[4.5]decan-2-yl]-[2,2'-bioxolan]-5-yl}-2,3,5-trimethyloxane-2,4-diol
(3s,4z,6e,8z,10e,12z,14s,15s,16s)-3,15-dihydroxy-16-[(2s,3s,5s,6r,8r,9r,10r)-5-hydroxy-8-[(2r,3s,4s,6e)-3-hydroxy-4,6-dimethyloct-6-en-2-yl]-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-14-methylheptadeca-4,6,8,10,12-pentaenoic acid
(3s,4e,6e,8e,10e,12z,14s,15s,16s)-3,15-dihydroxy-16-[(2s,3s,5s,6r,8r,9r,10r)-5-hydroxy-8-[(2r,3s,4s,6e)-3-hydroxy-4,6-dimethyloct-6-en-2-yl]-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-14-methylheptadeca-4,6,8,10,12-pentaenoic acid
(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6s)-6-(butoxycarbonyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-[2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate
1-[(4ar,5s,6r,8ar)-5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]methyl 3-[(4ar,5s,6r,8ar)-5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]methyl propanedioate
trimethylsilyl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-2,2,6a,6b,9,12a-hexamethyl-10-[(trimethylsilyl)oxy]-9-{[(trimethylsilyl)oxy]methyl}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(2s,3r,4s,5s,6s)-6-[(2r,2's,5r,5'r)-5'-[(2r,3r,4r,5s,7s,9s,10s)-7-[(1r,3s)-1-hydroxy-2,3-dimethoxy-2-methylbutyl]-3,9-dimethoxy-2,4,10-trimethyl-1,6-dioxaspiro[4.5]decan-2-yl]-[2,2'-bioxolan]-5-yl]-2,3,5-trimethyloxane-2,4-diol
6-{[15-(acetyloxy)-8-ethoxy-4,6,12,17,17-pentamethyl-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-18-yl]oxy}-4,5-dihydroxyoxan-3-yl but-2-enoate
(1s,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6s)-6-(butoxycarbonyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid
trimethylsilyl 2,2,6a,6b,9,12a-hexamethyl-10-[(trimethylsilyl)oxy]-9-{[(trimethylsilyl)oxy]methyl}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
1,3-bis[(4r,4as,6r,7s,7ar)-2,4,7-trimethyl-octahydrocyclopenta[c]pyridin-6-yl] (1r,3r)-2-(4-hydroxy-3-methoxyphenyl)-4-(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate
C41H56N2O7 (688.4087306000001)
1,3-bis[(4r,4as,6r,7s,7ar)-2,4,7-trimethyl-octahydrocyclopenta[c]pyridin-6-yl] (1s,2s,3s,4r)-2-(4-hydroxy-3-methoxyphenyl)-4-(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate
C41H56N2O7 (688.4087306000001)