Exact Mass: 674.4522462

Exact Mass Matches: 674.4522462

Found 418 metabolites which its exact mass value is equals to given mass value 674.4522462, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

NAc-L4Y-amide

N-Acetyl-leu-leu-leu-leu-tyr-amide

C35H58N6O7 (674.4366758000001)


   

PA 34:1

9-Octadecenoic acid (Z)-, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, (R)-

C37H71O8P (674.4886296)


   

PA(16:0/18:1(9Z))

9-Octadecenoic acid (Z)-, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, (R)-

C37H71O8P (674.4886296)


PA(16:0/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-coA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776). [HMDB] PA(16:0/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-CoA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776).

   

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

C37H71O8P (674.4886296)


9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester is classified as a Natural Food Constituent (code WA) in the DF Classified as a Natural Food Constituent (code WA) in the DFC

   

PA(16:0/18:1(11Z))

[(2R)-3-(hexadecanoyloxy)-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C37H71O8P (674.4886296)


PA(16:0/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:1(11Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-coA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776). [HMDB] PA(16:0/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:1(11Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-CoA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776).

   

PA(18:0/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-(octadecanoyloxy)propoxy]phosphonic acid

C37H71O8P (674.4886296)


PA(18:0/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/16:1(9Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(11Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C37H71O8P (674.4886296)


PA(18:1(11Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/16:0), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(9Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C37H71O8P (674.4886296)


PA(18:1(9Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/16:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/14:1(9Z))

[(2R)-3-(icosanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H71O8P (674.4886296)


PA(20:0/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/14:1(9Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:1(11Z)/14:0)

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H71O8P (674.4886296)


PA(20:1(11Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/14:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(12:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(dodecanoyloxy)propoxy]phosphonic acid

C35H63O10P (674.4158628)


PA(12:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/12:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(dodecanoyloxy)propoxy]phosphonic acid

C35H63O10P (674.4158628)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/12:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/18:1(12Z)-O(9S,10R))

[(2R)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-3-(pentadecanoyloxy)propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(15:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/15:0)

[(2R)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-2-(pentadecanoyloxy)propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(18:1(12Z)-O(9S,10R)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/15:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/18:1(9Z)-O(12,13))

[(2R)-3-(pentadecanoyloxy)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(15:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/15:0)

[(2R)-2-(pentadecanoyloxy)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(18:1(9Z)-O(12,13)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/15:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/18:1(12Z)-O(9S,10R))

[(2R)-3-[(12-methyltetradecanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(a-15:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/a-15:0)

[(2R)-2-[(12-methyltetradecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(18:1(12Z)-O(9S,10R)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/a-15:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/18:1(9Z)-O(12,13))

[(2R)-3-[(12-methyltetradecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(a-15:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/a-15:0)

[(2R)-2-[(12-methyltetradecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(18:1(9Z)-O(12,13)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/a-15:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H63O10P (674.4158628)


PA(i-12:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-12:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H63O10P (674.4158628)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-12:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/18:1(12Z)-O(9S,10R))

[(2R)-3-[(13-methyltetradecanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(i-15:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/i-15:0)

[(2R)-2-[(13-methyltetradecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(18:1(12Z)-O(9S,10R)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/i-15:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/18:1(9Z)-O(12,13))

[(2R)-3-[(13-methyltetradecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(i-15:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/i-15:0)

[(2R)-2-[(13-methyltetradecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C36H67O9P (674.4522462)


PA(18:1(9Z)-O(12,13)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/i-15:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   

21,24-epoxy-3alpha,7alpha,21,23-tetraacetoxy-25-hydroxy-4alpha,4beta,8beta-trimethyl-14,18-cyclo-5alpha,13alpha,14alpha,17alpha-cholestane

21,24-epoxy-3alpha,7alpha,21,23-tetraacetoxy-25-hydroxy-4alpha,4beta,8beta-trimethyl-14,18-cyclo-5alpha,13alpha,14alpha,17alpha-cholestane

C38H58O10 (674.4029768)


   
   

3,21,22,28-Tetra-Ac -(3beta,16alpha,21beta,22alpha)-12-Oleanene-3,16,21,22,23,28-hexol|3,21,22,28-Tetra-Ac-12-Oleanene-3,16,21,22,23,28-hexol

3,21,22,28-Tetra-Ac -(3beta,16alpha,21beta,22alpha)-12-Oleanene-3,16,21,22,23,28-hexol|3,21,22,28-Tetra-Ac-12-Oleanene-3,16,21,22,23,28-hexol

C38H58O10 (674.4029768)


   
   
   

3-acetyl-2-(3-hydroxy-3-methyl)glutarylanhydrocrustulinol

3-acetyl-2-(3-hydroxy-3-methyl)glutarylanhydrocrustulinol

C38H58O10 (674.4029768)


   

3,23-O-hydroxyethylidene-3beta,23-dihydroxyurs-12,19(20)-dien-28-oic acid 28-beta-D-glucopyranosyl ester|oblonganoside A

3,23-O-hydroxyethylidene-3beta,23-dihydroxyurs-12,19(20)-dien-28-oic acid 28-beta-D-glucopyranosyl ester|oblonganoside A

C38H58O10 (674.4029768)


   
   

2beta,23-Dihydroxy-3-O-(4-deoxy-beta-L-threo-hex-4-enopyranosiduronic acid)-olean-12-en-28-oic acid

2beta,23-Dihydroxy-3-O-(4-deoxy-beta-L-threo-hex-4-enopyranosiduronic acid)-olean-12-en-28-oic acid

C38H58O10 (674.4029768)


   

21,22-Bis(2-methylbutanoyl) -(3beta,16alpha,21beta,22alpha)-12-Oleanene-3,16,21,22,23,28-hexol|21,22-Bis(2-methylbutanoyl)---12-Oleanene-3,16,21,22,23,28-hexol

21,22-Bis(2-methylbutanoyl) -(3beta,16alpha,21beta,22alpha)-12-Oleanene-3,16,21,22,23,28-hexol|21,22-Bis(2-methylbutanoyl)---12-Oleanene-3,16,21,22,23,28-hexol

C40H66O8 (674.4757436000001)


   

[1-hexadecanoyloxy-3-phosphonooxypropan-2-yl]octadec-9-enoate

[1-hexadecanoyloxy-3-phosphonooxypropan-2-yl]octadec-9-enoate

C37H71O8P (674.4886296)


   

PE-Cer(d14:1(4E)/20:1(11Z)(2OH))

N-(2-hydroxy-11Z-eicosenoyl)-tetradecasphing-4-enine-1-phosphoethanolamine

C36H71N2O7P (674.4998625999999)


   

PE-Cer(d14:2(4E,6E)/20:0(2OH))

N-(2-hydroxy-eicosanoyl)-4E,6E-tetradecasphingadienine-1-phosphoethanolamine

C36H71N2O7P (674.4998625999999)


   

PE-Cer(d16:1(4E)/18:1(9Z)(2OH))

N-(2-hydroxy-9Z-octadecenoyl)-hexadecasphing-4-enine-1-phosphoethanolamine

C36H71N2O7P (674.4998625999999)


   

PE-Cer(d16:2(4E,6E)/18:0(2OH))

N-(2-hydroxy-octadecanoyl)-4E,6E-hexadecasphingadienine-1-phosphoethanolamine

C36H71N2O7P (674.4998625999999)


   

PA(16:0/18:1)

9-Octadecenoic acid (Z)-, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, (R)-

C37H71O8P (674.4886296)


   

PA(18:1/16:0)[U]

9-Octadecenoic acid (Z)-, 2-[(1-oxohexadecyl)oxy]-3-(phosphonooxy)propyl ester

C37H71O8P (674.4886296)


   

PA(12:0/22:1(11Z))

1-dodecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(14:0/20:1(11Z))

1-tetradecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(14:1(9Z)/20:0)

1-(9Z-tetradecenoyl)-2-eicosanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(15:0/19:1(9Z))

1-pentadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(15:1(9Z)/19:0)

1-(9Z-pentadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(16:1(9Z)/18:0)

1-(9Z-hexadecenoyl)-2-octadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(17:0/17:1(9Z))

1-heptadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(17:1(9Z)/17:0)

1-(9Z-heptadecenoyl)-2-heptadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(19:0/15:1(9Z))

1-nonadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(19:1(9Z)/15:0)

1-(9Z-nonadecenoyl)-2-pentadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(20:0/14:1(9Z))

1-eicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(20:1(11Z)/14:0)

1-(11Z-eicosenoyl)-2-tetradecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(22:1(11Z)/12:0)

1-(11Z-docosenoyl)-2-dodecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(18:0/16:1(9Z))

1-octadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

PA(18:1(9Z)/16:0)

1-(9Z-octadecenoyl)-2-hexadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

[2-(hexadecanoyloxy)-3-[(9E)-octadec-9-enoyloxy]propoxy]phosphonic acid

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

C37H71O8P (674.4886296)


   

CerPE 34:2;O3

N-(2-hydroxy-octadecanoyl)-4E,6E-hexadecasphingadienine-1-phosphoethanolamine

C36H71N2O7P (674.4998625999999)


   

19-Hydroxyfucoxanthin

(3S,5R,6S,3S,5R,6S)-5,6-Epoxy-3-ethanoyloxy-3,5,19-trihydroxy-6,7-didehydro-5,6,7,8,5,6-hexahydro-beta,beta-caroten-8-one

C42H58O7 (674.4182318000001)


   

2,2-[(3,3-dimethyl[1,1-biphenyl]-4,4-diyl)bis(azo)]bis[4-nonylphenol]

2,2-[(3,3-dimethyl[1,1-biphenyl]-4,4-diyl)bis(azo)]bis[4-nonylphenol]

C44H58N4O2 (674.4559528)


   

1-Stearoyl-2-palmitoyl-sn-glycerol 3-phosphate

1-Stearoyl-2-palmitoyl-sn-glycerol 3-phosphate

C37H71O8P-2 (674.4886296)


   

Dimyristoleoylphosphatidylcholine

Dimyristoleoylphosphatidylcholine

C36H69NO8P+ (674.4760544)


   

PA(15:0/18:1(12Z)-O(9S,10R))

PA(15:0/18:1(12Z)-O(9S,10R))

C36H67O9P (674.4522462)


   

PA(18:1(12Z)-O(9S,10R)/15:0)

PA(18:1(12Z)-O(9S,10R)/15:0)

C36H67O9P (674.4522462)


   

PA(a-15:0/18:1(12Z)-O(9S,10R))

PA(a-15:0/18:1(12Z)-O(9S,10R))

C36H67O9P (674.4522462)


   

PA(18:1(12Z)-O(9S,10R)/a-15:0)

PA(18:1(12Z)-O(9S,10R)/a-15:0)

C36H67O9P (674.4522462)


   

PA(a-15:0/18:1(9Z)-O(12,13))

PA(a-15:0/18:1(9Z)-O(12,13))

C36H67O9P (674.4522462)


   

PA(18:1(9Z)-O(12,13)/a-15:0)

PA(18:1(9Z)-O(12,13)/a-15:0)

C36H67O9P (674.4522462)


   

PA(i-15:0/18:1(12Z)-O(9S,10R))

PA(i-15:0/18:1(12Z)-O(9S,10R))

C36H67O9P (674.4522462)


   

PA(18:1(12Z)-O(9S,10R)/i-15:0)

PA(18:1(12Z)-O(9S,10R)/i-15:0)

C36H67O9P (674.4522462)


   

PA(i-15:0/18:1(9Z)-O(12,13))

PA(i-15:0/18:1(9Z)-O(12,13))

C36H67O9P (674.4522462)


   

PA(18:1(9Z)-O(12,13)/i-15:0)

PA(18:1(9Z)-O(12,13)/i-15:0)

C36H67O9P (674.4522462)


   

[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropyl] pentadecanoate

[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropyl] pentadecanoate

C36H67O9P (674.4522462)


   

[(2R)-1-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] pentadecanoate

[(2R)-1-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] pentadecanoate

C36H67O9P (674.4522462)


   

PA(12:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(12:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C35H63O10P (674.4158628)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/12:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/12:0)

C35H63O10P (674.4158628)


   

PA(i-12:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(i-12:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C35H63O10P (674.4158628)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-12:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-12:0)

C35H63O10P (674.4158628)


   

Oblonganoside A

Oblonganoside A

C38H58O10 (674.4029768)


A triterpenoid saponin thatr is the beta-D-glucopyranosyl ester of 3,23-O-hydroxyethylidene-3beta,23-dihydroxyurs-12,19(20)-dien-28-oic acid. Isolated from Ilex oblonga, it exhibits activity against TMV.

   

(2R)-3-(palmitoyloxy)-2-(stearoyloxy)propyl phosphate

(2R)-3-(palmitoyloxy)-2-(stearoyloxy)propyl phosphate

C37H71O8P-2 (674.4886296)


   

Veraguamide H, (rel)-

Veraguamide H, (rel)-

C36H58N4O8 (674.4254428)


A natural product found in Oscillatoria margaritifera PAC-17-FEB-10-2.

   

N-Acetylleucylleucylleucylleucyltyrosinamide

N-Acetylleucylleucylleucylleucyltyrosinamide

C35H58N6O7 (674.4366758000001)


   

2-[[(2R)-2-[(E)-5,8-dioxooct-6-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-5,8-dioxooct-6-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C34H61NO10P+ (674.4032876)


   

1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycerol 3-phosphate

1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycerol 3-phosphate

C37H71O8P (674.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

C37H71O8P (674.4886296)


   

[2-Tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate

[2-Tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate

C37H70O10 (674.496872)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] dodecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] dodecanoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C36H67O9P (674.4522462)


   

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-tridec-9-enoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] decanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] decanoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C36H67O9P (674.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] tetradecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] tetradecanoate

C36H67O9P (674.4522462)


   

1,2-Dimyristelaidoyl-sn-glycero-3-phosphocholine

1,2-Dimyristelaidoyl-sn-glycero-3-phosphocholine

C36H69NO8P+ (674.4760544)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] henicosanoate

[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] henicosanoate

C37H70O10 (674.496872)


   

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentacosanoate

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentacosanoate

C37H70O10 (674.496872)


   

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] docosanoate

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] docosanoate

C37H70O10 (674.496872)


   

[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] icosanoate

[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] icosanoate

C37H70O10 (674.496872)


   

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tricosanoate

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tricosanoate

C37H70O10 (674.496872)


   

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexacosanoate

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexacosanoate

C37H70O10 (674.496872)


   

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tetracosanoate

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tetracosanoate

C37H70O10 (674.496872)


   

[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate

[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate

C37H70O10 (674.496872)


   

[1-Dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

[1-Dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

C37H70O10 (674.496872)


   

[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate

[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate

C37H70O10 (674.496872)


   

[1-[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

[1-[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

C37H70O10 (674.496872)


   

[1-Tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

[1-Tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

C37H70O10 (674.496872)


   

3,4,5-Trihydroxy-6-(3-tetradecanoyloxy-2-tridecanoyloxypropoxy)oxane-2-carboxylic acid

3,4,5-Trihydroxy-6-(3-tetradecanoyloxy-2-tridecanoyloxypropoxy)oxane-2-carboxylic acid

C36H66O11 (674.4604886)


   

6-(2-Dodecanoyloxy-3-pentadecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

6-(2-Dodecanoyloxy-3-pentadecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H66O11 (674.4604886)


   

[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C38H63N2O6P (674.4423508)


   

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C35H63O10P (674.4158628)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C35H63O10P (674.4158628)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C35H63O10P (674.4158628)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C35H63O10P (674.4158628)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C35H63O10P (674.4158628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C35H63O10P (674.4158628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C35H63O10P (674.4158628)


   

(1-octanoyloxy-3-phosphonooxypropan-2-yl) (Z)-hexacos-15-enoate

(1-octanoyloxy-3-phosphonooxypropan-2-yl) (Z)-hexacos-15-enoate

C37H71O8P (674.4886296)


   

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate

C37H71O8P (674.4886296)


   

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-henicos-11-enoate

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-henicos-11-enoate

C37H71O8P (674.4886296)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C35H63O10P (674.4158628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C35H63O10P (674.4158628)


   

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-icos-11-enoate

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-icos-11-enoate

C37H71O8P (674.4886296)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C37H71O8P (674.4886296)


   

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (Z)-tetracos-13-enoate

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (Z)-tetracos-13-enoate

C37H71O8P (674.4886296)


   

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate

C37H71O8P (674.4886296)


   

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] henicosanoate

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] henicosanoate

C37H71O8P (674.4886296)


   

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C37H71O8P (674.4886296)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] heptadecanoate

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] heptadecanoate

C37H71O8P (674.4886296)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C35H63O10P (674.4158628)


   

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] icosanoate

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] icosanoate

C37H71O8P (674.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

C37H71O8P (674.4886296)


   

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C43H62O6 (674.4546152)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C43H62O6 (674.4546152)


   

[(E)-3,4-dihydroxy-2-[[(Z)-tridec-9-enoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3,4-dihydroxy-2-[[(Z)-tridec-9-enoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C36H71N2O7P (674.4998625999999)


   

[(8E,12E)-3,4-dihydroxy-2-(tridecanoylamino)octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E)-3,4-dihydroxy-2-(tridecanoylamino)octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C36H71N2O7P (674.4998625999999)


   

{2,3-Bis[(9Z)-tetradec-9-enoyloxy]propoxy}[2-(trimethylazaniumyl)ethoxy]phosphinic acid

{2,3-Bis[(9Z)-tetradec-9-enoyloxy]propoxy}[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C36H69NO8P+ (674.4760544)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] heptadecanoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] heptadecanoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[2-decanoyloxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-decanoyloxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C35H63O10P (674.4158628)


   

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tetradecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tetradecanoyloxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] heptadecanoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] heptadecanoate

C37H70O10 (674.496872)


   

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

C37H71O8P (674.4886296)


   

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate

C37H70O10 (674.496872)


   

2-[[(2R)-3-decanoyloxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

C44H66O5 (674.4909986)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

C37H71O8P (674.4886296)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-icos-13-enoate

C37H71O8P (674.4886296)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-13-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-13-enoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[2-dodecanoyloxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-dodecanoyloxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate

C37H70O10 (674.496872)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

C37H71O8P (674.4886296)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C37H71O8P (674.4886296)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-icos-13-enoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-icos-13-enoate

C37H71O8P (674.4886296)


   

[(2S)-2-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate

[(2S)-2-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate

C37H70O10 (674.496872)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tridec-8-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tridec-8-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C35H63O10P (674.4158628)


   

[1-carboxy-3-[3-dodecanoyloxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-dodecanoyloxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

2-[[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate

C37H71O8P (674.4886296)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

C37H71O8P (674.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C35H63O10P (674.4158628)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C35H63O10P (674.4158628)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-icos-11-enoate

C37H71O8P (674.4886296)


   

2-[[(2R)-3-decanoyloxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] icosanoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] icosanoate

C37H71O8P (674.4886296)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

C37H70O10 (674.496872)


   

2-[[(2S)-2-decanoyloxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-decanoyloxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

C37H71O8P (674.4886296)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

C37H71O8P (674.4886296)


   

2-[[3-dodecanoyloxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-dodecanoyloxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C37H71O8P (674.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

C37H71O8P (674.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

C37H71O8P (674.4886296)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C37H71O8P (674.4886296)


   

2-[[(2S)-2-decanoyloxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-decanoyloxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C37H71O8P (674.4886296)


   

2-[[(2R)-3-decanoyloxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

C37H71O8P (674.4886296)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] octadec-17-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] octadec-17-enoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoate

C44H66O5 (674.4909986)


   

[1-carboxy-3-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] heptadecanoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] heptadecanoate

C37H71O8P (674.4886296)


   

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (E)-docos-13-enoate

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (E)-docos-13-enoate

C37H71O8P (674.4886296)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

C37H70O10 (674.496872)


   

[1-carboxy-3-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-decanoyloxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-decanoyloxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

2-[[(2S)-2-decanoyloxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-decanoyloxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[[(2S)-2-decanoyloxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-decanoyloxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C35H63O10P (674.4158628)


   

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] pentadecanoate

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] pentadecanoate

C37H70O10 (674.496872)


   

2-[[(2R)-3-decanoyloxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate

C37H70O10 (674.496872)


   

[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-tetradecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-tetradecanoyloxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C35H63O10P (674.4158628)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-icos-11-enoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-icos-11-enoate

C37H71O8P (674.4886296)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] icosanoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] icosanoate

C37H71O8P (674.4886296)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] octadec-17-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] octadec-17-enoate

C37H71O8P (674.4886296)


   

2-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

C37H70O10 (674.496872)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

C37H71O8P (674.4886296)


   

2-[[3-butanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-butanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octanoyloxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

2-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[3-dodecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-dodecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

2-[[3-dodecanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-dodecanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[[3-decanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

[1-carboxy-3-[3-decanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-decanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

2-[[3-acetyloxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-acetyloxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H69NO8P+ (674.4760544)


   

2-[carboxy-[2-hydroxy-3-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-hydroxy-3-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C40H68NO7+ (674.4995518000001)


   

N-Acetyl-leu-leu-leu-leu-tyr-amide

N-Acetyl-leu-leu-leu-leu-tyr-amide

C35H58N6O7 (674.4366758000001)


   
   

1-oleoyl-2-palmitoyl-sn-glycero-3-phosphate

1-oleoyl-2-palmitoyl-sn-glycero-3-phosphate

C37H71O8P (674.4886296)


A 1-acyl-2-hexadecanoyl-sn-glycero-3-phosphate in which the 1-acyl group is specified as oleoyl (9Z-octadecaenoyl).

   

1-octadecanoyl-2-(9Z)-hexadecenoyl-sn-glycero-3-phosphate

1-octadecanoyl-2-(9Z)-hexadecenoyl-sn-glycero-3-phosphate

C37H71O8P (674.4886296)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as octadecanoyl and (9Z)-hexadecenoyl respectively.

   

1-eicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

1-eicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-(11Z-eicosenoyl)-2-tetradecanoyl-glycero-3-phosphate

1-(11Z-eicosenoyl)-2-tetradecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

C37H71O8P (674.4886296)


   

1-tetradecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

1-tetradecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-dodecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

1-dodecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphate(2-)

1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphate(2-)

C37H71O8P (674.4886296)


A 1-acyl-2-octadecanoyl-sn-glycero-3-phosphate(2-) in which the 1-acyl group is specified as hexadecanoyl (palmitoyl); major species at pH 7.3.

   

1-(9Z-pentadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

1-(9Z-pentadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-(9Z-heptadecenoyl)-2-heptadecanoyl-glycero-3-phosphate

1-(9Z-heptadecenoyl)-2-heptadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-nonadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

1-nonadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-(9Z-tetradecenoyl)-2-eicosanoyl-glycero-3-phosphate

1-(9Z-tetradecenoyl)-2-eicosanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-pentadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

1-pentadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-(9Z-hexadecenoyl)-2-octadecanoyl-glycero-3-phosphate

1-(9Z-hexadecenoyl)-2-octadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-heptadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

1-heptadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-(9Z-nonadecenoyl)-2-pentadecanoyl-glycero-3-phosphate

1-(9Z-nonadecenoyl)-2-pentadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

1-(11Z-docosenoyl)-2-dodecanoyl-glycero-3-phosphate

1-(11Z-docosenoyl)-2-dodecanoyl-glycero-3-phosphate

C37H71O8P (674.4886296)


   

(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) octadec-9-enoate

(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) octadec-9-enoate

C37H71O8P (674.4886296)


   

phosphatidic acid (16:0/18:1)

phosphatidic acid (16:0/18:1)

C37H71O8P (674.4886296)


A phosphatidic acid in which one acyl group has 16 carbons and is fully saturated while the other has 18 carbons and 1 double bond.

   

phosphatidylserine 28:2(1-)

phosphatidylserine 28:2(1-)

C34H61NO10P (674.4032876)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 28 carbons in total and 2 double bonds.

   

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphate

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphate

C37H71O8P (674.4886296)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the 1- and 2-acyl groups are palmitoyl and oleoyl respectively.

   

BisMePA(32:1)

BisMePA(16:0_16:1)

C37H71O8P (674.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PMe(33:1)

PMe(17:1_16:0)

C37H71O8P (674.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG(28:0)

MGDG(14:0_14:0)

C37H70O10 (674.496872)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PEt(32:1)

PEt(16:0_16:1)

C37H71O8P (674.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PG P-16:1/14:1 or PG O-16:2/14:1

PG P-16:1/14:1 or PG O-16:2/14:1

C36H67O9P (674.4522462)


   
   
   

PG P-30:2 or PG O-30:3

PG P-30:2 or PG O-30:3

C36H67O9P (674.4522462)