Exact Mass: 682.3775518

Exact Mass Matches: 682.3775518

Found 378 metabolites which its exact mass value is equals to given mass value 682.3775518, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Methyllycaconitine

Methyllycaconitine Perchlorate, Delphinium sp.

C37H50N2O10 (682.346528)


Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.835 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals relative retention time with respect to 9-anthracene Carboxylic Acid is 0.832 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.827

   

Evobioside

4-{5-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl}-2,5-dihydrofuran-2-one

C35H54O13 (682.3564234)


Evobioside is found in beverages. Evobioside is a constituent of the seeds of Descurainia sophia (flixweed).

   

Corchorusoside C

3-[5,14-dihydroxy-3-[4-hydroxy-6-methyl-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-10,13-dimethyl-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C35H54O13 (682.3564234)


Constituent of Corchorus olitorius (Jews mallow). Corchorusoside C is found in tea, herbs and spices, and green vegetables. Corchorusoside C is found in green vegetables. Corchorusoside C is a constituent of Corchorus olitorius (Jews mallow).

   

Corchorusoside B

4-{11,17-dihydroxy-5-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl}-2,5-dihydrofuran-2-one

C35H54O13 (682.3564234)


Constituent of Corchorus olitorius (Jews mallow). Corchorusoside B is found in tea, herbs and spices, and green vegetables. Corchorusoside B is found in green vegetables. Corchorusoside B is a constituent of Corchorus olitorius (Jews mallow).

   

Cannogenol 3-[glucosyl-(1->4)-2,6-dideoxy-xylohexoside]

4-{11-hydroxy-5-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2-(hydroxymethyl)-15-methyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl}-2,5-dihydrofuran-2-one

C35H54O13 (682.3564234)


Cannogenol 3-[glucosyl-(1->4)-2,6-dideoxy-xylohexoside] is found in green vegetables. Cannogenol 3-[glucosyl-(1->4)-2,6-dideoxy-xylohexoside] is a constituent of Corchorus olitorius (Jews mallow). Constituent of Corchorus olitorius (Jews mallow). Cannogenol 3-[glucosyl-(1->4)-2,6-dideoxy-xylohexoside] is found in tea, herbs and spices, and green vegetables.

   

Delartine

{11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl}methyl 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoic acid

C37H50N2O10 (682.346528)


   

PA(14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0)

[(2R)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0)

[(2R)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0)

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0)

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2R)-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z)), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2R)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z))

[(2R)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z)), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9))

[(2R)-3-[(9Z)-tetradec-9-enoyloxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z))

[(2R)-2-[(9Z)-tetradec-9-enoyloxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z)), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6))

[(2R)-3-[(9Z)-tetradec-9-enoyloxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z))

[(2R)-2-[(9Z)-tetradec-9-enoyloxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z)), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z)), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z))

[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z)), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z)), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z)), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z)), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z)), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z)), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z)), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z))

[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z)), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z))

[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z)), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-[(12-methyltridecanoyl)oxy]-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(i-14:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-14:0)

[(2R)-2-[(12-methyltridecanoyl)oxy]-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-14:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-3-[(12-methyltridecanoyl)oxy]-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(i-14:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-14:0)

[(2R)-2-[(12-methyltridecanoyl)oxy]-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-14:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-14:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-14:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-14:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-14:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(i-14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-14:0)

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-14:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(i-14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-14:0)

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209478)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-14:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

3-O-beta-Glucosylplatycodigenin

5,11-Dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-10-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C36H58O12 (682.3928068)


3-O-Beta-D-Glucopyranosylplatycodigenin is an oleanane-type triterpenoid isolated from roots of Platycodon grandiflorum. 3-O-Beta-D-Glucopyranosylplatycodigenin exhibits anti-proliferative activities against HSC-T6 cell line with an IC50 of 13.36 μM[1].

   
   

Trachelosperoside E-1

Trachelosperoside E-1

C36H58O12 (682.3928068)


   

Trachelosperoside B-1

Trachelosperoside B-1

C36H58O12 (682.3928068)


   

28-O-beta-D-glucopyranosyl-6beta,23-dihydroxytormentic acid

28-O-beta-D-glucopyranosyl-6beta,23-dihydroxytormentic acid

C36H58O12 (682.3928068)


   
   

6-O-(E-4-Hydroxycinnamoyl)-desglucouzarin

6-O-(E-4-Hydroxycinnamoyl)-desglucouzarin

C38H50O11 (682.335295)


   
   
   
   
   

(2alpha,3beta,12beta)-3-(beta-D-glucopyranosyloxy)-2,12,21-trihydroxy-19-oxo-18,19-secours-13(18)-en-28-oic acid|bodinioside A

(2alpha,3beta,12beta)-3-(beta-D-glucopyranosyloxy)-2,12,21-trihydroxy-19-oxo-18,19-secours-13(18)-en-28-oic acid|bodinioside A

C36H58O12 (682.3928068)


   

bruceajavanone A 7-acetate

bruceajavanone A 7-acetate

C40H58O9 (682.4080618)


   
   

Neoglucodigifucosid

Neoglucodigifucosid

C35H54O13 (682.3564234)


   

(2beta,3beta,9beta,10alpha,16alpha,20xi,24xi)-20,24-epoxy-2-(beta-D-glucopyranosyloxy)-3,16,25,26-tetrahydroxy-9-methyl-19-norlanost-5-en-11-one

(2beta,3beta,9beta,10alpha,16alpha,20xi,24xi)-20,24-epoxy-2-(beta-D-glucopyranosyloxy)-3,16,25,26-tetrahydroxy-9-methyl-19-norlanost-5-en-11-one

C36H58O12 (682.3928068)


   

3-O-|A-D-Glucopyranosylplatycodigenin

3-O-|A-D-Glucopyranosylplatycodigenin

C36H58O12 (682.3928068)


   

8-O-methyllycaconitine|oreaconine

8-O-methyllycaconitine|oreaconine

C37H50N2O10 (682.346528)


   
   

Deacylgymnemic acid

Deacylgymnemic acid

C36H58O12 (682.3928068)


   

Lehualide K

Lehualide K

C36H58O8S2 (682.3572908000001)


An organic disulfide that is didecyl disulfide in which the hydrogens of the terminal methyl groups are replaced by 3,4-dimethoxy-5-methyl-2H-pyran-2-ones groups respectively. It has been isolated from the marine sponge of the genus Plakortis.

   
   

sulfangolid C ammonium salt

sulfangolid C ammonium salt

C35H54O11S (682.3386654)


   
   

2alpha,3beta,19alpha,23,30-pentahydroxyurs-12-en-28-oic acid-28-O-beta-D-glucopyranosyl ester

2alpha,3beta,19alpha,23,30-pentahydroxyurs-12-en-28-oic acid-28-O-beta-D-glucopyranosyl ester

C36H58O12 (682.3928068)


   

3-Succinyl-L-arginine ester-Cinobufagin

3-Succinyl-L-arginine ester-Cinobufagin

C36H50N4O9 (682.3577610000001)


   
   

(5R,5R)-7,7-(6,6-dihydroxy-5,5-dimethoxy-1,1-biphenyl-3,3-diyl)bis(5-methoxy-1-phenylheptan-3-one)|alpinoid A

(5R,5R)-7,7-(6,6-dihydroxy-5,5-dimethoxy-1,1-biphenyl-3,3-diyl)bis(5-methoxy-1-phenylheptan-3-one)|alpinoid A

C42H50O8 (682.35055)


   

2-O-beta-D-glucopyranosido-23,24-dihydrocucurbitacin F|hemsamabilinin B

2-O-beta-D-glucopyranosido-23,24-dihydrocucurbitacin F|hemsamabilinin B

C36H58O12 (682.3928068)


   

Sarmentogenin-3beta-O-(alpha-L-rhamnosido-4-alpha-L-rhamnosid)|Sarmentogenin-3beta-O-

Sarmentogenin-3beta-O-(alpha-L-rhamnosido-4-alpha-L-rhamnosid)|Sarmentogenin-3beta-O-

C35H54O13 (682.3564234)


   
   

Glucodigifucoside

3-[(3S,5R,8R,9S,10S,13R,14S,17R)-3-[(3S,4S,6S)-3,4-dihydroxy-6-methyl-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C35H54O13 (682.3564234)


   

17-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,2,3,7,8,10,12,15,16,17-decahydrocyclopenta[a]phenanthren-11-one

NCGC00169462-02!17-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,2,3,7,8,10,12,15,16,17-decahydrocyclopenta[a]phenanthren-11-one

C36H58O12 (682.3928068)


   

C36H58O12_beta-D-Glucopyranose, 1-O-[(2alpha,3beta,5xi,9xi,18xi,19alpha)-2,3,19,23,24-pentahydroxy-28-oxoolean-12-en-28-yl]

NCGC00347771-02_C36H58O12_beta-D-Glucopyranose, 1-O-[(2alpha,3beta,5xi,9xi,18xi,19alpha)-2,3,19,23,24-pentahydroxy-28-oxoolean-12-en-28-yl]-

C36H58O12 (682.3928068)


   

C35H54O13_Card-20(22)-enolide, 3-[(6-deoxy-2-O-beta-D-glucopyranosyl-alpha-L-mannopyranosyl)oxy]-14-hydroxy-, (3beta,9xi)

NCGC00385704-01_C35H54O13_Card-20(22)-enolide, 3-[(6-deoxy-2-O-beta-D-glucopyranosyl-alpha-L-mannopyranosyl)oxy]-14-hydroxy-, (3beta,9xi)-

C35H54O13 (682.3564234)


   

C36H58O12_beta-D-Glucopyranose, 1-O-[(2alpha,3beta,5xi,6beta,9xi,18xi,19alpha)-2,3,6,19,23-pentahydroxy-28-oxoolean-12-en-28-yl]

NCGC00169662-02_C36H58O12_beta-D-Glucopyranose, 1-O-[(2alpha,3beta,5xi,6beta,9xi,18xi,19alpha)-2,3,6,19,23-pentahydroxy-28-oxoolean-12-en-28-yl]-

C36H58O12 (682.3928068)


   

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1S,4aR,6aS,6bR,8R,9R,10R,11R,12aR)-1,8,10,11-tetrahydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1S,4aR,6aS,6bR,8R,9R,10R,11R,12aR)-1,8,10,11-tetrahydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1S,4aR,6aS,6bR,10R,11R,12aR)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1S,4aR,6aS,6bR,10R,11R,12aR)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

17-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,2,3,7,8,10,12,15,16,17-decahydrocyclopenta[a]phenanthren-11-one [IIN-based: Match]

NCGC00169462-02!17-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,2,3,7,8,10,12,15,16,17-decahydrocyclopenta[a]phenanthren-11-one [IIN-based: Match]

C36H58O12 (682.3928068)


   

17-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,2,3,7,8,10,12,15,16,17-decahydrocyclopenta[a]phenanthren-11-one [IIN-based on: CCMSLIB00000847134]

NCGC00169462-02!17-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,2,3,7,8,10,12,15,16,17-decahydrocyclopenta[a]phenanthren-11-one [IIN-based on: CCMSLIB00000847134]

C36H58O12 (682.3928068)


   

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1S,4aR,6aS,6bR,8R,9R,10R,11R,12aR)-1,8,10,11-tetrahydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate_major

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1S,4aR,6aS,6bR,8R,9R,10R,11R,12aR)-1,8,10,11-tetrahydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate_major

C36H58O12 (682.3928068)


   

RRKSH

Arg Arg Lys Ser His

C27H50N14O7 (682.3986709999999)


   
   

Corchorusoside B

4-{11,17-dihydroxy-5-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}-2,5-dihydrofuran-2-one

C35H54O13 (682.3564234)


   

corchorusoside C

4-{7,11-dihydroxy-5-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}-2,5-dihydrofuran-2-one

C35H54O13 (682.3564234)


   

Cannogenol 3-[glucosyl-(1->4)-2,6-dideoxy-xylohexoside]

4-{11-hydroxy-5-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2-(hydroxymethyl)-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}-2,5-dihydrofuran-2-one

C35H54O13 (682.3564234)


   

Evobioside

4-{5-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}-2,5-dihydrofuran-2-one

C35H54O13 (682.3564234)


   

(4R,9?)-2,16,20,25-Tetrahydroxy-9,10,14-trimethyl-11,22-dioxo-4,9-cyclo-9,10-secocholest-5-en-1-yl ?-D-glucopyranoside

(4R,9?)-2,16,20,25-Tetrahydroxy-9,10,14-trimethyl-11,22-dioxo-4,9-cyclo-9,10-secocholest-5-en-1-yl ?-D-glucopyranoside

C36H58O12 (682.3928068)


   

OOB-PI

1-(9Z-octadecenoyl)-2-(4-oxobutryl)-sn-glycero-3-phospho-(1-myo-inositol)

C31H55O14P (682.3329259999999)


   
   

9-Octadecenoic acid(9Z)-, tin(2+) salt (2:1)

9-Octadecenoic acid(9Z)-, tin(2+) salt (2:1)

C36H66O4Sn (682.3982826)


   
   

2,3,16,20,25-Pentahydroxycucurbita-5-ene-11,22-dio

2,3,16,20,25-Pentahydroxycucurbita-5-ene-11,22-dio

C36H58O12 (682.3928068)


   

3-[3-[3,4-dihydroxy-6-methyl-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

3-[3-[3,4-dihydroxy-6-methyl-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C35H54O13 (682.3564234)


   
   

3-[(3S,5R,8R,9S,10S,13R,14S,17R)-3-[(2S,3R,4R,5R,6R)-3,4-dihydroxy-6-methyl-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

3-[(3S,5R,8R,9S,10S,13R,14S,17R)-3-[(2S,3R,4R,5R,6R)-3,4-dihydroxy-6-methyl-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C35H54O13 (682.3564234)


   

Glucodigitoxigenin glucomethyloside

Glucodigitoxigenin glucomethyloside

C35H54O13 (682.3564234)


   

PA(14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C37H63O9P (682.4209478)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0)

C37H63O9P (682.4209478)


   

PA(i-14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(i-14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C37H63O9P (682.4209478)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-14:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-14:0)

C37H63O9P (682.4209478)


   

PA(i-14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(i-14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C37H63O9P (682.4209478)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-14:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-14:0)

C37H63O9P (682.4209478)


   

PA(14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C37H63O9P (682.4209478)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0)

C37H63O9P (682.4209478)


   

PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C37H63O9P (682.4209478)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0)

C37H63O9P (682.4209478)


   

PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C37H63O9P (682.4209478)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0)

C37H63O9P (682.4209478)


   

PA(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C37H63O9P (682.4209478)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0)

C37H63O9P (682.4209478)


   

PA(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C37H63O9P (682.4209478)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0)

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

PA(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

C37H63O9P (682.4209478)


   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z))

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

PA(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

C37H63O9P (682.4209478)


   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z))

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9))

PA(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9))

C37H63O9P (682.4209478)


   

PA(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z))

PA(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6))

PA(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6))

C37H63O9P (682.4209478)


   

PA(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z))

PA(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C37H63O9P (682.4209478)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C37H63O9P (682.4209478)


   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z))

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C37H63O9P (682.4209478)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C37H63O9P (682.4209478)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C37H63O9P (682.4209478)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C37H63O9P (682.4209478)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C37H63O9P (682.4209478)


   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

PA(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C37H63O9P (682.4209478)


   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z))

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

PA(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C37H63O9P (682.4209478)


   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z))

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

PA(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

C37H63O9P (682.4209478)


   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z))

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z))

C37H63O9P (682.4209478)


   

PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C37H63O9P (682.4209478)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-14:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-14:0)

C37H63O9P (682.4209478)


   

PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C37H63O9P (682.4209478)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-14:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-14:0)

C37H63O9P (682.4209478)


   

PA(i-14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(i-14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C37H63O9P (682.4209478)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-14:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-14:0)

C37H63O9P (682.4209478)


   

PA(i-14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(i-14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C37H63O9P (682.4209478)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-14:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-14:0)

C37H63O9P (682.4209478)


   

N-(2-aminophenyl)-4-[[[(2S,3S)-9-[[(4-fluoroanilino)-oxomethyl]amino]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-2-yl]methyl-methylamino]methyl]benzamide

N-(2-aminophenyl)-4-[[[(2S,3S)-9-[[(4-fluoroanilino)-oxomethyl]amino]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-2-yl]methyl-methylamino]methyl]benzamide

C38H43FN6O5 (682.32788)


   

[(1S,4S,5R,6S,8R,9S,13S,16S)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecan-13-yl]methyl 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate

[(1S,4S,5R,6S,8R,9S,13S,16S)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecan-13-yl]methyl 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate

C37H50N2O10 (682.346528)


   

[(1S,2R,3R,4S,6S,8R,9R,10R,13S,17R,18S)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecan-13-yl]methyl 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate

[(1S,2R,3R,4S,6S,8R,9R,10R,13S,17R,18S)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecan-13-yl]methyl 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate

C37H50N2O10 (682.346528)


   

[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-tetracos-13-enoate

[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-tetracos-13-enoate

C33H63O12P (682.4056928)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C37H63O9P (682.4209478)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-tridec-9-enoate

C37H63O9P (682.4209478)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] undecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] undecanoate

C33H63O12P (682.4056928)


   

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C33H63O12P (682.4056928)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] decanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] decanoate

C33H63O12P (682.4056928)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-tridec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-tridec-9-enoate

C33H63O12P (682.4056928)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C36H59O10P (682.3845643999999)


   

[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] nonanoate

[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] nonanoate

C32H58O15 (682.3775518)


   

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] dodecanoate

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] dodecanoate

C32H58O15 (682.3775518)


   

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tetradecanoate

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tetradecanoate

C32H58O15 (682.3775518)


   

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] pentadecanoate

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] pentadecanoate

C32H58O15 (682.3775518)


   

[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] decanoate

[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] decanoate

C32H58O15 (682.3775518)


   

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tridecanoate

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tridecanoate

C32H58O15 (682.3775518)


   

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] undecanoate

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] undecanoate

C32H58O15 (682.3775518)


   

[6-[2,3-Di(dodecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2,3-Di(dodecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C33H62O12S (682.3961772)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C36H59O10P (682.3845643999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (Z)-octadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (Z)-octadec-9-enoate

C32H59O13P (682.3693094)


   

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C32H59O13P (682.3693094)


   

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C32H59O13P (682.3693094)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-tetradec-9-enoate

C32H59O13P (682.3693094)


   

[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C32H59O13P (682.3693094)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-pentadec-9-enoate

C32H59O13P (682.3693094)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (Z)-icos-11-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (Z)-icos-11-enoate

C32H59O13P (682.3693094)


   

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

C32H59O13P (682.3693094)


   

[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate

[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate

C32H59O13P (682.3693094)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

C39H55O8P (682.363436)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C36H59O10P (682.3845643999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-tridecanoyloxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-tridecanoyloxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C33H62O12S (682.3961772)


   

[(2S,3S,6S)-6-[(2S)-2,3-di(dodecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-di(dodecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C33H62O12S (682.3961772)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C36H59O10P (682.3845643999999)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C36H59O10P (682.3845643999999)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C33H62O12S (682.3961772)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-tridecanoyloxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-tridecanoyloxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C33H62O12S (682.3961772)


   

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C33H62O12S (682.3961772)


   

CID 441748

CID 441748

C37H50N2O10 (682.346528)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Methyllycaconitine Perchlorate, Delphinium sp.

Methyllycaconitine Perchlorate, Delphinium sp.

C37H50N2O10 (682.346528)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PI P-14:0/10:0 or PI O-14:1/10:0

PI P-14:0/10:0 or PI O-14:1/10:0

C33H63O12P (682.4056928)


   
   
   
   

PI P-20:0/4:0 or PI O-20:1/4:0

PI P-20:0/4:0 or PI O-20:1/4:0

C33H63O12P (682.4056928)


   
   

PI P-22:0/2:0 or PI O-22:1/2:0

PI P-22:0/2:0 or PI O-22:1/2:0

C33H63O12P (682.4056928)


   
   

PI P-24:0 or PI O-24:1

PI P-24:0 or PI O-24:1

C33H63O12P (682.4056928)


   
   
   
   
   
   
   
   
   
   
   

2-[(8s,11s,14r)-3,6,9,12,15,18-hexahydroxy-8-(1h-indol-3-ylmethyl)-17-isopropyl-11,14-bis(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

2-[(8s,11s,14r)-3,6,9,12,15,18-hexahydroxy-8-(1h-indol-3-ylmethyl)-17-isopropyl-11,14-bis(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

C34H50N8O7 (682.3802270000001)


   

[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16s,17r,18s)-11-ethyl-9-hydroxy-4,6,8,16,18-pentamethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-(2,5-dioxopyrrolidin-1-yl)benzoate

[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16s,17r,18s)-11-ethyl-9-hydroxy-4,6,8,16,18-pentamethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-(2,5-dioxopyrrolidin-1-yl)benzoate

C37H50N2O10 (682.346528)


   

(3s,18s,24s,27s)-24-benzyl-18-[(2s)-butan-2-yl]-11,14,17,20,23,26-hexahydroxy-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

(3s,18s,24s,27s)-24-benzyl-18-[(2s)-butan-2-yl]-11,14,17,20,23,26-hexahydroxy-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

C33H46N8O8 (682.3438436)


   

(1r,2r,3as,3bs,7s,8s,9ar,9br,11ar)-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

(1r,2r,3as,3bs,7s,8s,9ar,9br,11ar)-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

C36H58O12 (682.3928068)


   

16-({7-hydroxy-6,9a-dimethyl-1-methylidene-2h,3ah,5h,5ah,7h,8h,9h,9bh,10h,11h,11ah-phenanthro[1,2-b]furan-6-yl}methoxy)-12,12-dimethyl-6-methylidene-17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-7,9,10,15,18-pentol

16-({7-hydroxy-6,9a-dimethyl-1-methylidene-2h,3ah,5h,5ah,7h,8h,9h,9bh,10h,11h,11ah-phenanthro[1,2-b]furan-6-yl}methoxy)-12,12-dimethyl-6-methylidene-17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-7,9,10,15,18-pentol

C40H58O9 (682.4080618)


   

(6-{[3a-hydroxy-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl 3-(4-hydroxyphenyl)prop-2-enoate

(6-{[3a-hydroxy-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl 3-(4-hydroxyphenyl)prop-2-enoate

C38H50O11 (682.335295)


   

4-[(1r,3as,3br,5ar,7s,9as,9bs,10r,11ar)-7-{[(2r,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3a,10-dihydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5ar,7s,9as,9bs,10r,11ar)-7-{[(2r,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3a,10-dihydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

1-[5-(1,2-dihydroxypropan-2-yl)-2-methyloxolan-2-yl]-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

1-[5-(1,2-dihydroxypropan-2-yl)-2-methyloxolan-2-yl]-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

C36H58O12 (682.3928068)


   

(5r)-5-[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-8,16-dihydroxy-5,9,14-trimethyl-11-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-6,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1,3,7,9,13-pentaene-12,15-dione

(5r)-5-[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-8,16-dihydroxy-5,9,14-trimethyl-11-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-6,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1,3,7,9,13-pentaene-12,15-dione

C44H58O6 (682.4233168000001)


   

5-{2,3a-dihydroxy-7-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-3h-furan-2-one

5-{2,3a-dihydroxy-7-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-3h-furan-2-one

C35H54O13 (682.3564234)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

2α,5α-diacetoxy-14β-(2's,3'r)-3'-hydroxy-2'α-methylbutanoate-10β-o-(β-d-glucopyranosyl)taxa-4(20),11-diene

NA

C35H54O13 (682.3564234)


{"Ingredient_id": "HBIN005250","Ingredient_name": "2\u03b1,5\u03b1-diacetoxy-14\u03b2-(2's,3'r)-3'-hydroxy-2'\u03b1-methylbutanoate-10\u03b2-o-(\u03b2-d-glucopyranosyl)taxa-4(20),11-diene","Alias": "NA","Ingredient_formula": "C35H54O13","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "5309","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

3-o-β-d-glucopyranosyl platycodigenin

NA

C36H58O12 (682.3928068)


{"Ingredient_id": "HBIN009225","Ingredient_name": "3-o-\u03b2-d-glucopyranosyl platycodigenin","Alias": "NA","Ingredient_formula": "C36H58O12","Ingredient_Smile": "CC1(CCC2(C(C1)C3=CCC4C(C3(CC2O)C)(CCC5C4(CC(C(C5(CO)CO)OC6C(C(C(C(O6)CO)O)O)O)O)C)C)C(=O)O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15631","TCMID_id": "8710","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

[(2s,3r,4r,5r,6s)-6-{[(1s,3ar,3bs,5as,7s,9ar,9br,11as)-3a-hydroxy-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

[(2s,3r,4r,5r,6s)-6-{[(1s,3ar,3bs,5as,7s,9ar,9br,11as)-3a-hydroxy-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C38H50O11 (682.335295)


   

[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16s,17r,18r)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate

[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16s,17r,18r)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate

C37H50N2O10 (682.346528)


   

9,12-dihydroxy-2-(2-hydroxy-3-methyl-4-oxopentyl)-4a,4b,7,7,10a-pentamethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5,6,6a,8,9,10,10b,11,12-decahydro-3h-chrysene-2-carboxylic acid

9,12-dihydroxy-2-(2-hydroxy-3-methyl-4-oxopentyl)-4a,4b,7,7,10a-pentamethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5,6,6a,8,9,10,10b,11,12-decahydro-3h-chrysene-2-carboxylic acid

C36H58O12 (682.3928068)


   

4-[(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a,5a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a,5a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

4-[(1s,3as,3br,5as,7s,9as,9bs,11ar)-7-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1s,3as,3br,5as,7s,9as,9bs,11ar)-7-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

2-[(8s,11s,14r)-3,6,9,12,15,18-hexahydroxy-8-(1h-indol-3-ylmethyl)-14-isopropyl-11-(2-methylpropyl)-17-(sec-butyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

2-[(8s,11s,14r)-3,6,9,12,15,18-hexahydroxy-8-(1h-indol-3-ylmethyl)-14-isopropyl-11-(2-methylpropyl)-17-(sec-butyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

C34H50N8O7 (682.3802270000001)


   

2-[3,6,9,12,15,18-hexahydroxy-8-(1h-indol-3-ylmethyl)-14-isopropyl-11-(2-methylpropyl)-17-(sec-butyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

2-[3,6,9,12,15,18-hexahydroxy-8-(1h-indol-3-ylmethyl)-14-isopropyl-11-(2-methylpropyl)-17-(sec-butyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

C34H50N8O7 (682.3802270000001)


   

4-{7-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

4-{7-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

C35H54O13 (682.3564234)


   

{11-ethyl-9-hydroxy-4,6,8,16,18-pentamethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl}methyl 2-(2,5-dioxopyrrolidin-1-yl)benzoate

{11-ethyl-9-hydroxy-4,6,8,16,18-pentamethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl}methyl 2-(2,5-dioxopyrrolidin-1-yl)benzoate

C37H50N2O10 (682.346528)


   

8,14,18,21-tetrahydroxy-19-(1-hydroxyethyl)-3,16-diisopropyl-4-methyl-13-(2-methylpropyl)-1,4,10,11,14,17,20,26-octaazatricyclo[20.4.0.0⁶,¹¹]hexacosa-17,20-diene-2,5,12,15-tetrone

8,14,18,21-tetrahydroxy-19-(1-hydroxyethyl)-3,16-diisopropyl-4-methyl-13-(2-methylpropyl)-1,4,10,11,14,17,20,26-octaazatricyclo[20.4.0.0⁶,¹¹]hexacosa-17,20-diene-2,5,12,15-tetrone

C31H54N8O9 (682.4013554)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8r,8ar,9s,10r,11r,12ar,12br,14bs)-1,8,10,11-tetrahydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8r,8ar,9s,10r,11r,12ar,12br,14bs)-1,8,10,11-tetrahydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

(4as,6as,6br,8r,8ar,10s,12as,12br,13s,14bs)-8,13-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8r,8ar,10s,12as,12br,13s,14bs)-8,13-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C36H58O12 (682.3928068)


   

24-benzyl-11,14,17,20,23,26-hexahydroxy-18-(sec-butyl)-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

24-benzyl-11,14,17,20,23,26-hexahydroxy-18-(sec-butyl)-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

C33H46N8O8 (682.3438436)


   

5-(4,8-dimethylnona-3,7-dien-1-yl)-8,16-dihydroxy-5,9,14-trimethyl-11-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)-6,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1,3,7,9,13-pentaene-12,15-dione

5-(4,8-dimethylnona-3,7-dien-1-yl)-8,16-dihydroxy-5,9,14-trimethyl-11-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)-6,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1,3,7,9,13-pentaene-12,15-dione

C44H58O6 (682.4233168000001)


   

4-{7-[(4,5-dihydroxy-6-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

4-{7-[(4,5-dihydroxy-6-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

C35H54O13 (682.3564234)


   

4-[(1r,3as,3br,5as,7s,9as,9bs,11ar)-7-{[(2r,3r,4s,5s,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5as,7s,9as,9bs,11ar)-7-{[(2r,3r,4s,5s,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

4-{3a,10-dihydroxy-7-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

4-{3a,10-dihydroxy-7-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

C35H54O13 (682.3564234)


   

2-[(2s,8s,11s,14r,17s)-17-[(2r)-butan-2-yl]-3,6,9,12,15,18-hexahydroxy-8-(1h-indol-3-ylmethyl)-14-isopropyl-11-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

2-[(2s,8s,11s,14r,17s)-17-[(2r)-butan-2-yl]-3,6,9,12,15,18-hexahydroxy-8-(1h-indol-3-ylmethyl)-14-isopropyl-11-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

C34H50N8O7 (682.3802270000001)


   

4-[(1r,3as,5as,7s,9as,11ar)-3a-hydroxy-9a,11a-dimethyl-7-{[(2r,5r)-3,4,5-trihydroxy-6-({[(3r,6s)-4,5,6-trihydroxy-2-methyloxan-3-yl]oxy}methyl)oxan-2-yl]oxy}-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,5as,7s,9as,11ar)-3a-hydroxy-9a,11a-dimethyl-7-{[(2r,5r)-3,4,5-trihydroxy-6-({[(3r,6s)-4,5,6-trihydroxy-2-methyloxan-3-yl]oxy}methyl)oxan-2-yl]oxy}-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

4-[(1s,3as,3br,5as,7s,9as,9bs,11ar)-7-{[(2s,3s,4s,5s,6s)-3,4-dihydroxy-6-methyl-5-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1s,3as,3br,5as,7s,9as,9bs,11ar)-7-{[(2s,3s,4s,5s,6s)-3,4-dihydroxy-6-methyl-5-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

3-(acetyloxy)-10,11-dihydroxy-9-(hydroxymethyl)-13,15-dimethyl-4-(prop-1-en-2-yl)-8,24,26,27-tetraoxaheptacyclo[12.10.1.1⁴,²³.1⁵,²³.0¹,⁶.0⁷,⁹.0¹¹,²⁵]heptacosan-12-yl benzoate

3-(acetyloxy)-10,11-dihydroxy-9-(hydroxymethyl)-13,15-dimethyl-4-(prop-1-en-2-yl)-8,24,26,27-tetraoxaheptacyclo[12.10.1.1⁴,²³.1⁵,²³.0¹,⁶.0⁷,⁹.0¹¹,²⁵]heptacosan-12-yl benzoate

C38H50O11 (682.335295)


   

(1r,2r,3as,3bs,7r,8s,9ar,9br,11ar)-1-[(2s,5r)-5-[(2s)-1,2-dihydroxypropan-2-yl]-2-methyloxolan-2-yl]-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

(1r,2r,3as,3bs,7r,8s,9ar,9br,11ar)-1-[(2s,5r)-5-[(2s)-1,2-dihydroxypropan-2-yl]-2-methyloxolan-2-yl]-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

C36H58O12 (682.3928068)


   

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(2r,3s,4s,5s,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(2r,3s,4s,5s,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8r,8ar,9r,10r,11r,12ar,12br,14bs)-1,8,10,11-tetrahydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8r,8ar,9r,10r,11r,12ar,12br,14bs)-1,8,10,11-tetrahydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

(1r,2r,3as,3bs,7s,8s,9ar,9br,11ar)-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

(1r,2r,3as,3bs,7s,8s,9ar,9br,11ar)-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

C36H58O12 (682.3928068)


   

n-(1-{[(8z,10z,16z)-3,15-dihydroxy-5-methoxy-14,16-dimethyl-21-(methylsulfanyl)-22,24-dioxo-2-azabicyclo[18.3.1]tetracosa-1(23),2,6,8,10,16,20-heptaen-13-yl]oxy}-1-oxopropan-2-yl)cyclohexanecarboximidic acid

n-(1-{[(8z,10z,16z)-3,15-dihydroxy-5-methoxy-14,16-dimethyl-21-(methylsulfanyl)-22,24-dioxo-2-azabicyclo[18.3.1]tetracosa-1(23),2,6,8,10,16,20-heptaen-13-yl]oxy}-1-oxopropan-2-yl)cyclohexanecarboximidic acid

C37H50N2O8S (682.3287700000001)


   

(3s,4r)-3-[2-(2,5-dihydroxyphenyl)-2-oxoethyl]-3,4'-bis[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-6-hydroxyspiro[1-benzopyran-4,2'-furan]-2,5'-dione

(3s,4r)-3-[2-(2,5-dihydroxyphenyl)-2-oxoethyl]-3,4'-bis[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-6-hydroxyspiro[1-benzopyran-4,2'-furan]-2,5'-dione

C42H50O8 (682.35055)


   

[(1s,4s,5r,6s,8r,9s,13s,16s)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate

[(1s,4s,5r,6s,8r,9s,13s,16s)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate

C37H50N2O10 (682.346528)


   

(3s,18s,24r,27s)-24-benzyl-18-[(2s)-butan-2-yl]-11,14,17,20,23,26-hexahydroxy-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

(3s,18s,24r,27s)-24-benzyl-18-[(2s)-butan-2-yl]-11,14,17,20,23,26-hexahydroxy-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

C33H46N8O8 (682.3438436)


   

[(2r,3s,4s,5r,6r)-6-{[(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a-hydroxy-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

[(2r,3s,4s,5r,6r)-6-{[(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a-hydroxy-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C38H50O11 (682.335295)


   

4-{2,3a-dihydroxy-7-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

4-{2,3a-dihydroxy-7-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

C35H54O13 (682.3564234)


   

(5r)-5-[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-8,16-dihydroxy-5,9,14-trimethyl-11-[(6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-6,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1,3,7,9,13-pentaene-12,15-dione

(5r)-5-[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-8,16-dihydroxy-5,9,14-trimethyl-11-[(6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-6,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1,3,7,9,13-pentaene-12,15-dione

C44H58O6 (682.4233168000001)


   

[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16r,17r,18s)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate

[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16r,17r,18s)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate

C37H50N2O10 (682.346528)


   

1-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

1-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

C36H58O12 (682.3928068)


   

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(3s,4s,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(3s,4s,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

(1r,2s,5s,7r,8r,9s,10s,11r,15s,16s,18r)-16-{[(3ar,5as,6s,7r,9as,9bs,11as)-7-hydroxy-6,9a-dimethyl-1-methylidene-2h,3ah,5h,5ah,7h,8h,9h,9bh,10h,11h,11ah-phenanthro[1,2-b]furan-6-yl]methoxy}-12,12-dimethyl-6-methylidene-17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-7,9,10,15,18-pentol

(1r,2s,5s,7r,8r,9s,10s,11r,15s,16s,18r)-16-{[(3ar,5as,6s,7r,9as,9bs,11as)-7-hydroxy-6,9a-dimethyl-1-methylidene-2h,3ah,5h,5ah,7h,8h,9h,9bh,10h,11h,11ah-phenanthro[1,2-b]furan-6-yl]methoxy}-12,12-dimethyl-6-methylidene-17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-7,9,10,15,18-pentol

C40H58O9 (682.4080618)


   

(1'r,2s,3r,4's,5s,6s,8'r,10'e,13'r,14'e,16'e,21'r,24's)-6-[(2e)-but-2-en-2-yl]-3,21',24'-trihydroxy-5,11',13'-trimethyl-2'-oxo-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-22'-ylmethyl 3-methylbut-2-enoate

(1'r,2s,3r,4's,5s,6s,8'r,10'e,13'r,14'e,16'e,21'r,24's)-6-[(2e)-but-2-en-2-yl]-3,21',24'-trihydroxy-5,11',13'-trimethyl-2'-oxo-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-22'-ylmethyl 3-methylbut-2-enoate

C39H54O10 (682.3716784000001)


   

4-[(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a,5a-dihydroxy-7-{[(2r,4r,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a,5a-dihydroxy-7-{[(2r,4r,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

2-[(2s,8s,11s,14r,17s)-3,6,9,12,15,18-hexahydroxy-8-(1h-indol-3-ylmethyl)-17-isopropyl-11,14-bis(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

2-[(2s,8s,11s,14r,17s)-3,6,9,12,15,18-hexahydroxy-8-(1h-indol-3-ylmethyl)-17-isopropyl-11,14-bis(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

C34H50N8O7 (682.3802270000001)


   

(3s,6s,9s,12s,15s)-12-benzyl-3,15-bis[(1s)-1-hydroxyethyl]-6-[(4-hydroxyphenyl)methyl]-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol

(3s,6s,9s,12s,15s)-12-benzyl-3,15-bis[(1s)-1-hydroxyethyl]-6-[(4-hydroxyphenyl)methyl]-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol

C34H46N6O9 (682.3326106000001)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4r,4ar,6ar,6bs,8s,8ar,9r,10r,12as,14ar,14br)-8,9,10-trihydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4r,4ar,6ar,6bs,8s,8ar,9r,10r,12as,14ar,14br)-8,9,10-trihydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H58O12 (682.3928068)


   

4-(acetyloxy)-1-[2-(acetyloxy)-5-(3,3-dimethyloxiran-2-yl)oxolan-3-yl]-3b,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,4h,5h,5ah,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl hexanoate

4-(acetyloxy)-1-[2-(acetyloxy)-5-(3,3-dimethyloxiran-2-yl)oxolan-3-yl]-3b,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,4h,5h,5ah,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl hexanoate

C40H58O9 (682.4080618)


   

4-[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2,3a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2,3a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(2s,3r,4r,5r,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(2s,3r,4r,5r,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

4-[(1r,2r,3as,3bs,5ar,7r,9as,9br,11ar)-2,3a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,2r,3as,3bs,5ar,7r,9as,9br,11ar)-2,3a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(2r,3r,4s,5r,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(2r,3r,4s,5r,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)


   

6-(but-2-en-2-yl)-3,21',24'-trihydroxy-5,11',13'-trimethyl-2'-oxo-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-22'-ylmethyl 3-methylbut-2-enoate

6-(but-2-en-2-yl)-3,21',24'-trihydroxy-5,11',13'-trimethyl-2'-oxo-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-22'-ylmethyl 3-methylbut-2-enoate

C39H54O10 (682.3716784000001)


   

5-[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2,3a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-3h-furan-2-one

5-[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2,3a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-3h-furan-2-one

C35H54O13 (682.3564234)


   

(1r,3r,4s,5r,6s,7s,9r,10s,11s,12s,13s,14s,15r,23s,25r)-3-(acetyloxy)-10,11-dihydroxy-9-(hydroxymethyl)-13,15-dimethyl-4-(prop-1-en-2-yl)-8,24,26,27-tetraoxaheptacyclo[12.10.1.1⁴,²³.1⁵,²³.0¹,⁶.0⁷,⁹.0¹¹,²⁵]heptacosan-12-yl benzoate

(1r,3r,4s,5r,6s,7s,9r,10s,11s,12s,13s,14s,15r,23s,25r)-3-(acetyloxy)-10,11-dihydroxy-9-(hydroxymethyl)-13,15-dimethyl-4-(prop-1-en-2-yl)-8,24,26,27-tetraoxaheptacyclo[12.10.1.1⁴,²³.1⁵,²³.0¹,⁶.0⁷,⁹.0¹¹,²⁵]heptacosan-12-yl benzoate

C38H50O11 (682.335295)


   

5-[(1s,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-3h-furan-2-one

5-[(1s,3as,3br,5ar,7s,9as,9bs,11ar)-7-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-3h-furan-2-one

C35H54O13 (682.3564234)


   

1-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

1-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

C36H58O12 (682.3928068)


   

8,13-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

8,13-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C36H58O12 (682.3928068)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

4-{3a,5a-dihydroxy-7-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

4-{3a,5a-dihydroxy-7-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

C35H54O13 (682.3564234)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

(3r,4s)-3-[2-(2,5-dihydroxyphenyl)-2-oxoethyl]-3,4'-bis[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-6-hydroxyspiro[1-benzopyran-4,2'-furan]-2,5'-dione

(3r,4s)-3-[2-(2,5-dihydroxyphenyl)-2-oxoethyl]-3,4'-bis[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-6-hydroxyspiro[1-benzopyran-4,2'-furan]-2,5'-dione

C42H50O8 (682.35055)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8r,8ar,9r,10r,11r,12ar,12br,14br)-1,8,10,11-tetrahydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8r,8ar,9r,10r,11r,12ar,12br,14br)-1,8,10,11-tetrahydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

(3s,18s,24s,27s)-24-benzyl-18-[(2r)-butan-2-yl]-11,14,17,20,23,26-hexahydroxy-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

(3s,18s,24s,27s)-24-benzyl-18-[(2r)-butan-2-yl]-11,14,17,20,23,26-hexahydroxy-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

C33H46N8O8 (682.3438436)


   

(5r)-7-{2',6-dihydroxy-3',5-dimethoxy-5'-[(3r)-3-methoxy-5-oxo-7-phenylheptyl]-[1,1'-biphenyl]-3-yl}-5-methoxy-1-phenylheptan-3-one

(5r)-7-{2',6-dihydroxy-3',5-dimethoxy-5'-[(3r)-3-methoxy-5-oxo-7-phenylheptyl]-[1,1'-biphenyl]-3-yl}-5-methoxy-1-phenylheptan-3-one

C42H50O8 (682.35055)


   

7-[2',6-dihydroxy-3',5-dimethoxy-5'-(3-methoxy-5-oxo-7-phenylheptyl)-[1,1'-biphenyl]-3-yl]-5-methoxy-1-phenylheptan-3-one

7-[2',6-dihydroxy-3',5-dimethoxy-5'-(3-methoxy-5-oxo-7-phenylheptyl)-[1,1'-biphenyl]-3-yl]-5-methoxy-1-phenylheptan-3-one

C42H50O8 (682.35055)


   

5-{7-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-3h-furan-2-one

5-{7-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3a-hydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-3h-furan-2-one

C35H54O13 (682.3564234)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10r,11r,12as,12br,14bs)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10r,11r,12as,12br,14bs)-1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

(1s,3br,4r,5ar,9as,9br,10r,11as)-4-(acetyloxy)-1-[(2r,3s,5s)-2-(acetyloxy)-5-[(2s)-3,3-dimethyloxiran-2-yl]oxolan-3-yl]-3b,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,4h,5h,5ah,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl hexanoate

(1s,3br,4r,5ar,9as,9br,10r,11as)-4-(acetyloxy)-1-[(2r,3s,5s)-2-(acetyloxy)-5-[(2s)-3,3-dimethyloxiran-2-yl]oxolan-3-yl]-3b,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,4h,5h,5ah,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl hexanoate

C40H58O9 (682.4080618)


   

2-[3,6,9,12,15,18-hexahydroxy-8-(1h-indol-3-ylmethyl)-17-isopropyl-11,14-bis(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

2-[3,6,9,12,15,18-hexahydroxy-8-(1h-indol-3-ylmethyl)-17-isopropyl-11,14-bis(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

C34H50N8O7 (682.3802270000001)


   

(3s,6r,8r,13s,16r,19s,22r)-8,14,18,21-tetrahydroxy-19-[(1r)-1-hydroxyethyl]-3,16-diisopropyl-4-methyl-13-(2-methylpropyl)-1,4,10,11,14,17,20,26-octaazatricyclo[20.4.0.0⁶,¹¹]hexacosa-17,20-diene-2,5,12,15-tetrone

(3s,6r,8r,13s,16r,19s,22r)-8,14,18,21-tetrahydroxy-19-[(1r)-1-hydroxyethyl]-3,16-diisopropyl-4-methyl-13-(2-methylpropyl)-1,4,10,11,14,17,20,26-octaazatricyclo[20.4.0.0⁶,¹¹]hexacosa-17,20-diene-2,5,12,15-tetrone

C31H54N8O9 (682.4013554)


   

n-[1-({8,10-dihydroxy-1,5,9,18-tetramethyl-15-oxo-16,20-dioxahexacyclo[15.3.2.0²,¹³.0⁴,¹².0⁷,¹¹.0¹⁴,¹⁹]docos-5-en-19-yl}oxy)-3-(3-methylimidazol-4-yl)-1-oxopropan-2-yl]-3-[(1-hydroxyethylidene)amino]propanimidic acid

n-[1-({8,10-dihydroxy-1,5,9,18-tetramethyl-15-oxo-16,20-dioxahexacyclo[15.3.2.0²,¹³.0⁴,¹².0⁷,¹¹.0¹⁴,¹⁹]docos-5-en-19-yl}oxy)-3-(3-methylimidazol-4-yl)-1-oxopropan-2-yl]-3-[(1-hydroxyethylidene)amino]propanimidic acid

C36H50N4O9 (682.3577610000001)


   

[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16s,17r,18s)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate

[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16s,17r,18s)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate

C37H50N2O10 (682.346528)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,10,11-trihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O12 (682.3928068)


   

(2r,4as,4br,6ar,8r,9r,10ar,10br,12r)-9,12-dihydroxy-2-[(2r,3r)-2-hydroxy-3-methyl-4-oxopentyl]-4a,4b,7,7,10a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5,6,6a,8,9,10,10b,11,12-decahydro-3h-chrysene-2-carboxylic acid

(2r,4as,4br,6ar,8r,9r,10ar,10br,12r)-9,12-dihydroxy-2-[(2r,3r)-2-hydroxy-3-methyl-4-oxopentyl]-4a,4b,7,7,10a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5,6,6a,8,9,10,10b,11,12-decahydro-3h-chrysene-2-carboxylic acid

C36H58O12 (682.3928068)


   

3,4,5-trihydroxy-6-{[8,9,10-trihydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

3,4,5-trihydroxy-6-{[8,9,10-trihydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C36H58O12 (682.3928068)


   

12-benzyl-3,15-bis(1-hydroxyethyl)-6-[(4-hydroxyphenyl)methyl]-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol

12-benzyl-3,15-bis(1-hydroxyethyl)-6-[(4-hydroxyphenyl)methyl]-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol

C34H46N6O9 (682.3326106000001)


   

4-[7-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3a,10-dihydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[7-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3a,10-dihydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C35H54O13 (682.3564234)