Exact Mass: 674.4909986

Exact Mass Matches: 674.4909986

Found 500 metabolites which its exact mass value is equals to given mass value 674.4909986, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PA 34:1

9-Octadecenoic acid (Z)-, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, (R)-

C37H71O8P (674.4886296)


   

PA(16:0/18:1(9Z))

9-Octadecenoic acid (Z)-, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, (R)-

C37H71O8P (674.4886296)


PA(16:0/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-coA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776). [HMDB] PA(16:0/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-CoA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776).

   

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

C37H71O8P (674.4886296)


9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester is classified as a Natural Food Constituent (code WA) in the DF Classified as a Natural Food Constituent (code WA) in the DFC

   

PA(16:0/18:1(11Z))

[(2R)-3-(hexadecanoyloxy)-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C37H71O8P (674.4886296)


PA(16:0/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:1(11Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-coA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776). [HMDB] PA(16:0/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:1(11Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-CoA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776).

   

SM(d18:1/14:0)

(2-{[(2S,3R,4E)-3-hydroxy-2-tetradecanamidooctadec-4-en-1-yl phosphonato]oxy}ethyl)trimethylazanium

C37H75N2O6P (674.5362460000001)


Sphingomyelin (d18:1/14:0) or SM(d18:1/14:0) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. SM(d18:1/14:0) consists of a sphingosine backbone and a myristic acid chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase. Not Available

   

PA(18:0/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-(octadecanoyloxy)propoxy]phosphonic acid

C37H71O8P (674.4886296)


PA(18:0/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/16:1(9Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(11Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C37H71O8P (674.4886296)


PA(18:1(11Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/16:0), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(9Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C37H71O8P (674.4886296)


PA(18:1(9Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/16:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/14:1(9Z))

[(2R)-3-(icosanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H71O8P (674.4886296)


PA(20:0/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/14:1(9Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:1(11Z)/14:0)

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H71O8P (674.4886296)


PA(20:1(11Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/14:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

SM(d16:1/16:0)

(2-{[(2S,3R,4E)-2-hexadecanamido-3-hydroxyhexadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C37H75N2O6P (674.5362460000001)


Sphingomyelin (d16:1/16:0) or SM(d16:1/16:0) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. SM(d16:1/16:0) consists of a hexadecasphingosine backbone and a palmitic acid chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

PA(15:0/18:1(12Z)-O(9S,10R))

[(2R)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-3-(pentadecanoyloxy)propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(15:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/15:0)

[(2R)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-2-(pentadecanoyloxy)propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(18:1(12Z)-O(9S,10R)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/15:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/18:1(9Z)-O(12,13))

[(2R)-3-(pentadecanoyloxy)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(15:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/15:0)

[(2R)-2-(pentadecanoyloxy)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(18:1(9Z)-O(12,13)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/15:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/18:1(12Z)-O(9S,10R))

[(2R)-3-[(12-methyltetradecanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(a-15:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/a-15:0)

[(2R)-2-[(12-methyltetradecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(18:1(12Z)-O(9S,10R)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/a-15:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/18:1(9Z)-O(12,13))

[(2R)-3-[(12-methyltetradecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(a-15:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/a-15:0)

[(2R)-2-[(12-methyltetradecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(18:1(9Z)-O(12,13)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/a-15:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/18:1(12Z)-O(9S,10R))

[(2R)-3-[(13-methyltetradecanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(i-15:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/i-15:0)

[(2R)-2-[(13-methyltetradecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(18:1(12Z)-O(9S,10R)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/i-15:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/18:1(9Z)-O(12,13))

[(2R)-3-[(13-methyltetradecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(i-15:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/i-15:0)

[(2R)-2-[(13-methyltetradecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(18:1(9Z)-O(12,13)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/i-15:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

DG(18:0/PGJ2/0:0)

(2S)-3-Hydroxy-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propyl octadecanoic acid

C41H70O7 (674.512127)


DG(18:0/PGJ2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:0/PGJ2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGJ2/18:0/0:0)

(2S)-1-Hydroxy-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propan-2-yl octadecanoic acid

C41H70O7 (674.512127)


DG(PGJ2/18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGJ2/18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:0/0:0/PGJ2)

(2R)-2-Hydroxy-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propyl octadecanoic acid

C41H70O7 (674.512127)


DG(18:0/0:0/PGJ2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGJ2/0:0/18:0)

(2S)-2-Hydroxy-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propyl octadecanoic acid

C41H70O7 (674.512127)


DG(PGJ2/0:0/18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-18:0/PGJ2/0:0)

(2S)-3-Hydroxy-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propyl 16-methylheptadecanoic acid

C41H70O7 (674.512127)


DG(i-18:0/PGJ2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-18:0/PGJ2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGJ2/i-18:0/0:0)

(2S)-1-Hydroxy-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propan-2-yl 16-methylheptadecanoic acid

C41H70O7 (674.512127)


DG(PGJ2/i-18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGJ2/i-18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-18:0/0:0/PGJ2)

(2R)-2-Hydroxy-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propyl 16-methylheptadecanoic acid

C41H70O7 (674.512127)


DG(i-18:0/0:0/PGJ2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGJ2/0:0/i-18:0)

(2S)-2-Hydroxy-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propyl 16-methylheptadecanoic acid

C41H70O7 (674.512127)


DG(PGJ2/0:0/i-18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

1-(O-alpha-D-glucopyranosyl)-29-keto-(3R,31R)-dotriacontanediol

1-(O-alpha-D-glucopyranosyl)-29-keto-(3R,31R)-dotriacontanediol

C38H74O9 (674.5332554)


   

21,22-Bis(2-methylbutanoyl) -(3beta,16alpha,21beta,22alpha)-12-Oleanene-3,16,21,22,23,28-hexol|21,22-Bis(2-methylbutanoyl)---12-Oleanene-3,16,21,22,23,28-hexol

21,22-Bis(2-methylbutanoyl) -(3beta,16alpha,21beta,22alpha)-12-Oleanene-3,16,21,22,23,28-hexol|21,22-Bis(2-methylbutanoyl)---12-Oleanene-3,16,21,22,23,28-hexol

C40H66O8 (674.4757436000001)


   

[1-hexadecanoyloxy-3-phosphonooxypropan-2-yl]octadec-9-enoate

[1-hexadecanoyloxy-3-phosphonooxypropan-2-yl]octadec-9-enoate

C37H71O8P (674.4886296)


   

(2-{[3-hydroxy-2-tetradecanamidooctadec-4-en-1-yl phosphonato]oxy}ethyl)trimethylazanium

(2-{[3-hydroxy-2-tetradecanamidooctadec-4-en-1-yl phosphonato]oxy}ethyl)trimethylazanium

C37H75N2O6P (674.5362460000001)


   

PE-Cer(d14:1/21:0)

N-(heneicosanoyl)-tetradecasphing-4-enine-1-phosphoethanolamine

C37H75N2O6P (674.5362460000001)


   

PE-Cer(d15:1/20:0)

N-(eicosanoyl)-pentadecasphing-4-enine-1-phosphoethanolamine

C37H75N2O6P (674.5362460000001)


   

PE-Cer(d16:1/19:0)

N-(nonadecanoyl)-hexadecasphing-4-enine-1-phosphoethanolamine

C37H75N2O6P (674.5362460000001)


   

PE-Cer(d14:1(4E)/20:1(11Z)(2OH))

N-(2-hydroxy-11Z-eicosenoyl)-tetradecasphing-4-enine-1-phosphoethanolamine

C36H71N2O7P (674.4998625999999)


   

PE-Cer(d14:2(4E,6E)/20:0(2OH))

N-(2-hydroxy-eicosanoyl)-4E,6E-tetradecasphingadienine-1-phosphoethanolamine

C36H71N2O7P (674.4998625999999)


   

PE-Cer(d16:1(4E)/18:1(9Z)(2OH))

N-(2-hydroxy-9Z-octadecenoyl)-hexadecasphing-4-enine-1-phosphoethanolamine

C36H71N2O7P (674.4998625999999)


   

PE-Cer(d16:2(4E,6E)/18:0(2OH))

N-(2-hydroxy-octadecanoyl)-4E,6E-hexadecasphingadienine-1-phosphoethanolamine

C36H71N2O7P (674.4998625999999)


   

PA(16:0/18:1)

9-Octadecenoic acid (Z)-, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, (R)-

C37H71O8P (674.4886296)


   

PA(18:1/16:0)[U]

9-Octadecenoic acid (Z)-, 2-[(1-oxohexadecyl)oxy]-3-(phosphonooxy)propyl ester

C37H71O8P (674.4886296)


   

1-(O-alpha-D-glucopyranosyl)-29-keto-(1,3R,31R)-dotriacontanetriol

1-(O-alpha-D-glucopyranosyl)-29-keto-(1,3R,31R)-dotriacontanetriol

C38H74O9 (674.5332554)


   

1-(O-alpha-D-mannopyranosyl)-29-keto-(1,3R,31R)-dotriacontanetriol

1-(O-alpha-D-mannopyranosyl)-29-keto-(1,3R,31R)-dotriacontanetriol

C38H74O9 (674.5332554)


   

PA(12:0/22:1(11Z))

1-dodecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(14:0/20:1(11Z))

1-tetradecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(14:1(9Z)/20:0)

1-(9Z-tetradecenoyl)-2-eicosanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(15:0/19:1(9Z))

1-pentadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(15:1(9Z)/19:0)

1-(9Z-pentadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(16:1(9Z)/18:0)

1-(9Z-hexadecenoyl)-2-octadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(17:0/17:1(9Z))

1-heptadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(17:1(9Z)/17:0)

1-(9Z-heptadecenoyl)-2-heptadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(19:0/15:1(9Z))

1-nonadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(19:1(9Z)/15:0)

1-(9Z-nonadecenoyl)-2-pentadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(20:0/14:1(9Z))

1-eicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(20:1(11Z)/14:0)

1-(11Z-eicosenoyl)-2-tetradecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(22:1(11Z)/12:0)

1-(11Z-docosenoyl)-2-dodecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(18:0/16:1(9Z))

1-octadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(18:1(9Z)/16:0)

1-(9Z-octadecenoyl)-2-hexadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(O-16:0/19:1(9Z))

1-hexadecyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C38H75O7P (674.525013)


   

PA(O-18:0/17:1(9Z))

1-octadecyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C38H75O7P (674.525013)


   

PA(O-20:0/15:1(9Z))

1-eicosyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C38H75O7P (674.525013)


   

PA(P-16:0/19:0)

1-(1Z-hexadecenyl)-2-nonadecanoyl-glycero-3-phosphate

C38H75O7P (674.525013)


   

PA(P-18:0/17:0)

1-(1Z-octadecenyl)-2-heptadecanoyl-glycero-3-phosphate

C38H75O7P (674.525013)


   

PA(P-20:0/15:0)

1-(1Z-eicosenyl)-2-pentadecanoyl-glycero-3-phosphate

C38H75O7P (674.525013)


   

[2-(hexadecanoyloxy)-3-[(9E)-octadec-9-enoyloxy]propoxy]phosphonic acid

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

C37H71O8P (674.4886296)


   

PA O-35:1

1-(1Z-octadecenyl)-2-heptadecanoyl-glycero-3-phosphate

C38H75O7P (674.525013)


   

CerPE 34:2;O3

N-(2-hydroxy-octadecanoyl)-4E,6E-hexadecasphingadienine-1-phosphoethanolamine

C36H71N2O7P (674.4998625999999)


   

2,2-[(3,3-dimethyl[1,1-biphenyl]-4,4-diyl)bis(azo)]bis[4-nonylphenol]

2,2-[(3,3-dimethyl[1,1-biphenyl]-4,4-diyl)bis(azo)]bis[4-nonylphenol]

C44H58N4O2 (674.4559528)


   

1-Stearoyl-2-palmitoyl-sn-glycerol 3-phosphate

1-Stearoyl-2-palmitoyl-sn-glycerol 3-phosphate

C37H71O8P-2 (674.4886296)


   

Dimyristoleoylphosphatidylcholine

Dimyristoleoylphosphatidylcholine

C36H69NO8P+ (674.4760544)


   

PA(15:0/18:1(12Z)-O(9S,10R))

PA(15:0/18:1(12Z)-O(9S,10R))

C36H67O9P (674.4522462)


   

PA(18:1(12Z)-O(9S,10R)/15:0)

PA(18:1(12Z)-O(9S,10R)/15:0)

C36H67O9P (674.4522462)


   

PA(a-15:0/18:1(12Z)-O(9S,10R))

PA(a-15:0/18:1(12Z)-O(9S,10R))

C36H67O9P (674.4522462)


   

PA(18:1(12Z)-O(9S,10R)/a-15:0)

PA(18:1(12Z)-O(9S,10R)/a-15:0)

C36H67O9P (674.4522462)


   

PA(a-15:0/18:1(9Z)-O(12,13))

PA(a-15:0/18:1(9Z)-O(12,13))

C36H67O9P (674.4522462)


   

PA(18:1(9Z)-O(12,13)/a-15:0)

PA(18:1(9Z)-O(12,13)/a-15:0)

C36H67O9P (674.4522462)


   

PA(i-15:0/18:1(12Z)-O(9S,10R))

PA(i-15:0/18:1(12Z)-O(9S,10R))

C36H67O9P (674.4522462)


   

PA(18:1(12Z)-O(9S,10R)/i-15:0)

PA(18:1(12Z)-O(9S,10R)/i-15:0)

C36H67O9P (674.4522462)


   

PA(i-15:0/18:1(9Z)-O(12,13))

PA(i-15:0/18:1(9Z)-O(12,13))

C36H67O9P (674.4522462)


   

PA(18:1(9Z)-O(12,13)/i-15:0)

PA(18:1(9Z)-O(12,13)/i-15:0)

C36H67O9P (674.4522462)


   

[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropyl] pentadecanoate

[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropyl] pentadecanoate

C36H67O9P (674.4522462)


   

[(2R)-1-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] pentadecanoate

[(2R)-1-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] pentadecanoate

C36H67O9P (674.4522462)


   

DG(18:0/PGJ2/0:0)

DG(18:0/PGJ2/0:0)

C41H70O7 (674.512127)


   

DG(PGJ2/18:0/0:0)

DG(PGJ2/18:0/0:0)

C41H70O7 (674.512127)


   

DG(18:0/0:0/PGJ2)

DG(18:0/0:0/PGJ2)

C41H70O7 (674.512127)


   

DG(PGJ2/0:0/18:0)

DG(PGJ2/0:0/18:0)

C41H70O7 (674.512127)


   

DG(i-18:0/PGJ2/0:0)

DG(i-18:0/PGJ2/0:0)

C41H70O7 (674.512127)


   

DG(PGJ2/i-18:0/0:0)

DG(PGJ2/i-18:0/0:0)

C41H70O7 (674.512127)


   

DG(i-18:0/0:0/PGJ2)

DG(i-18:0/0:0/PGJ2)

C41H70O7 (674.512127)


   

DG(PGJ2/0:0/i-18:0)

DG(PGJ2/0:0/i-18:0)

C41H70O7 (674.512127)


   

(2R)-3-(palmitoyloxy)-2-(stearoyloxy)propyl phosphate

(2R)-3-(palmitoyloxy)-2-(stearoyloxy)propyl phosphate

C37H71O8P-2 (674.4886296)


   

1-O-(alpha-D-glucosyl)-29-keto-(3R,31R)-dotriacontanetriol

1-O-(alpha-D-glucosyl)-29-keto-(3R,31R)-dotriacontanetriol

C38H74O9 (674.5332554)


An alpha-D-glucoside that is 29-keto-(3R,31R)-dotriacontanetriol having a single alpha-D-glucosyl residue attached at position 1.

   

1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycerol 3-phosphate

1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycerol 3-phosphate

C37H71O8P (674.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

C37H71O8P (674.4886296)


   

[2-Tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate

[2-Tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate

C37H70O10 (674.496872)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

ST 27:1;O;Hex;FA 8:0

ST 27:1;O;Hex;FA 8:0

C41H70O7 (674.512127)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C45H70O4 (674.527382)


   

[1-hydroxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-hydroxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C45H70O4 (674.527382)


   

[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C45H70O4 (674.527382)


   

[1-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C45H70O4 (674.527382)


   

[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-hydroxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-hydroxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C45H70O4 (674.527382)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C45H70O4 (674.527382)


   

[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H70O4 (674.527382)


   

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H70O4 (674.527382)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C45H70O4 (674.527382)


   

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C45H70O4 (674.527382)


   

[1-hydroxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-hydroxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C45H70O4 (674.527382)


   

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C45H70O4 (674.527382)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] dodecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] dodecanoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C36H67O9P (674.4522462)


   

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-tridec-9-enoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] decanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] decanoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] tetradecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] tetradecanoate

C36H67O9P (674.4522462)


   

1,2-Dimyristelaidoyl-sn-glycero-3-phosphocholine

1,2-Dimyristelaidoyl-sn-glycero-3-phosphocholine

C36H69NO8P+ (674.4760544)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] henicosanoate

[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] henicosanoate

C37H70O10 (674.496872)


   

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentacosanoate

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentacosanoate

C37H70O10 (674.496872)


   

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] docosanoate

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] docosanoate

C37H70O10 (674.496872)


   

[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] icosanoate

[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] icosanoate

C37H70O10 (674.496872)


   

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tricosanoate

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tricosanoate

C37H70O10 (674.496872)


   

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexacosanoate

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexacosanoate

C37H70O10 (674.496872)


   

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tetracosanoate

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tetracosanoate

C37H70O10 (674.496872)


   

[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate

[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate

C37H70O10 (674.496872)


   

[1-Dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

[1-Dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

C37H70O10 (674.496872)


   

[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate

[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate

C37H70O10 (674.496872)


   

[1-[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

[1-[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

C37H70O10 (674.496872)


   

[1-Tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

[1-Tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

C37H70O10 (674.496872)


   

3,4,5-Trihydroxy-6-(3-tetradecanoyloxy-2-tridecanoyloxypropoxy)oxane-2-carboxylic acid

3,4,5-Trihydroxy-6-(3-tetradecanoyloxy-2-tridecanoyloxypropoxy)oxane-2-carboxylic acid

C36H66O11 (674.4604886)


   

6-(2-Dodecanoyloxy-3-pentadecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

6-(2-Dodecanoyloxy-3-pentadecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H66O11 (674.4604886)


   

(1-octanoyloxy-3-phosphonooxypropan-2-yl) (Z)-hexacos-15-enoate

(1-octanoyloxy-3-phosphonooxypropan-2-yl) (Z)-hexacos-15-enoate

C37H71O8P (674.4886296)


   

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate

C37H71O8P (674.4886296)


   

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-henicos-11-enoate

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-henicos-11-enoate

C37H71O8P (674.4886296)


   

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-icos-11-enoate

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-icos-11-enoate

C37H71O8P (674.4886296)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C37H71O8P (674.4886296)


   

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (Z)-tetracos-13-enoate

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (Z)-tetracos-13-enoate

C37H71O8P (674.4886296)


   

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate

C37H71O8P (674.4886296)


   

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] henicosanoate

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] henicosanoate

C37H71O8P (674.4886296)


   

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C37H71O8P (674.4886296)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] heptadecanoate

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] heptadecanoate

C37H71O8P (674.4886296)


   

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] icosanoate

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] icosanoate

C37H71O8P (674.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

C37H71O8P (674.4886296)


   

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C43H62O6 (674.4546152)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C43H62O6 (674.4546152)


   

[(E)-3,4-dihydroxy-2-[[(Z)-tridec-9-enoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3,4-dihydroxy-2-[[(Z)-tridec-9-enoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C36H71N2O7P (674.4998625999999)


   

[(8E,12E)-3,4-dihydroxy-2-(tridecanoylamino)octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E)-3,4-dihydroxy-2-(tridecanoylamino)octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C36H71N2O7P (674.4998625999999)


   

{2,3-Bis[(9Z)-tetradec-9-enoyloxy]propoxy}[2-(trimethylazaniumyl)ethoxy]phosphinic acid

{2,3-Bis[(9Z)-tetradec-9-enoyloxy]propoxy}[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C36H69NO8P+ (674.4760544)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] heptadecanoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] heptadecanoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[2-decanoyloxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-decanoyloxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tetradecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tetradecanoyloxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] heptadecanoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] heptadecanoate

C37H70O10 (674.496872)


   

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

C37H71O8P (674.4886296)


   

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate

C37H70O10 (674.496872)


   

2-[[(2R)-3-decanoyloxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

C44H66O5 (674.4909986)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

C37H71O8P (674.4886296)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-icos-13-enoate

C37H71O8P (674.4886296)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-13-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-13-enoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[2-dodecanoyloxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-dodecanoyloxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate

C37H70O10 (674.496872)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

C37H71O8P (674.4886296)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C37H71O8P (674.4886296)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-icos-13-enoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-icos-13-enoate

C37H71O8P (674.4886296)


   

[(2S)-2-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate

[(2S)-2-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate

C37H70O10 (674.496872)


   

[1-carboxy-3-[3-dodecanoyloxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-dodecanoyloxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

2-[[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate

C37H71O8P (674.4886296)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

C37H71O8P (674.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-icos-11-enoate

C37H71O8P (674.4886296)


   

2-[[(2R)-3-decanoyloxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] icosanoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] icosanoate

C37H71O8P (674.4886296)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

C37H70O10 (674.496872)


   

2-[[(2S)-2-decanoyloxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-decanoyloxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

C37H71O8P (674.4886296)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

C37H71O8P (674.4886296)


   

2-[[3-dodecanoyloxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-dodecanoyloxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C37H71O8P (674.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

C37H71O8P (674.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

C37H71O8P (674.4886296)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C37H71O8P (674.4886296)


   

2-[[(2S)-2-decanoyloxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-decanoyloxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C37H71O8P (674.4886296)


   

2-[[(2R)-3-decanoyloxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

C37H71O8P (674.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] octadec-17-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] octadec-17-enoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoate

C44H66O5 (674.4909986)


   

[1-carboxy-3-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] heptadecanoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] heptadecanoate

C37H71O8P (674.4886296)


   

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (E)-docos-13-enoate

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (E)-docos-13-enoate

C37H71O8P (674.4886296)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

C37H70O10 (674.496872)


   

[1-carboxy-3-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-decanoyloxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-decanoyloxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

2-[[(2S)-2-decanoyloxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-decanoyloxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[[(2S)-2-decanoyloxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-decanoyloxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] pentadecanoate

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] pentadecanoate

C37H70O10 (674.496872)


   

2-[[(2R)-3-decanoyloxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate

C37H70O10 (674.496872)


   

[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-tetradecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-tetradecanoyloxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-icos-11-enoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-icos-11-enoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] icosanoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] icosanoate

C37H71O8P (674.4886296)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] octadec-17-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] octadec-17-enoate

C37H71O8P (674.4886296)


   

2-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

C37H70O10 (674.496872)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

C37H71O8P (674.4886296)


   

2-[[3-butanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-butanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octanoyloxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[3-dodecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-dodecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

2-[[3-[(Z)-hexadec-9-enoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(Z)-hexadec-9-enoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

2-[[3-dodecanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-dodecanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[[3-decanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[3-decanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-decanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

2-[[3-acetyloxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-acetyloxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[carboxy-[2-hydroxy-3-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-hydroxy-3-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

2-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-undecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-undecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[[2-decanoyloxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-decanoyloxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[hydroxy-[3-[(Z)-pentadec-9-enoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(Z)-pentadec-9-enoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[[3-decoxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decoxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-nonoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-nonoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[[2-dodecanoyloxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-dodecanoyloxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-tridecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-tridecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[[3-dodecoxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-dodecoxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[hydroxy-[2-pentanoyloxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-pentanoyloxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   

2-[[3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H73NO7P+ (674.5124377999998)


   
   

1-oleoyl-2-palmitoyl-sn-glycero-3-phosphate

1-oleoyl-2-palmitoyl-sn-glycero-3-phosphate

C37H71O8P (674.4886296)


A 1-acyl-2-hexadecanoyl-sn-glycero-3-phosphate in which the 1-acyl group is specified as oleoyl (9Z-octadecaenoyl).

   

1-octadecanoyl-2-(9Z)-hexadecenoyl-sn-glycero-3-phosphate

1-octadecanoyl-2-(9Z)-hexadecenoyl-sn-glycero-3-phosphate

C37H71O8P (674.4886296)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as octadecanoyl and (9Z)-hexadecenoyl respectively.

   

1-eicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

1-eicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-(11Z-eicosenoyl)-2-tetradecanoyl-glycero-3-phosphate

1-(11Z-eicosenoyl)-2-tetradecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

C37H71O8P (674.4886296)


   

1-tetradecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

1-tetradecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-dodecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

1-dodecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphate(2-)

1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphate(2-)

C37H71O8P (674.4886296)


A 1-acyl-2-octadecanoyl-sn-glycero-3-phosphate(2-) in which the 1-acyl group is specified as hexadecanoyl (palmitoyl); major species at pH 7.3.

   

1-octadecyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

1-octadecyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C38H75O7P (674.525013)


   

1-(9Z-pentadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

1-(9Z-pentadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-(9Z-heptadecenoyl)-2-heptadecanoyl-glycero-3-phosphate

1-(9Z-heptadecenoyl)-2-heptadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-nonadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

1-nonadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-(9Z-tetradecenoyl)-2-eicosanoyl-glycero-3-phosphate

1-(9Z-tetradecenoyl)-2-eicosanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-pentadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

1-pentadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-(9Z-hexadecenoyl)-2-octadecanoyl-glycero-3-phosphate

1-(9Z-hexadecenoyl)-2-octadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-heptadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

1-heptadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-(9Z-nonadecenoyl)-2-pentadecanoyl-glycero-3-phosphate

1-(9Z-nonadecenoyl)-2-pentadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-(11Z-docosenoyl)-2-dodecanoyl-glycero-3-phosphate

1-(11Z-docosenoyl)-2-dodecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) octadec-9-enoate

(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) octadec-9-enoate

C37H71O8P (674.4886296)


   

phosphatidic acid (16:0/18:1)

phosphatidic acid (16:0/18:1)

C37H71O8P (674.4886296)


A phosphatidic acid in which one acyl group has 16 carbons and is fully saturated while the other has 18 carbons and 1 double bond.

   

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphate

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphate

C37H71O8P (674.4886296)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the 1- and 2-acyl groups are palmitoyl and oleoyl respectively.

   

BisMePA(32:1)

BisMePA(16:0_16:1)

C37H71O8P (674.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGMG(29:0)

MGMG(29:0)

C38H74O9 (674.5332554)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PMe(33:1)

PMe(17:1_16:0)

C37H71O8P (674.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG(28:0)

MGDG(14:0_14:0)

C37H70O10 (674.496872)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PEt(32:1)

PEt(16:0_16:1)

C37H71O8P (674.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

FAHFA 19:2/O-26:7

FAHFA 19:2/O-26:7

C45H70O4 (674.527382)


   

FAHFA 19:3/O-26:6

FAHFA 19:3/O-26:6

C45H70O4 (674.527382)


   

FAHFA 19:4/O-26:5

FAHFA 19:4/O-26:5

C45H70O4 (674.527382)


   

FAHFA 19:5/O-26:4

FAHFA 19:5/O-26:4

C45H70O4 (674.527382)


   

FAHFA 19:6/O-26:3

FAHFA 19:6/O-26:3

C45H70O4 (674.527382)


   

FAHFA 20:2/O-25:7

FAHFA 20:2/O-25:7

C45H70O4 (674.527382)


   

FAHFA 20:3/O-25:6

FAHFA 20:3/O-25:6

C45H70O4 (674.527382)


   

FAHFA 20:4/O-25:5

FAHFA 20:4/O-25:5

C45H70O4 (674.527382)


   

FAHFA 20:5/O-25:4

FAHFA 20:5/O-25:4

C45H70O4 (674.527382)


   

FAHFA 20:6/O-25:3

FAHFA 20:6/O-25:3

C45H70O4 (674.527382)


   

FAHFA 21:2/O-24:7

FAHFA 21:2/O-24:7

C45H70O4 (674.527382)


   

FAHFA 21:3/O-24:6

FAHFA 21:3/O-24:6

C45H70O4 (674.527382)


   

FAHFA 21:4/O-24:5

FAHFA 21:4/O-24:5

C45H70O4 (674.527382)


   

FAHFA 21:5/O-24:4

FAHFA 21:5/O-24:4

C45H70O4 (674.527382)


   

FAHFA 21:6/O-24:3

FAHFA 21:6/O-24:3

C45H70O4 (674.527382)


   

FAHFA 21:7/O-24:2

FAHFA 21:7/O-24:2

C45H70O4 (674.527382)


   

FAHFA 22:2/O-23:7

FAHFA 22:2/O-23:7

C45H70O4 (674.527382)


   

FAHFA 22:3/O-23:6

FAHFA 22:3/O-23:6

C45H70O4 (674.527382)


   

FAHFA 22:4/O-23:5

FAHFA 22:4/O-23:5

C45H70O4 (674.527382)


   

FAHFA 22:5/O-23:4

FAHFA 22:5/O-23:4

C45H70O4 (674.527382)


   

FAHFA 22:6/O-23:3

FAHFA 22:6/O-23:3

C45H70O4 (674.527382)


   

FAHFA 22:7/O-23:2

FAHFA 22:7/O-23:2

C45H70O4 (674.527382)


   

FAHFA 23:2/O-22:7

FAHFA 23:2/O-22:7

C45H70O4 (674.527382)


   

FAHFA 23:3/O-22:6

FAHFA 23:3/O-22:6

C45H70O4 (674.527382)


   

FAHFA 23:4/O-22:5

FAHFA 23:4/O-22:5

C45H70O4 (674.527382)


   

FAHFA 23:5/O-22:4

FAHFA 23:5/O-22:4

C45H70O4 (674.527382)


   

FAHFA 23:6/O-22:3

FAHFA 23:6/O-22:3

C45H70O4 (674.527382)


   

FAHFA 23:7/O-22:2

FAHFA 23:7/O-22:2

C45H70O4 (674.527382)


   

FAHFA 24:2/O-21:7

FAHFA 24:2/O-21:7

C45H70O4 (674.527382)


   

FAHFA 24:3/O-21:6

FAHFA 24:3/O-21:6

C45H70O4 (674.527382)


   

FAHFA 24:4/O-21:5

FAHFA 24:4/O-21:5

C45H70O4 (674.527382)


   

FAHFA 24:5/O-21:4

FAHFA 24:5/O-21:4

C45H70O4 (674.527382)


   

FAHFA 24:6/O-21:3

FAHFA 24:6/O-21:3

C45H70O4 (674.527382)


   

FAHFA 24:7/O-21:2

FAHFA 24:7/O-21:2

C45H70O4 (674.527382)


   

FAHFA 25:3/O-20:6

FAHFA 25:3/O-20:6

C45H70O4 (674.527382)


   

FAHFA 25:4/O-20:5

FAHFA 25:4/O-20:5

C45H70O4 (674.527382)


   

FAHFA 25:5/O-20:4

FAHFA 25:5/O-20:4

C45H70O4 (674.527382)


   

FAHFA 25:6/O-20:3

FAHFA 25:6/O-20:3

C45H70O4 (674.527382)


   

FAHFA 25:7/O-20:2

FAHFA 25:7/O-20:2

C45H70O4 (674.527382)


   

FAHFA 26:3/O-19:6

FAHFA 26:3/O-19:6

C45H70O4 (674.527382)


   

FAHFA 26:4/O-19:5

FAHFA 26:4/O-19:5

C45H70O4 (674.527382)


   

FAHFA 26:5/O-19:4

FAHFA 26:5/O-19:4

C45H70O4 (674.527382)


   

FAHFA 26:6/O-19:3

FAHFA 26:6/O-19:3

C45H70O4 (674.527382)


   

FAHFA 26:7/O-19:2

FAHFA 26:7/O-19:2

C45H70O4 (674.527382)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PA P-14:0/21:0 or PA O-14:1/21:0

PA P-14:0/21:0 or PA O-14:1/21:0

C38H75O7P (674.525013)


   
   
   

PA P-16:0/19:0 or PA O-16:1/19:0

PA P-16:0/19:0 or PA O-16:1/19:0

C38H75O7P (674.525013)


   
   

PA P-18:0/17:0 or PA O-18:1/17:0

PA P-18:0/17:0 or PA O-18:1/17:0

C38H75O7P (674.525013)


   
   

PA P-20:0/15:0 or PA O-20:1/15:0

PA P-20:0/15:0 or PA O-20:1/15:0

C38H75O7P (674.525013)


   
   

PA P-22:0/13:0 or PA O-22:1/13:0

PA P-22:0/13:0 or PA O-22:1/13:0

C38H75O7P (674.525013)


   
   

PA P-35:0 or PA O-35:1

PA P-35:0 or PA O-35:1

C38H75O7P (674.525013)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PG P-16:1/14:1 or PG O-16:2/14:1

PG P-16:1/14:1 or PG O-16:2/14:1

C36H67O9P (674.4522462)


   
   

PG P-30:2 or PG O-30:3

PG P-30:2 or PG O-30:3

C36H67O9P (674.4522462)