Exact Mass: 680.380528
Exact Mass Matches: 680.380528
Found 340 metabolites which its exact mass value is equals to given mass value 680.380528
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Gingerglycolipid C
Gingerglycolipid C is found in ginger. Gingerglycolipid C is from Zingiber officinale (ginger). From Zingiber officinale (ginger). Gingerglycolipid C is found in herbs and spices and ginger.
Canarigenin 3-[glucosyl-(1->4)-6-deoxy-alloside]
Canarigenin 3-[glucosyl-(1->4)-6-deoxy-alloside] is found in green vegetables. Canarigenin 3-[glucosyl-(1->4)-6-deoxy-alloside] is a constituent of Corchorus olitorius (Jews mallow) Constituent of Corchorus olitorius (Jews mallow). Canarigenin 3-[glucosyl-(1->4)-6-deoxy-alloside] is found in tea, herbs and spices, and green vegetables.
Tenuifolin
Myelopeptides
C35H48N6O8 (680.3533448000001)
PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))
PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0)
PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))
PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0)
PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))
PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0)
PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))
PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0)
PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))
PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0)
PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))
PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z))
PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z)), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))
PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z))
PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z)), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))
PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z))
PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z)), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))
PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z))
PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z)), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))
PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z))
PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z)), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))
PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z))
PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z)), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))
PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0)
PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))
PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0)
PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))
PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0)
PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))
PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0)
PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))
PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0)
PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
Tenuifolin
Tenuifolin is a natural product found in Polygala comosa, Muraltia spinosa, and other organisms with data available. Tenuifolin is a triterpene isolated from Polygala tenuifolia?Willd, has neuroprotective effects. Tenuifolin reduces Aβ secretion by inhibiting β-secretase. Tenuifolin improves learning and memory in aged mice by decreasing AChE activity and has the potential for Alzheimer’s disease (AD) treatment[1]. Tenuifolin is a triterpene isolated from Polygala tenuifolia?Willd, has neuroprotective effects. Tenuifolin reduces Aβ secretion by inhibiting β-secretase. Tenuifolin improves learning and memory in aged mice by decreasing AChE activity and has the potential for Alzheimer’s disease (AD) treatment[1].
2-(beta-D-glucopyranosyloxy)-3,16,20-trihydroxy-9-methyl-19-norlanosta-5,24-diene-22-one
(2R,3R,4R,6aR,6bS,8aR,14bR)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid
16alpha,23alpha-epoxy-2beta,3beta,7beta,20beta,26-pentahydroxy-10alpha,23alpha-cucurbit-5,24-(E)-dien-11-one 2-O-beta-D-glucopyranoside
2alpha,3beta,19alpha,23-tetrahydroxy-11-oxo-olean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester
(2R,3R,4R,5R,7S,8S,9S,11E,13S,15R)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-2,8,9-triacetate-7-isobutyrate-5-(2-methylbutyrate)|2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one 2,8,9-triacetate 7-isobutyrate 5-(2-methylbutyrate)
17-benzoyloxy-20-O-(2,3-dimethylbutanoyl)-13-(2,3-dimethylbutanoyloxy)ingenol
alpha-D-glucopyranosyl ester of 2alpha,3beta,19alpha,23-tetrahydroxy-12-ursen-28-oic acid
(2R,3R,2R,3R)-nostoxanthin 3-sulfate|nostoxanthin monosulfate
olean-3alpha,5alpha,25-triol-12-en-23,28-dioic acid 3-beta-D-glucopyranoside|termiarjunoside II
(3S,3R)-Astaxanthindiacetat|(3S,3S)-Astaxanthin-diacetat|all-trans-(3S,3S) astaxanthin diacetate|Astaxanthin-diacetat|Astaxanthin-ester|Astaxanthindiacetat
2-beta-Glucopyranosyl-dihydrocucurbitacin D|2-O-beta-D-glucopyranosyl-23,24-dihydrocucurbitacin D|arvenin IV|cucurbitacin R-glucoside
17-benzoylox y-3 -O-(2,3-di methylbutanoyl)-13-(2,3-dimethylbu tanoyloxy)ingenol|17-benzoyloxy-3-O-(2,3-dimethylbutanoyl)-13-(2,3-dimethylbutanoyloxy)ingenol
2alpha-O-isobutyryl-3beta-O-propionyl-5alpha,7beta,10,15beta-tetra-O-acetyl-10,18-dihydromyrsinol
2-[(E)-2-{3-[(2E)-3,7-dimethyl-2,6-octadienyl]-5-carboxy-2-hydroxyphenyl}ethenyl]-8-[(2E)-3,7-dimethyl-2,6-octadienyl]-2-methyl-4-(2-methyl-1-propenyl)-6-chromancarboxylic acid
(20SR,24RS)-16beta-acetoxy-20,24-epoxy-9,19-cyclolanostane-3beta,15alpha,18,25-tetraol-3-O-beta-D-xylopyranoside
3beta-O-beta-D-xylopyranosyl-24-O-acetoxy-1alpha,25-dihydroxylcycloartan-28-oic acid|nerviside C
19alpha-hydroxy-2,3-secours-12-en-2,3,28-trioic acid 28-O-beta-D-glucopyranosyl ester|potentillanoside D
3-Ketone,2-O-beta-D-Glucopyranoside-(2beta,3beta,16alpha,20(,24(,25()-20,24-Epoxy-2,3,16,25,26-pentahydroxycucurbit-5-en-11-one|3-Ketone,2-O-beta-D-Glucopyranoside-(2beta,3beta,16alpha,20xi,24xi,25xi)-20,24-Epoxy-2,3,16,25,26-pentahydroxycucurbit-5-en-11-one
16-oxolyclanitin-29-yl E-4-hydroxyl-3-methoxycinnamate
methyl 3-O-beta-D-glucopyranosylpolygalacate|Methyl-3-O-??-D-glucopyranosyl polygalacate
(2R,3R,4R,5R,7S,8S,9S,11E,13S,15R)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-7,8,9-triacetate-2-isobutyrate-5-(2-methylbutyrate)|2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one 7,8,9-triacetate 2-isobutyrate 5-(2-methylbutyrate)
cheiranthoside III|erysimin 4-O-alpha-L-rhamnopyranoside
(3beta,4beta,5alpha,6alpha.15beta,24S)-Cholestane-3,4,6,8,15,24-hexol
Suavissimoside F1
Suavissimoside R1 is a natural product found in Rubus chingii var. suavissimus, Trachelospermum asiaticum, and other organisms with data available.
[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate
C36H56O12_beta-D-Glucopyranose, 1-O-[(2alpha,3beta,5xi,9xi)-2,3,19,24-tetrahydroxy-24,28-dioxours-12-en-28-yl]
C36H56O12_beta-D-Glucopyranose, 1-O-[(2alpha,3beta,5xi,9xi,18xi)-2,3,19,24-tetrahydroxy-24,28-dioxoolean-12-en-28-yl]
(2R,3R,4R,6aR,6bS,8aS,11R,12R,12aS,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid
2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid
[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based: Match]
[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846625]
[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846630]
[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846627]
(2R,3R,4R,6aR,6bS,8aR,14bR)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_major
(2R,3R,4R,6aR,6bS,8aS,11R,12R,12aS,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid_minor
(2R,3R,4R,6aR,6bS,8aR,14bR)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_minor
(2R,3R,4R,6aR,6bS,8aS,11R,12R,12aS,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid_major
(2R,3R,4R,6aR,6bS,8aS,11R,12R,12aS,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid_72.4\\%
Canarigenin 3-[glucosyl-(1->4)-6-deoxy-alloside]
Gingerglycolipid C
2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-(((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)carbonyl)-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carboxylic acid
OA-PG
C33H61O12P (680.3900435999999)
OHODiA-PG
C32H57O13P (680.3536601999999)
Glucopyranosyl-1-O-(4,4-diapo-7,8,11,12-tetrahydrolycopen-4-oate)-6-O-(2-methylbutanoate)
Officinoterpenoside C
methyl ((S)-1-((S)-2-(5-(4-(2-((S)-1-((S)-2-amino-3-methylbutanoyl)pyrrolidin-2-yl)-1H-imidazol-4-yl)-[1,1-biphenyl]-4-yl)-1H-imidazol-2-yl)pyrrolidin-1-yl)-3-methyl-1-oxobutan-2-yl)carbamate
C38H48N8O4 (680.3798327999999)
(E)-(4S,6S)-8-Methyl-6-((S)-3-methyl-2-{(S)-2-[(5-methyl-isoxazole-3-carbonyl)-amino]-propionylamino}-butyrylamino)-5-oxo-4-((R)-2-oxo-pyrrolidin-3-ylmethyl)-non-2-enoic acid benzyl ester
C35H48N6O8 (680.3533448000001)
Penbutolol sulfate
C36H60N2O8S (680.4070160000001)
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
2,3,12-Trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid
N-[(3S,9S,10S)-9-[[[(1,3-benzodioxol-5-ylamino)-oxomethyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]cyclohexanecarboxamide
C37H52N4O8 (680.3784952000001)
N-[(3S,9S,10R)-9-[[[(1,3-benzodioxol-5-ylamino)-oxomethyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]cyclohexanecarboxamide
C37H52N4O8 (680.3784952000001)
N-[(3R,9S,10R)-9-[[[(1,3-benzodioxol-5-ylamino)-oxomethyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]cyclohexanecarboxamide
C37H52N4O8 (680.3784952000001)
N-[(3S,9S,10S)-9-[[[(1,3-benzodioxol-5-ylamino)-oxomethyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]cyclohexanecarboxamide
C37H52N4O8 (680.3784952000001)
[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate
C33H61O12P (680.3900435999999)
[3-Methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate
[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-pentadec-9-enoate
[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tridec-9-enoate
[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tetradec-9-enoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
C32H57O13P (680.3536601999999)
[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
C32H57O13P (680.3536601999999)
[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
C32H57O13P (680.3536601999999)
[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
C32H57O13P (680.3536601999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
C32H57O13P (680.3536601999999)
[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
C32H57O13P (680.3536601999999)
[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
PAR-4 Agonist Peptide, amide
PAR-4 Agonist Peptide, amide (PAR-4-AP; AY-NH2) is a proteinase-activated receptor-4 (PAR-4) agonist, which has no effect on either PAR-1 or PAR-2 and whose effects are blocked by a PAR-4 antagonist.
n-[(2r,3s)-1-carbamimidoyl-2-ethoxypiperidin-3-yl]-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-(4-hydroxyphenyl)propanoyl]-6-hydroxy-octahydroindole-2-carboximidic acid
C35H48N6O8 (680.3533448000001)
(3s,6r)-6-benzyl-8,10-dihydroxy-3-isopropyl-4,9-dimethyl-12-[(7r)-7-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octan-2-yl]-1-oxa-4,7-diazacyclododec-7-ene-2,5-dione
n-(1-carbamimidoyl-2-ethoxypiperidin-3-yl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-(4-hydroxyphenyl)propanoyl)-6-hydroxy-octahydroindole-2-carboximidic acid
C35H48N6O8 (680.3533448000001)
(2r,3r,3ar,4r,6s,7s,8s,12s,13ar)-6,7,8-tris(acetyloxy)-3,13a-dihydroxy-2,9,9,12-tetramethyl-5-methylidene-2-[(2-methylpropanoyl)oxy]-13-oxo-1h,3h,3ah,4h,6h,7h,8h,12h-cyclopenta[12]annulen-4-yl (2r)-2-methylbutanoate
8,16-dihydroxy-6-[3-hydroxy-2-(hydroxymethyl)prop-1-en-1-yl]-2,8,10,13,18,18-hexamethyl-17-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-12-one
[(1s,4s,5r,6r,9s,10r,11r,12s,14r)-12-{[(2r)-2,3-dimethylbutanoyl]oxy}-7-({[(2r)-2,3-dimethylbutanoyl]oxy}methyl)-4,5,6-trihydroxy-3,11,14-trimethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-11-yl]methyl benzoate
[(1s,4s,5s,6r,9s,10r,11r,12s,14r)-4,12-bis({[(2r)-2,3-dimethylbutanoyl]oxy})-5,6-dihydroxy-7-(hydroxymethyl)-3,11,14-trimethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-11-yl]methyl benzoate
{12-[(2,3-dimethylbutanoyl)oxy]-7-{[(2,3-dimethylbutanoyl)oxy]methyl}-4,5,6-trihydroxy-3,11,14-trimethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-11-yl}methyl benzoate
20,24-epoxycycloartane-3,12,15,16,25-pentol; (3β,12β,15α,16β,20ξ,24ξ)-form,15-ac,3-o-beta-d-xylopyranoside
{"Ingredient_id": "HBIN003379","Ingredient_name": "20,24-epoxycycloartane-3,12,15,16,25-pentol; (3\u03b2,12\u03b2,15\u03b1,16\u03b2,20\u03be,24\u03be)-form,15-ac,3-o-beta-d-xylopyranoside","Alias": "NA","Ingredient_formula": "C37H60O11","Ingredient_Smile": "NA","Ingredient_weight": "680.87","OB_score": "NA","CAS_id": "98046-82-3","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "8782","PubChem_id": "NA","DrugBank_id": "NA"}
(2r,3r,4r,5r,7s,8s,9s,11e,13s,15r)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-2,8,9-triacetate-7-isobutyrate-5-(2-methylbutyrate)
{"Ingredient_id": "HBIN006416","Ingredient_name": "(2r,3r,4r,5r,7s,8s,9s,11e,13s,15r)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-2,8,9-triacetate-7-isobutyrate-5-(2-methylbutyrate)","Alias": "NA","Ingredient_formula": "C35H52O13","Ingredient_Smile": "CCC(C)C(=O)OC1C2C(C(CC2(C(=O)C(C=CC(C(C(C(C1=C)OC(=O)C(C)C)OC(=O)C)OC(=O)C)(C)C)C)O)(C)OC(=O)C)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "9398","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
(2r,3r,4r,5r,7s,8s,9s,11e,13s,15r)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-7,8,9-triacetate-2-isobutyrate-5-(2-methylbutyrate)
{"Ingredient_id": "HBIN006418","Ingredient_name": "(2r,3r,4r,5r,7s,8s,9s,11e,13s,15r)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-7,8,9-triacetate-2-isobutyrate-5-(2-methylbutyrate)","Alias": "NA","Ingredient_formula": "C35H52O13","Ingredient_Smile": "CCC(C)C(=O)OC1C2C(C(CC2(C(=O)C(C=CC(C(C(C(C1=C)OC(=O)C)OC(=O)C)OC(=O)C)(C)C)C)O)(C)OC(=O)C(C)C)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "9399","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
beesioside d
{"Ingredient_id": "HBIN017678","Ingredient_name": "beesioside d","Alias": "NA","Ingredient_formula": "C37H60O11","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2195","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
beesioside iii
{"Ingredient_id": "HBIN017685","Ingredient_name": "beesioside iii","Alias": "NA","Ingredient_formula": "C37H60O11","Ingredient_Smile": "CC(=O)OC1C(C(C2(C1(C3CCC4C(C(CCC45C3(C5)CC2O)OC6C(C(C(CO6)O)O)O)(C)C)C)C)C7(CCC(O7)C(C)(C)O)C)O","Ingredient_weight": "680.9 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2202","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "21637572","DrugBank_id": "NA"}
(1r,2r,3as,3bs,7r,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one
(3s,6s,9s,12s,15s)-12-benzyl-15-[(1r)-1-hydroxyethyl]-6-[(4-hydroxyphenyl)methyl]-3-isopropyl-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol
C35H48N6O8 (680.3533448000001)
(2r,3r,4r,4ar,6ar,6bs,8ar,12s,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid
4-[3-(3a,7-dihydroxy-9a,11a-dimethyl-5-oxo-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl)-3-hydroxy-2-oxobutyl]-3,5-dimethyloxolan-2-one
2-hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadec-9-enoate
(2s)-2-[(3r,4s,8r,9r,10r,11s,14s)-8-{[(2s,3s,4r,5s,6s)-5-(acetyloxy)-3,4-dihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl]oxy}-4,9-dihydroxy-14-(methoxymethyl)-3,10-dimethyltricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate
(2s)-2-[(1e,3r,4s,8r,9r,10r,11s,14s)-8-{[(2s,3r,4r,5r,6r)-4-(acetyloxy)-3,5-dihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl]oxy}-4,9-dihydroxy-14-(methoxymethyl)-3,10-dimethyltricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate
(3s,4r,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-3,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid
(1r,3r,6s,8r,11r,12s,13r,14r,15r,16r,17r)-14,17-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-13-yl acetate
4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
(1s,2s,4r,6s,8s,9r,10r,13s,14r,16s,17r,21s)-8,17,21-trihydroxy-6-[(1e)-3-hydroxy-2-methylprop-1-en-1-yl]-2,8,10,13,18,18-hexamethyl-16-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-12-one
(2r,6r)-6-[(1r,3as,3br,4r,7r,9ar,9bs,11s,11ar)-4-{[(2r,3r,4s,5r,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-7,11-dihydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylheptyl acetate
2-{3-[(4e)-6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-2,5-diene-1,4-dione
(1r,2s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14br)-2,10,11-trihydroxy-1,2,6a,6b,9,12a-hexamethyl-9-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(3s,4s,5r)-4-[(3r)-3-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7-dihydroxy-9a,11a-dimethyl-5-oxo-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-3-hydroxy-2-oxobutyl]-3,5-dimethyloxolan-2-one
(1s,3as,3br,4r,5ar,9ar,9br,11s,11as)-11-hydroxy-1-[(3r)-2-hydroxy-5-(hydroxymethyl)oxolan-3-yl]-3b,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,3ah,4h,5h,5ah,9bh,10h,11h-cyclopenta[a]phenanthren-4-yl (2e)-3-[4-(acetyloxy)-3-methoxyphenyl]prop-2-enoate
3,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid
(2r,3as,3bs,8s,9ar,9br,11ar)-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2-hydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione
(3r,4s,5s,6r)-2-({2-[(1s,2r,4ar,7r)-8-[(acetyloxy)methyl]-1,2,7-trihydroxy-4a-methyl-1,3,4,5,6,7-hexahydronaphthalen-2-yl]propan-2-yl}oxy)-4-(acetyloxy)-6-methyl-5-{[(2z)-2-methylbut-2-enoyl]oxy}oxan-3-yl (2z)-2-methylbut-2-enoate
4-{3a-hydroxy-7-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one
2,10,11-trihydroxy-1,2,6a,6b,9,12a-hexamethyl-9-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
6-benzyl-8,10-dihydroxy-4-methyl-3-(sec-butyl)-12-[(7r)-7-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octan-2-yl]-1-oxa-4,7-diazacyclododec-7-ene-2,5-dione
6-[(5-hydroxy-6-{[1-hydroxy-1-(1-hydroxyethyl)-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-4-methoxy-2-methyloxan-3-yl acetate
(1r,2r,3as,3br,7r,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one
6,9-dimethyl (6r,9r)-10-[2-(3-ethylpiperidin-1-yl)ethyl]-6-{3-[2-(3-ethylpiperidin-1-yl)ethyl]-1h-indol-2-yl}-7h,8h,9h-pyrido[1,2-a]indole-6,9-dicarboxylate
2-{3-[6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-2,5-diene-1,4-dione
12-benzyl-15-(1-hydroxyethyl)-6-[(4-hydroxyphenyl)methyl]-3-isopropyl-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol
C35H48N6O8 (680.3533448000001)
2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-[1,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-4a-yl]acetate
(3s,6s,9s,12s,15s)-12-benzyl-15-[(1s)-1-hydroxyethyl]-6-[(4-hydroxyphenyl)methyl]-3-isopropyl-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol
C35H48N6O8 (680.3533448000001)
(2r,3r,4s,5s,6r)-2-{[(1r,2r,3ar,5as,7s,9as,11as)-1-[(2r,3s,3ar,5s,6s,6as)-2,6-dihydroxy-6-isopropyl-5-methoxy-5-methyl-tetrahydrofuro[3,2-b]furan-3-yl]-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
4-[(3s,4ar,6ar,6bs,9s,10ar,11as,11bs)-3-{[(2r,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6b-hydroxy-11b-methyl-10-methylidene-tetradecahydrocyclohexa[a]fluoren-9-yl]-5h-furan-2-one
2,7,8-tris(acetyloxy)-3,13a-dihydroxy-2,9,9,12-tetramethyl-5-methylidene-6-[(2-methylpropanoyl)oxy]-13-oxo-1h,3h,3ah,4h,6h,7h,8h,12h-cyclopenta[12]annulen-4-yl 2-methylbutanoate
(1r,3r,6s,8r,11s,12s,13r,14r,15r,16r,17r)-14,17-dihydroxy-15-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-13-yl acetate
(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde
(2r,3r,3ar,4r,6s,7s,8s,12s,13ar)-2,7,8-tris(acetyloxy)-3,13a-dihydroxy-2,9,9,12-tetramethyl-5-methylidene-6-[(2-methylpropanoyl)oxy]-13-oxo-1h,3h,3ah,4h,6h,7h,8h,12h-cyclopenta[12]annulen-4-yl (2r)-2-methylbutanoate
(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate
(2s,3r,4s,4ar,6ar,6br,8as,12ar,14ar,14br)-2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid
(6s,6ar,10as,14r)-12-hexanoyl-7,10a,13-trihydroxy-6,14-diisopropyl-2,2,4,4,8,8,10,10-octamethyl-6,6a,7,14-tetrahydro-5,11-dioxapentaphene-1,3,9-trione
4-[(1s,3as,3br,5as,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4r,5s,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
(2s,4s,6ar,8as,14br)-2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid
methyl (4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
4-{3-[(4e)-6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-3,5-diene-1,2-dione
{4,12-bis[(2,3-dimethylbutanoyl)oxy]-5,6-dihydroxy-7-(hydroxymethyl)-3,11,14-trimethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-11-yl}methyl benzoate
(2s,3r,4s,4ar,6ar,6br,8as,12as,14ar,14br)-2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid
methyl 5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(2e)-n-[(1s)-1-{[(3s,7s,13s,16s,19s)-15-hydroxy-13,16,17-trimethyl-2,6,12,18-tetraoxo-5-oxa-1,11,14,17-tetraazatricyclo[17.3.0.0⁷,¹¹]docos-14-en-3-yl]-c-hydroxycarbonimidoyl}-2-phenylethyl]hex-2-enimidic acid
C35H48N6O8 (680.3533448000001)
(2s)-2-[(1e,3r,4s,8r,9r,10r,11s,14s)-8-{[(2s,3s,4r,5s,6s)-5-(acetyloxy)-3,4-dihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl]oxy}-4,9-dihydroxy-14-(methoxymethyl)-3,10-dimethyltricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate
(1s,2s,4r,6s,8s,9r,10r,13r,14r,16s,17s)-8,16-dihydroxy-6-[3-hydroxy-2-(hydroxymethyl)prop-1-en-1-yl]-2,8,10,13,18,18-hexamethyl-17-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-12-one
4-[(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
8,17,21-trihydroxy-6-(3-hydroxy-2-methylprop-1-en-1-yl)-2,8,10,13,18,18-hexamethyl-16-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-12-one
2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid
(1r,2s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-2,10,11-trihydroxy-1,2,6a,6b,9,12a-hexamethyl-9-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
2-[(1-{2,6-dihydroxy-6-isopropyl-5-methoxy-5-methyl-tetrahydrofuro[3,2-b]furan-3-yl}-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-[(1r,2r,4ar,6as,6br,8as,9r,10r,11r,12ar,12br,14br)-1,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-4a-yl]acetate
(2r,3as,6s,7as)-n-[(2r,3s)-1-carbamimidoyl-2-ethoxypiperidin-3-yl]-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-(4-hydroxyphenyl)propanoyl]-6-hydroxy-octahydroindole-2-carboximidic acid
C35H48N6O8 (680.3533448000001)