Exact Mass: 680.4441

Exact Mass Matches: 680.4441

Found 416 metabolites which its exact mass value is equals to given mass value 680.4441, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

13-Sophorosyloxydocosanoic acid

13-[(2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy]docosanoic acid

C34H64O13 (680.4347)


   

Gingerglycolipid C

2-Hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9Z)-octadec-9-enoic acid

C33H60O14 (680.3983)


Gingerglycolipid C is found in ginger. Gingerglycolipid C is from Zingiber officinale (ginger). From Zingiber officinale (ginger). Gingerglycolipid C is found in herbs and spices and ginger.

   

PA(15:0/20:5(5Z,8Z,11Z,14Z,17Z))

[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H65O8P (680.4417)


PA(15:0/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/15:0)

[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H65O8P (680.4417)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:5(5Z,8Z,11Z,14Z,17Z)/15:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PG(a-13:0/i-16:0)

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methyldodecanoyloxy)propan-2-yl] 14-methylpentadecanoate

C35H69O10P (680.4628)


PG(a-13:0/i-16:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(a-13:0/i-16:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isohexadecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(i-12:0/a-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(14-methylhexadecanoyl)oxy]-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C35H69O10P (680.4628)


PG(i-12:0/a-17:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-12:0/a-17:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(i-12:0/i-17:0)

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methylundecanoyloxy)propan-2-yl] 15-methylhexadecanoate

C35H69O10P (680.4628)


PG(i-12:0/i-17:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-12:0/i-17:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(i-13:0/i-16:0)

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(11-methyldodecanoyloxy)propan-2-yl] 14-methylpentadecanoate

C35H69O10P (680.4628)


PG(i-13:0/i-16:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-13:0/i-16:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isohexadecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(i-14:0/a-15:0)

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(12-methyltridecanoyloxy)propan-2-yl] 12-methyltetradecanoate

C35H69O10P (680.4628)


PG(i-14:0/a-15:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-14:0/a-15:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of anteisopentadecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(i-14:0/i-15:0)

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(12-methyltridecanoyloxy)propan-2-yl] 13-methyltetradecanoate

C35H69O10P (680.4628)


PG(i-14:0/i-15:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-14:0/i-15:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of isopentadecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2R)-3-(dodecanoyloxy)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2R)-3-(dodecanoyloxy)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2R)-3-(dodecanoyloxy)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2R)-3-(dodecanoyloxy)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2R)-3-(dodecanoyloxy)-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z))

[(2R)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z)), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z)), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z)), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z)), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z)), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z))

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z)), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0)

[(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0)

[(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0)

[(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0)

[(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0)

[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   

Thromboxane B2-biotin

Thromboxane B2-biotin

C35H60N4O7S (680.4182)


   

Tetahydropresecamine

Tetahydropresecamine

C42H56N4O4 (680.4301)


   

alpha-D-glucopyranosyl ester of 2alpha,3beta,19alpha,23-tetrahydroxy-12-ursen-28-oic acid

alpha-D-glucopyranosyl ester of 2alpha,3beta,19alpha,23-tetrahydroxy-12-ursen-28-oic acid

C37H60O11 (680.4135)


   

6-acetylginsenoside F1|6-O-Acetyl ginsenoside F1

6-acetylginsenoside F1|6-O-Acetyl ginsenoside F1

C38H64O10 (680.4499)


   

plagioneurin E

plagioneurin E

C39H68O9 (680.4863)


   

(3S,3R)-Astaxanthindiacetat|(3S,3S)-Astaxanthin-diacetat|all-trans-(3S,3S) astaxanthin diacetate|Astaxanthin-diacetat|Astaxanthin-ester|Astaxanthindiacetat

(3S,3R)-Astaxanthindiacetat|(3S,3S)-Astaxanthin-diacetat|all-trans-(3S,3S) astaxanthin diacetate|Astaxanthin-diacetat|Astaxanthin-ester|Astaxanthindiacetat

C44H56O6 (680.4077)


   

Beesioside III

Beesioside III

C37H60O11 (680.4135)


   

SCHEMBL12536212

SCHEMBL12536212

C37H60O11 (680.4135)


   

20(S),24(R)-epoxydammaran-3beta,11alpha,25-triol 3-O-beta-D-2-O-acetylglucopyranoside

20(S),24(R)-epoxydammaran-3beta,11alpha,25-triol 3-O-beta-D-2-O-acetylglucopyranoside

C38H64O10 (680.4499)


   

2-[(E)-2-{3-[(2E)-3,7-dimethyl-2,6-octadienyl]-5-carboxy-2-hydroxyphenyl}ethenyl]-8-[(2E)-3,7-dimethyl-2,6-octadienyl]-2-methyl-4-(2-methyl-1-propenyl)-6-chromancarboxylic acid

2-[(E)-2-{3-[(2E)-3,7-dimethyl-2,6-octadienyl]-5-carboxy-2-hydroxyphenyl}ethenyl]-8-[(2E)-3,7-dimethyl-2,6-octadienyl]-2-methyl-4-(2-methyl-1-propenyl)-6-chromancarboxylic acid

C44H56O6 (680.4077)


   

(20SR,24RS)-16beta-acetoxy-20,24-epoxy-9,19-cyclolanostane-3beta,15alpha,18,25-tetraol-3-O-beta-D-xylopyranoside

(20SR,24RS)-16beta-acetoxy-20,24-epoxy-9,19-cyclolanostane-3beta,15alpha,18,25-tetraol-3-O-beta-D-xylopyranoside

C37H60O11 (680.4135)


   

3beta-O-beta-D-xylopyranosyl-24-O-acetoxy-1alpha,25-dihydroxylcycloartan-28-oic acid|nerviside C

3beta-O-beta-D-xylopyranosyl-24-O-acetoxy-1alpha,25-dihydroxylcycloartan-28-oic acid|nerviside C

C37H60O11 (680.4135)


   

6?-O-acetylginsenoside Rh1

6?-O-acetylginsenoside Rh1

C38H64O10 (680.4499)


   

methyl 3-O-beta-D-glucopyranosylpolygalacate|Methyl-3-O-??-D-glucopyranosyl polygalacate

methyl 3-O-beta-D-glucopyranosylpolygalacate|Methyl-3-O-??-D-glucopyranosyl polygalacate

C37H60O11 (680.4135)


   

albatrellin

albatrellin

C44H56O6 (680.4077)


   

Methyl-2alpha,3beta-dibenzoyloxy-urs-12-en-28-oat

Methyl-2alpha,3beta-dibenzoyloxy-urs-12-en-28-oat

C44H56O6 (680.4077)


   

Kizuta saponin K4

Kizuta saponin K4

C38H64O10 (680.4499)


   

Lyofolinsaeure

Lyofolinsaeure

C37H60O11 (680.4135)


   

cheilocline F

cheilocline F

C45H60O5 (680.4441)


   

Kizutasaponin K4

Kizutasaponin K4

C38H64O10 (680.4499)


   

Tetrahydrosecamine

Tetrahydrosecamine

C42H56N4O4 (680.4301)


   

teikaside C-0

teikaside C-0

C37H60O11 (680.4135)


   

Lys Phe Lys Met Lys

Lys Phe Lys Met Lys

C32H56N8O6S (680.4043)


   
   

KFKMK

Lys-Phe-Lys-Met-Lys

C32H56N8O6S (680.4043)


   

1,2-ditetradecanoyl-sn-glycero-3-phosphosulfocholine

1,2-ditetradecanoyl-sn-glycero-3-phosphosulfocholine

C35H69O8PS (680.4451)


   

PG(12:0/17:0)

1-dodecanoyl-2-heptadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C35H69O10P (680.4628)


   

PG(13:0/16:0)

1-tridecanoyl-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C35H69O10P (680.4628)


   

PG(15:0/14:0)

1-pentadecanoyl-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C35H69O10P (680.4628)


   

PG(16:0/13:0)

1-hexadecanoyl-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C35H69O10P (680.4628)


   

PG(17:0/12:0)

1-heptadecanoyl-2-dodecanoyl-glycero-3-phospho-(1-sn-glycerol)

C35H69O10P (680.4628)


   

PG(14:0/15:0)

1-tetradecanoyl-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C35H69O10P (680.4628)


   

PA(15:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-pentadecanoyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C38H65O8P (680.4417)


   

PA(15:1(9Z)/20:4(5Z,8Z,11Z,14Z))

1-(9Z-pentadecenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C38H65O8P (680.4417)


   

PA(17:1(9Z)/18:4(6Z,9Z,12Z,15Z))

1-(9Z-heptadecenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C38H65O8P (680.4417)


   

PA(17:2(9Z,12Z)/18:3(6Z,9Z,12Z))

1-(9Z,12Z-heptadecadienoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C38H65O8P (680.4417)


   

PA(17:2(9Z,12Z)/18:3(9Z,12Z,15Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C38H65O8P (680.4417)


   

PA(18:3(6Z,9Z,12Z)/17:2(9Z,12Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C38H65O8P (680.4417)


   

PA(18:3(9Z,12Z,15Z)/17:2(9Z,12Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C38H65O8P (680.4417)


   

PA(18:4(6Z,9Z,12Z,15Z)/17:1(9Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C38H65O8P (680.4417)


   

PA(20:4(5Z,8Z,11Z,14Z)/15:1(9Z))

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C38H65O8P (680.4417)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/15:0)

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-pentadecanoyl-glycero-3-phosphate

C38H65O8P (680.4417)


   

PA(O-16:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-hexadecyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C39H69O7P (680.4781)


   

PA(P-18:0/18:4(6Z,9Z,12Z,15Z))

1-(1Z-octadecenyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C39H69O7P (680.4781)


   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z))

1-(1Z-hexadecenyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C39H69O7P (680.4781)


   

Gingerglycolipid C

2-hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9Z)-octadec-9-enoate

C33H60O14 (680.3983)


   

DGMG 18:1

1-(9Z-octadecenoy)l-3-O-(6-O-alpha-D-galactosyl-beta-D-galactosyl)-sn-glycerol

C33H60O14 (680.3983)


   

PG 29:0

1-tetradecanoyl-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C35H69O10P (680.4628)


   

PA 35:5

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C38H65O8P (680.4417)


   

PA O-36:5

1-(1Z-octadecenyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C39H69O7P (680.4781)


   

Glucopyranosyl-1-O-(4,4-diapo-7,8,11,12-tetrahydrolycopen-4-oate)-6-O-(2-methylbutanoate)

4-[(6-O-11-tetranoyl-b-D-glucopyranosyl)oxy]-7,8-dihydro-4,4-diapo-psi,psi-carotene-4-oic acid

C41H60O8 (680.4288)


   

Officinoterpenoside C

2alpha,3beta,24,29-tetrahydroxyolean-12-en-28-oic acid 28-O-beta-d-glucopyranside

C37H60O11 (680.4135)


   

Cadmium stearate

Cadmium stearate

C36H70CdO4 (680.4307)


   

4-tert-butyl-calix[4]arene-crown-6-complex

4-tert-butyl-calix[4]arene-crown-6-complex

C44H56O6 (680.4077)


   

Lauryl Glucose Neopentyl Glycol

Lauryl Glucose Neopentyl Glycol

C35H68O12 (680.4711)


   

Penbutolol sulfate

Penbutolol sulfate

C36H60N2O8S (680.407)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Methionaquinone-7

Methionaquinone-7

C46H64O2S (680.4627)


   

PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C37H61O9P (680.4053)


   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0)

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0)

C37H61O9P (680.4053)


   

PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C37H61O9P (680.4053)


   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0)

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0)

C37H61O9P (680.4053)


   

PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

C37H61O9P (680.4053)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z))

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z))

C37H61O9P (680.4053)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

C37H61O9P (680.4053)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z))

C37H61O9P (680.4053)


   

PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C37H61O9P (680.4053)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z))

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z))

C37H61O9P (680.4053)


   

PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C37H61O9P (680.4053)


   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0)

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0)

C37H61O9P (680.4053)


   

PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C37H61O9P (680.4053)


   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0)

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0)

C37H61O9P (680.4053)


   

PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C37H61O9P (680.4053)


   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0)

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0)

C37H61O9P (680.4053)


   

PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C37H61O9P (680.4053)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z))

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z))

C37H61O9P (680.4053)


   

PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C37H61O9P (680.4053)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z))

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z))

C37H61O9P (680.4053)


   

PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C37H61O9P (680.4053)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z))

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z))

C37H61O9P (680.4053)


   

PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C37H61O9P (680.4053)


   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0)

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0)

C37H61O9P (680.4053)


   

PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C37H61O9P (680.4053)


   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0)

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0)

C37H61O9P (680.4053)


   

PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C37H61O9P (680.4053)


   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0)

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0)

C37H61O9P (680.4053)


   

PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C37H61O9P (680.4053)


   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0)

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0)

C37H61O9P (680.4053)


   

PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C37H61O9P (680.4053)


   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0)

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0)

C37H61O9P (680.4053)


   

CID 101635263

CID 101635263

C33H60O14 (680.3983)


   

1-Palmityl-2-arachidonoyl-sn-glycero-3-phosphate(2-)

1-Palmityl-2-arachidonoyl-sn-glycero-3-phosphate(2-)

C39H69O7P-2 (680.4781)


   

beta-Decaethylcalix[5]furan

beta-Decaethylcalix[5]furan

C45H60O5 (680.4441)


   

Dgdg O-15:1_3:0

Dgdg O-15:1_3:0

C33H60O14 (680.3983)


   

Mgdg O-28:4_2:0

Mgdg O-28:4_2:0

C39H68O9 (680.4863)


   

Dgdg O-13:1_5:0

Dgdg O-13:1_5:0

C33H60O14 (680.3983)


   

Dgdg O-16:1_2:0

Dgdg O-16:1_2:0

C33H60O14 (680.3983)


   

Mgdg O-8:0_22:4

Mgdg O-8:0_22:4

C39H68O9 (680.4863)


   

Mgdg O-24:4_6:0

Mgdg O-24:4_6:0

C39H68O9 (680.4863)


   

Mgdg O-22:4_8:0

Mgdg O-22:4_8:0

C39H68O9 (680.4863)


   

Mgdg O-26:4_4:0

Mgdg O-26:4_4:0

C39H68O9 (680.4863)


   

Dgdg O-14:1_4:0

Dgdg O-14:1_4:0

C33H60O14 (680.3983)


   

Mgdg O-12:0_18:4

Mgdg O-12:0_18:4

C39H68O9 (680.4863)


   

Mgdg O-20:4_10:0

Mgdg O-20:4_10:0

C39H68O9 (680.4863)


   

Mgdg O-10:0_20:4

Mgdg O-10:0_20:4

C39H68O9 (680.4863)


   

Mgdg O-16:3_14:1

Mgdg O-16:3_14:1

C39H68O9 (680.4863)


   

Mgdg O-16:4_14:0

Mgdg O-16:4_14:0

C39H68O9 (680.4863)


   

Mgdg O-18:4_12:0

Mgdg O-18:4_12:0

C39H68O9 (680.4863)


   

Mgdg O-14:1_16:3

Mgdg O-14:1_16:3

C39H68O9 (680.4863)


   

Mgdg O-14:0_16:4

Mgdg O-14:0_16:4

C39H68O9 (680.4863)


   

PE-Cer 18:1;2O/18:4

PE-Cer 18:1;2O/18:4

C38H69N2O6P (680.4893)


   

PE-Cer 18:3;2O/18:2

PE-Cer 18:3;2O/18:2

C38H69N2O6P (680.4893)


   

PE-Cer 16:1;2O/20:4

PE-Cer 16:1;2O/20:4

C38H69N2O6P (680.4893)


   

PE-Cer 15:3;2O/21:2

PE-Cer 15:3;2O/21:2

C38H69N2O6P (680.4893)


   

PE-Cer 16:2;2O/20:3

PE-Cer 16:2;2O/20:3

C38H69N2O6P (680.4893)


   

PE-Cer 14:2;2O/22:3

PE-Cer 14:2;2O/22:3

C38H69N2O6P (680.4893)


   

PE-Cer 16:3;2O/20:2

PE-Cer 16:3;2O/20:2

C38H69N2O6P (680.4893)


   

PE-Cer 18:0;2O/18:5

PE-Cer 18:0;2O/18:5

C38H69N2O6P (680.4893)


   

PE-Cer 17:3;2O/19:2

PE-Cer 17:3;2O/19:2

C38H69N2O6P (680.4893)


   

PE-Cer 12:0;2O/24:5

PE-Cer 12:0;2O/24:5

C38H69N2O6P (680.4893)


   

PE-Cer 16:0;2O/20:5

PE-Cer 16:0;2O/20:5

C38H69N2O6P (680.4893)


   

PE-Cer 20:3;2O/16:2

PE-Cer 20:3;2O/16:2

C38H69N2O6P (680.4893)


   

PE-Cer 20:2;2O/16:3

PE-Cer 20:2;2O/16:3

C38H69N2O6P (680.4893)


   

PE-Cer 12:1;2O/24:4

PE-Cer 12:1;2O/24:4

C38H69N2O6P (680.4893)


   

PE-Cer 19:3;2O/17:2

PE-Cer 19:3;2O/17:2

C38H69N2O6P (680.4893)


   

PE-Cer 18:2;2O/18:3

PE-Cer 18:2;2O/18:3

C38H69N2O6P (680.4893)


   

PE-Cer 14:3;2O/22:2

PE-Cer 14:3;2O/22:2

C38H69N2O6P (680.4893)


   

PE-Cer 14:0;2O/22:5

PE-Cer 14:0;2O/22:5

C38H69N2O6P (680.4893)


   

PE-Cer 20:1;2O/16:4

PE-Cer 20:1;2O/16:4

C38H69N2O6P (680.4893)


   

PE-Cer 12:2;2O/24:3

PE-Cer 12:2;2O/24:3

C38H69N2O6P (680.4893)


   

PE-Cer 14:1;2O/22:4

PE-Cer 14:1;2O/22:4

C38H69N2O6P (680.4893)


   

[(E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyheptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyheptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]pentadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]pentadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyundecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyundecyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyundec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyundec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(4E,8E,12E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(4E,8E,12E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyheptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyheptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(4E,8E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyheptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyheptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(4E,8E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]tridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]tridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]pentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]pentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tridecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tridecyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   
   

PMeOH 16:1_18:4

PMeOH 16:1_18:4

C38H65O8P (680.4417)


   

PEtOH 15:0_18:5

PEtOH 15:0_18:5

C38H65O8P (680.4417)


   

PMeOH 18:2_16:3

PMeOH 18:2_16:3

C38H65O8P (680.4417)


   

PEtOH 13:1_20:4

PEtOH 13:1_20:4

C38H65O8P (680.4417)


   

PEtOH 13:0_20:5

PEtOH 13:0_20:5

C38H65O8P (680.4417)


   

PMeOH 12:0_22:5

PMeOH 12:0_22:5

C38H65O8P (680.4417)


   

PEtOH 15:1_18:4

PEtOH 15:1_18:4

C38H65O8P (680.4417)


   

PMeOH 16:0_18:5

PMeOH 16:0_18:5

C38H65O8P (680.4417)


   

PMeOH 14:0_20:5

PMeOH 14:0_20:5

C38H65O8P (680.4417)


   

PMeOH 18:1_16:4

PMeOH 18:1_16:4

C38H65O8P (680.4417)


   

PEtOH 17:2_16:3

PEtOH 17:2_16:3

C38H65O8P (680.4417)


   

PEtOH 17:1_16:4

PEtOH 17:1_16:4

C38H65O8P (680.4417)


   

PMeOH 14:1_20:4

PMeOH 14:1_20:4

C38H65O8P (680.4417)


   

PMeOH 16:2_18:3

PMeOH 16:2_18:3

C38H65O8P (680.4417)


   

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C38H64O10 (680.4499)


   

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C38H64O10 (680.4499)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C38H64O10 (680.4499)


   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C38H64O10 (680.4499)


   

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C38H64O10 (680.4499)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C38H64O10 (680.4499)


   

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C38H64O10 (680.4499)


   

[3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[1-[(2-Butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] pentacosanoate

[1-[(2-Butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] pentacosanoate

C35H69O10P (680.4628)


   

[1-[(2-Heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] docosanoate

[1-[(2-Heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] docosanoate

C35H69O10P (680.4628)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] henicosanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] henicosanoate

C35H69O10P (680.4628)


   

[1-[(2-Hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] tricosanoate

[1-[(2-Hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] tricosanoate

C35H69O10P (680.4628)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] icosanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] icosanoate

C35H69O10P (680.4628)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] tetracosanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] tetracosanoate

C35H69O10P (680.4628)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-propanoyloxypropoxy)phosphoryl]oxypropan-2-yl] hexacosanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-propanoyloxypropoxy)phosphoryl]oxypropan-2-yl] hexacosanoate

C35H69O10P (680.4628)


   

[1-[(2-Acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptacosanoate

[1-[(2-Acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptacosanoate

C35H69O10P (680.4628)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] hexadecanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] hexadecanoate

C35H69O10P (680.4628)


   

[1-[(2-Decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] nonadecanoate

[1-[(2-Decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] nonadecanoate

C35H69O10P (680.4628)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] pentadecanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] pentadecanoate

C35H69O10P (680.4628)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] octadecanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] octadecanoate

C35H69O10P (680.4628)


   

[1-[(2-Dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptadecanoate

[1-[(2-Dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptadecanoate

C35H69O10P (680.4628)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] henicosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] henicosanoate

C35H69O10P (680.4628)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] hexacosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] hexacosanoate

C35H69O10P (680.4628)


   

[1-Acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] heptacosanoate

[1-Acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] heptacosanoate

C35H69O10P (680.4628)


   

[1-Butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] pentacosanoate

[1-Butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] pentacosanoate

C35H69O10P (680.4628)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] icosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] icosanoate

C35H69O10P (680.4628)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] tricosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] tricosanoate

C35H69O10P (680.4628)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] tetracosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] tetracosanoate

C35H69O10P (680.4628)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] docosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] docosanoate

C35H69O10P (680.4628)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] heptadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] heptadecanoate

C35H69O10P (680.4628)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] hexadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] hexadecanoate

C35H69O10P (680.4628)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] pentadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] pentadecanoate

C35H69O10P (680.4628)


   

[1-Decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] nonadecanoate

[1-Decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] nonadecanoate

C35H69O10P (680.4628)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] octadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] octadecanoate

C35H69O10P (680.4628)


   

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C38H65O8P (680.4417)


   

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C38H65O8P (680.4417)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

C38H65O8P (680.4417)


   

[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C38H65O8P (680.4417)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C38H65O8P (680.4417)


   

[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C38H65O8P (680.4417)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (Z)-nonadec-9-enoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (Z)-nonadec-9-enoate

C38H65O8P (680.4417)


   

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C38H65O8P (680.4417)


   

[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C38H65O8P (680.4417)


   

[(4E,8E,12E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(4E,8E,12E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyheptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyheptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H69N2O6P (680.4893)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] octadecanoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] octadecanoate

C35H69O10P (680.4628)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C38H65O8P (680.4417)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C38H65O8P (680.4417)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C38H64O10 (680.4499)


   

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C38H65O8P (680.4417)


   

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C38H65O8P (680.4417)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] octadecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] octadecanoate

C35H69O10P (680.4628)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H63NO8P+ (680.4291)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C38H65O8P (680.4417)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C38H64O10 (680.4499)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] nonadecanoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] nonadecanoate

C35H69O10P (680.4628)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C38H65O8P (680.4417)


   

[1-[(E)-tridec-8-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[(E)-tridec-8-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C38H64O10 (680.4499)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C38H65O8P (680.4417)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C38H65O8P (680.4417)


   

[(2R)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] nonadecanoate

[(2R)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] nonadecanoate

C35H69O10P (680.4628)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C38H65O8P (680.4417)


   

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C38H65O8P (680.4417)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C38H65O8P (680.4417)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] heptadecanoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] heptadecanoate

C35H69O10P (680.4628)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C38H65O8P (680.4417)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C38H64O10 (680.4499)


   

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C38H65O8P (680.4417)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C38H64O10 (680.4499)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (10E,13E,16E)-nonadeca-10,13,16-trienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (10E,13E,16E)-nonadeca-10,13,16-trienoate

C38H65O8P (680.4417)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C38H65O8P (680.4417)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-nonadec-9-enoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-nonadec-9-enoate

C38H65O8P (680.4417)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (7E,9E)-nonadeca-7,9-dienoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (7E,9E)-nonadeca-7,9-dienoate

C38H65O8P (680.4417)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C38H65O8P (680.4417)


   

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C38H65O8P (680.4417)


   

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C38H65O8P (680.4417)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C38H65O8P (680.4417)


   

[1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C38H64O10 (680.4499)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C38H65O8P (680.4417)


   

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H63NO8P+ (680.4291)


   

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO7P+ (680.4655)


   

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO7P+ (680.4655)


   

2-[hydroxy-[2-hydroxy-3-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-hydroxy-3-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C38H67NO7P+ (680.4655)


   

2-[[2-hexanoyloxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-hexanoyloxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO7P+ (680.4655)


   

2-[[2-butanoyloxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-butanoyloxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO7P+ (680.4655)


   

2-[[2-acetyloxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-acetyloxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO7P+ (680.4655)


   
   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(12-methyltridecanoyloxy)propan-2-yl] 12-methyltetradecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(12-methyltridecanoyloxy)propan-2-yl] 12-methyltetradecanoate

C35H69O10P (680.4628)


   

1-hexadecanoyl-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

1-hexadecanoyl-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C35H69O10P (680.4628)


   

1-Palmityl-2-arachidonoyl-sn-glycero-3-phosphate(2-)

1-Palmityl-2-arachidonoyl-sn-glycero-3-phosphate(2-)

C39H69O7P (680.4781)


A 1-alkyl-2-acyl-sn-glycero-3-phosphate(2-) obtained by deprotonation of the phosphate OH groups of 1-palmityl-2-arachidonoyl-sn-glycero-3-phosphate; major species at pH 7.3.

   

MGDG(29:4)

MGDG(18:2_11:2)

C38H64O10 (680.4499)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(34:5)

BisMePA(16:2(1)_18:3)

C39H69O7P (680.4781)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Sophorosyloxydocosanoic acid

Sophorosyloxydocosanoic acid

C34H64O13 (680.4347)


   

FAHFA 20:6/O-26:7

FAHFA 20:6/O-26:7

C46H64O4 (680.4804)


   

FAHFA 21:6/O-25:7

FAHFA 21:6/O-25:7

C46H64O4 (680.4804)


   

FAHFA 21:7/O-25:6

FAHFA 21:7/O-25:6

C46H64O4 (680.4804)


   

FAHFA 22:6/O-24:7

FAHFA 22:6/O-24:7

C46H64O4 (680.4804)


   

FAHFA 22:7/O-24:6

FAHFA 22:7/O-24:6

C46H64O4 (680.4804)


   

FAHFA 23:6/O-23:7

FAHFA 23:6/O-23:7

C46H64O4 (680.4804)


   

FAHFA 23:7/O-23:6

FAHFA 23:7/O-23:6

C46H64O4 (680.4804)


   

FAHFA 24:6/O-22:7

FAHFA 24:6/O-22:7

C46H64O4 (680.4804)


   

FAHFA 24:7/O-22:6

FAHFA 24:7/O-22:6

C46H64O4 (680.4804)


   

FAHFA 25:6/O-21:7

FAHFA 25:6/O-21:7

C46H64O4 (680.4804)


   

FAHFA 25:7/O-21:6

FAHFA 25:7/O-21:6

C46H64O4 (680.4804)


   

FAHFA 26:7/O-20:6

FAHFA 26:7/O-20:6

C46H64O4 (680.4804)


   

MGDG 11:0_18:4

MGDG 11:0_18:4

C38H64O10 (680.4499)


   
   

MGDG O-29:5;O

MGDG O-29:5;O

C38H64O10 (680.4499)


   

MGDG O-30:4

MGDG O-30:4

C39H68O9 (680.4863)


   
   
   
   
   

PA O-14:0/22:5

PA O-14:0/22:5

C39H69O7P (680.4781)


   

PA O-14:1/22:4

PA O-14:1/22:4

C39H69O7P (680.4781)


   

PA O-16:0/20:5

PA O-16:0/20:5

C39H69O7P (680.4781)


   

PA O-16:1/20:4

PA O-16:1/20:4

C39H69O7P (680.4781)


   

PA O-16:2/20:3

PA O-16:2/20:3

C39H69O7P (680.4781)


   

PA O-18:1/18:4

PA O-18:1/18:4

C39H69O7P (680.4781)


   

PA O-18:2/18:3

PA O-18:2/18:3

C39H69O7P (680.4781)


   

PA P-14:0/22:4

PA P-14:0/22:4

C39H69O7P (680.4781)


   

PA P-14:0/22:4 or PA O-14:1/22:4

PA P-14:0/22:4 or PA O-14:1/22:4

C39H69O7P (680.4781)


   

PA P-16:0/20:4

PA P-16:0/20:4

C39H69O7P (680.4781)


   

PA P-16:0/20:4 or PA O-16:1/20:4

PA P-16:0/20:4 or PA O-16:1/20:4

C39H69O7P (680.4781)


   

PA P-16:1/20:3

PA P-16:1/20:3

C39H69O7P (680.4781)


   

PA P-16:1/20:3 or PA O-16:2/20:3

PA P-16:1/20:3 or PA O-16:2/20:3

C39H69O7P (680.4781)


   

PA P-18:0/18:4

PA P-18:0/18:4

C39H69O7P (680.4781)


   

PA P-18:0/18:4 or PA O-18:1/18:4

PA P-18:0/18:4 or PA O-18:1/18:4

C39H69O7P (680.4781)


   

PA P-18:1/18:3

PA P-18:1/18:3

C39H69O7P (680.4781)


   

PA P-18:1/18:3 or PA O-18:2/18:3

PA P-18:1/18:3 or PA O-18:2/18:3

C39H69O7P (680.4781)


   
   

PA P-36:4 or PA O-36:5

PA P-36:4 or PA O-36:5

C39H69O7P (680.4781)


   

PA 14:1/20:5;O

PA 14:1/20:5;O

C37H61O9P (680.4053)


   
   
   
   
   
   
   

PG O-16:0/12:2;O2

PG O-16:0/12:2;O2

C34H65O11P (680.4264)


   

PG O-20:0/8:2;O2

PG O-20:0/8:2;O2

C34H65O11P (680.4264)


   

PG O-20:0/9:1;O

PG O-20:0/9:1;O

C35H69O10P (680.4628)


   
   
   

PG P-20:0/8:1;O2

PG P-20:0/8:1;O2

C34H65O11P (680.4264)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

CerPE 14:0;O2/22:5

CerPE 14:0;O2/22:5

C38H69N2O6P (680.4893)


   

CerPE 14:1;O2/22:4

CerPE 14:1;O2/22:4

C38H69N2O6P (680.4893)


   

CerPE 16:0;O2/20:5

CerPE 16:0;O2/20:5

C38H69N2O6P (680.4893)


   

CerPE 16:1;O2/20:4

CerPE 16:1;O2/20:4

C38H69N2O6P (680.4893)


   

CerPE 16:2;O2/20:3

CerPE 16:2;O2/20:3

C38H69N2O6P (680.4893)


   

CerPE 18:1;O2/18:4

CerPE 18:1;O2/18:4

C38H69N2O6P (680.4893)


   

CerPE 18:2;O2/18:3

CerPE 18:2;O2/18:3

C38H69N2O6P (680.4893)


   
   
   
   
   
   

MGDG(30:4)

MGDG(10:0(1)_20:4)

C39H68O9 (680.4863)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-8,9-dihydroxy-1-[(2r)-2-hydroxy-6-methylhept-6-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-8,9-dihydroxy-1-[(2r)-2-hydroxy-6-methylhept-6-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C38H64O10 (680.4499)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-1-[(2s)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-1-[(2s)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C38H64O10 (680.4499)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-8,9-dihydroxy-1-[(2r,4e)-2-hydroxy-6-methylhept-4-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-8,9-dihydroxy-1-[(2r,4e)-2-hydroxy-6-methylhept-4-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C38H64O10 (680.4499)


   

20,24-epoxycycloartane-3,12,15,16,25-pentol; (3β,12β,15α,16β,20ξ,24ξ)-form,15-ac,3-o-beta-d-xylopyranoside

NA

C37H60O11 (680.4135)


{"Ingredient_id": "HBIN003379","Ingredient_name": "20,24-epoxycycloartane-3,12,15,16,25-pentol; (3\u03b2,12\u03b2,15\u03b1,16\u03b2,20\u03be,24\u03be)-form,15-ac,3-o-beta-d-xylopyranoside","Alias": "NA","Ingredient_formula": "C37H60O11","Ingredient_Smile": "NA","Ingredient_weight": "680.87","OB_score": "NA","CAS_id": "98046-82-3","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "8782","PubChem_id": "NA","DrugBank_id": "NA"}

   

beesioside d

NA

C37H60O11 (680.4135)


{"Ingredient_id": "HBIN017678","Ingredient_name": "beesioside d","Alias": "NA","Ingredient_formula": "C37H60O11","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2195","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

beesioside iii

NA

C37H60O11 (680.4135)


{"Ingredient_id": "HBIN017685","Ingredient_name": "beesioside iii","Alias": "NA","Ingredient_formula": "C37H60O11","Ingredient_Smile": "CC(=O)OC1C(C(C2(C1(C3CCC4C(C(CCC45C3(C5)CC2O)OC6C(C(C(CO6)O)O)O)(C)C)C)C)C7(CCC(O7)C(C)(C)O)C)O","Ingredient_weight": "680.9 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2202","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "21637572","DrugBank_id": "NA"}

   

2-hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadec-9-enoate

2-hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadec-9-enoate

C33H60O14 (680.3983)


   

4,5-dihydroxy-2-({10-hydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl}oxy)-6-(hydroxymethyl)oxan-3-yl acetate

4,5-dihydroxy-2-({10-hydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl}oxy)-6-(hydroxymethyl)oxan-3-yl acetate

C38H64O10 (680.4499)


   

(1r,3r,6s,8r,11r,12s,13r,14r,15r,16r,17r)-14,17-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-13-yl acetate

(1r,3r,6s,8r,11r,12s,13r,14r,15r,16r,17r)-14,17-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-13-yl acetate

C37H60O11 (680.4135)


   

(1r)-1,13-dihydroxy-1-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-8-oxopentadecan-3-yl acetate

(1r)-1,13-dihydroxy-1-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-8-oxopentadecan-3-yl acetate

C39H68O9 (680.4863)


   

(2r,6r)-6-[(1r,3as,3br,4r,7r,9ar,9bs,11s,11ar)-4-{[(2r,3r,4s,5r,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-7,11-dihydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylheptyl acetate

(2r,6r)-6-[(1r,3as,3br,4r,7r,9ar,9bs,11s,11ar)-4-{[(2r,3r,4s,5r,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-7,11-dihydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylheptyl acetate

C37H60O11 (680.4135)


   

1,13-dihydroxy-1-[5-(1-hydroxytridecyl)oxolan-2-yl]-15-(5-methyl-2-oxo-5h-furan-3-yl)-8-oxopentadecan-3-yl acetate

1,13-dihydroxy-1-[5-(1-hydroxytridecyl)oxolan-2-yl]-15-(5-methyl-2-oxo-5h-furan-3-yl)-8-oxopentadecan-3-yl acetate

C39H68O9 (680.4863)


   

2-{3-[(4e)-6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-2,5-diene-1,4-dione

2-{3-[(4e)-6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-2,5-diene-1,4-dione

C44H56O6 (680.4077)


   

methyl 6,9,12,15,18,23,27,32-octamethyl-21-oxo-30-(prop-1-en-2-yl)-2,25-dioxaoctacyclo[24.5.3.0¹,²⁶.0³,²⁴.0⁵,²².0⁶,¹⁹.0⁹,¹⁸.0¹⁰,¹⁵]tetratriaconta-3,5(22),19,23,32-pentaene-12-carboxylate

methyl 6,9,12,15,18,23,27,32-octamethyl-21-oxo-30-(prop-1-en-2-yl)-2,25-dioxaoctacyclo[24.5.3.0¹,²⁶.0³,²⁴.0⁵,²².0⁶,¹⁹.0⁹,¹⁸.0¹⁰,¹⁵]tetratriaconta-3,5(22),19,23,32-pentaene-12-carboxylate

C45H60O5 (680.4441)


   

6-[(5-hydroxy-6-{[1-hydroxy-1-(1-hydroxyethyl)-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-4-methoxy-2-methyloxan-3-yl acetate

6-[(5-hydroxy-6-{[1-hydroxy-1-(1-hydroxyethyl)-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-4-methoxy-2-methyloxan-3-yl acetate

C37H60O11 (680.4135)


   

(1r,13r)-1,13-dihydroxy-1-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-8-oxopentadecan-3-yl acetate

(1r,13r)-1,13-dihydroxy-1-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-8-oxopentadecan-3-yl acetate

C39H68O9 (680.4863)


   

6,9-dimethyl (6r,9r)-10-[2-(3-ethylpiperidin-1-yl)ethyl]-6-{3-[2-(3-ethylpiperidin-1-yl)ethyl]-1h-indol-2-yl}-7h,8h,9h-pyrido[1,2-a]indole-6,9-dicarboxylate

6,9-dimethyl (6r,9r)-10-[2-(3-ethylpiperidin-1-yl)ethyl]-6-{3-[2-(3-ethylpiperidin-1-yl)ethyl]-1h-indol-2-yl}-7h,8h,9h-pyrido[1,2-a]indole-6,9-dicarboxylate

C42H56N4O4 (680.4301)


   

2-{3-[6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-2,5-diene-1,4-dione

2-{3-[6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-2,5-diene-1,4-dione

C44H56O6 (680.4077)


   

5-hydroxy-1-{2-hydroxy-6-methyl-7-[(3,4,5-trihydroxy-6-methoxyoxan-2-yl)oxy]hept-5-en-2-yl}-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl acetate

5-hydroxy-1-{2-hydroxy-6-methyl-7-[(3,4,5-trihydroxy-6-methoxyoxan-2-yl)oxy]hept-5-en-2-yl}-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl acetate

C38H64O10 (680.4499)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-[1,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-4a-yl]acetate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-[1,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-4a-yl]acetate

C37H60O11 (680.4135)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7s,9as,9br,10r,11ar)-10-hydroxy-1-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7s,9as,9br,10r,11ar)-10-hydroxy-1-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C38H64O10 (680.4499)


   

(1s,3ar,3br,5s,5ar,7s,9ar,9br,11as)-5-hydroxy-1-[(2s,5e)-2-hydroxy-6-methyl-7-{[(2r,3r,4s,5s,6s)-3,4,5-trihydroxy-6-methoxyoxan-2-yl]oxy}hept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl acetate

(1s,3ar,3br,5s,5ar,7s,9ar,9br,11as)-5-hydroxy-1-[(2s,5e)-2-hydroxy-6-methyl-7-{[(2r,3r,4s,5s,6s)-3,4,5-trihydroxy-6-methoxyoxan-2-yl]oxy}hept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl acetate

C38H64O10 (680.4499)


   

(1r,3r,6s,8r,11s,12s,13r,14r,15r,16r,17r)-14,17-dihydroxy-15-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-13-yl acetate

(1r,3r,6s,8r,11s,12s,13r,14r,15r,16r,17r)-14,17-dihydroxy-15-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-13-yl acetate

C37H60O11 (680.4135)


   

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

C37H60O11 (680.4135)


   

{3,4,5-trihydroxy-6-[(6-methyl-2-{5,7,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}hept-5-en-2-yl)oxy]oxan-2-yl}methyl acetate

{3,4,5-trihydroxy-6-[(6-methyl-2-{5,7,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}hept-5-en-2-yl)oxy]oxan-2-yl}methyl acetate

C38H64O10 (680.4499)


   

methyl (4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

methyl (4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C37H60O11 (680.4135)


   

[(2r,3s,4s,5r,6s)-6-{[(2s)-2-[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-5,7,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6s)-6-{[(2s)-2-[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-5,7,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C38H64O10 (680.4499)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-8,9-dihydroxy-1-[(2r)-2-hydroxy-6-methylhept-6-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-8,9-dihydroxy-1-[(2r)-2-hydroxy-6-methylhept-6-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C38H64O10 (680.4499)


   

4-{3-[(4e)-6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-3,5-diene-1,2-dione

4-{3-[(4e)-6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-3,5-diene-1,2-dione

C44H56O6 (680.4077)


   

methyl 5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

methyl 5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C37H60O11 (680.4135)


   

(1r,3s,13r)-1,13-dihydroxy-1-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-8-oxopentadecan-3-yl acetate

(1r,3s,13r)-1,13-dihydroxy-1-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-8-oxopentadecan-3-yl acetate

C39H68O9 (680.4863)


   

(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-[(1r,2r,4ar,6as,6br,8as,9r,10r,11r,12ar,12br,14br)-1,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-4a-yl]acetate

(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-[(1r,2r,4ar,6as,6br,8as,9r,10r,11r,12ar,12br,14br)-1,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-4a-yl]acetate

C37H60O11 (680.4135)


   

2-[4-(3-dodecyl-2-heptyl-3-hydroxy-6-oxocyclohexa-1,4-dien-1-yl)-2-oxobutyl]-4-hydroxy-1,7-dioxadispiro[5.1.5⁸.2⁶]pentadeca-9,12-dien-11-one

2-[4-(3-dodecyl-2-heptyl-3-hydroxy-6-oxocyclohexa-1,4-dien-1-yl)-2-oxobutyl]-4-hydroxy-1,7-dioxadispiro[5.1.5⁸.2⁶]pentadeca-9,12-dien-11-one

C42H64O7 (680.4652)


   

(1r,3s,13s)-1,13-dihydroxy-1-[(2s,5r)-5-[(1s)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-8-oxopentadecan-3-yl acetate

(1r,3s,13s)-1,13-dihydroxy-1-[(2s,5r)-5-[(1s)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-8-oxopentadecan-3-yl acetate

C39H68O9 (680.4863)


   

4-{3-[6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-3,5-diene-1,2-dione

4-{3-[6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-3,5-diene-1,2-dione

C44H56O6 (680.4077)


   

(1s)-1-[(1s,4r,5r,6r,8r,10r,11r,12s,13r,16r,18s,21r)-10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl]-2-hydroxy-2-methylpropyl acetate

(1s)-1-[(1s,4r,5r,6r,8r,10r,11r,12s,13r,16r,18s,21r)-10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl]-2-hydroxy-2-methylpropyl acetate

C37H60O11 (680.4135)


   

(2s)-2-hydroxy-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z)-octadec-9-enoate

(2s)-2-hydroxy-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z)-octadec-9-enoate

C33H60O14 (680.3983)


   

14,17-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-13-yl acetate

14,17-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-13-yl acetate

C37H60O11 (680.4135)


   

methyl (1s,6r,9s,12r,15s,18s,26s)-6,9,12,15,18,23,27,32-octamethyl-21-oxo-30-(prop-1-en-2-yl)-2,25-dioxaoctacyclo[24.5.3.0¹,²⁶.0³,²⁴.0⁵,²².0⁶,¹⁹.0⁹,¹⁸.0¹⁰,¹⁵]tetratriaconta-3,5(22),19,23,32-pentaene-12-carboxylate

methyl (1s,6r,9s,12r,15s,18s,26s)-6,9,12,15,18,23,27,32-octamethyl-21-oxo-30-(prop-1-en-2-yl)-2,25-dioxaoctacyclo[24.5.3.0¹,²⁶.0³,²⁴.0⁵,²².0⁶,¹⁹.0⁹,¹⁸.0¹⁰,¹⁵]tetratriaconta-3,5(22),19,23,32-pentaene-12-carboxylate

C45H60O5 (680.4441)


   

methyl (1s,6r,9s,10r,12r,15s,18s,26s,27r,30r)-6,9,12,15,18,23,27,32-octamethyl-21-oxo-30-(prop-1-en-2-yl)-2,25-dioxaoctacyclo[24.5.3.0¹,²⁶.0³,²⁴.0⁵,²².0⁶,¹⁹.0⁹,¹⁸.0¹⁰,¹⁵]tetratriaconta-3,5(22),19,23,32-pentaene-12-carboxylate

methyl (1s,6r,9s,10r,12r,15s,18s,26s,27r,30r)-6,9,12,15,18,23,27,32-octamethyl-21-oxo-30-(prop-1-en-2-yl)-2,25-dioxaoctacyclo[24.5.3.0¹,²⁶.0³,²⁴.0⁵,²².0⁶,¹⁹.0⁹,¹⁸.0¹⁰,¹⁵]tetratriaconta-3,5(22),19,23,32-pentaene-12-carboxylate

C45H60O5 (680.4441)


   

1-{10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl}-2-hydroxy-2-methylpropyl acetate

1-{10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl}-2-hydroxy-2-methylpropyl acetate

C37H60O11 (680.4135)