Exact Mass: 668.4441

Exact Mass Matches: 668.4441

Found 431 metabolites which its exact mass value is equals to given mass value 668.4441, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PA(14:0/20:4(5Z,8Z,11Z,14Z))

[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(14:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(14:0/20:4(8Z,11Z,14Z,17Z))

[(2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(14:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(14:1(9Z)/20:3(5Z,8Z,11Z))

[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(14:1(9Z)/20:3(5Z,8Z,11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of mead acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:0/18:4(6Z,9Z,12Z,15Z))

[(2R)-3-(hexadecanoyloxy)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(16:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:1(9Z)/18:3(6Z,9Z,12Z))

[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(16:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:1(9Z)/18:3(9Z,12Z,15Z))

[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(16:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(6Z,9Z,12Z)/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(18:3(6Z,9Z,12Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/16:1(9Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(9Z,12Z,15Z)/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(18:3(9Z,12Z,15Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/16:1(9Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:4(6Z,9Z,12Z,15Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(18:4(6Z,9Z,12Z,15Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/16:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(5Z,8Z,11Z)/14:1(9Z))

[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(20:3(5Z,8Z,11Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(5Z,8Z,11Z)/14:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(5Z,8Z,11Z,14Z)/14:0)

[(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(20:4(5Z,8Z,11Z,14Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/14:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(8Z,11Z,14Z,17Z)/14:0)

[(2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(20:4(8Z,11Z,14Z,17Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/14:0), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(14:1(9Z)/20:3(8Z,11Z,14Z))

[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(14:1(9Z)/20:3(8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(8Z,11Z,14Z)/14:1(9Z))

[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H65O8P (668.4417)


PA(20:3(8Z,11Z,14Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(8Z,11Z,14Z)/14:1(9Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(13:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(13:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/13:0)

[(2R)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/13:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(13:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(13:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/13:0)

[(2R)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/13:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/13:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/13:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/13:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/13:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(13:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(13:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/13:0)

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/13:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(13:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(13:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/13:0)

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/13:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-[(10-methyldodecanoyl)oxy]-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(a-13:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/a-13:0)

[(2R)-2-[(10-methyldodecanoyl)oxy]-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/a-13:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-3-[(10-methyldodecanoyl)oxy]-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(a-13:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/a-13:0)

[(2R)-2-[(10-methyldodecanoyl)oxy]-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/a-13:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(a-13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/a-13:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/a-13:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(a-13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/a-13:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/a-13:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(a-13:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/a-13:0)

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/a-13:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(a-13:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/a-13:0)

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/a-13:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-[(11-methyldodecanoyl)oxy]-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(i-13:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-13:0)

[(2R)-2-[(11-methyldodecanoyl)oxy]-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-13:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-3-[(11-methyldodecanoyl)oxy]-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(i-13:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-13:0)

[(2R)-2-[(11-methyldodecanoyl)oxy]-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-13:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-13:0)

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-13:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-13:0)

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-13:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-13:0)

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-13:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-13:0)

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H61O9P (668.4053)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-13:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

DG(15:0/6 keto-PGF1alpha/0:0)

(2S)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-hydroxypropyl pentadecanoic acid

C38H68O9 (668.4863)


DG(15:0/6 keto-PGF1alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(15:0/6 keto-PGF1alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(6 keto-PGF1alpha/15:0/0:0)

(2S)-1-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-hydroxypropan-2-yl pentadecanoic acid

C38H68O9 (668.4863)


DG(6 keto-PGF1alpha/15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(6 keto-PGF1alpha/15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(15:0/0:0/6 keto-PGF1alpha)

(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-hydroxypropyl pentadecanoic acid

C38H68O9 (668.4863)


DG(15:0/0:0/6 keto-PGF1alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(6 keto-PGF1alpha/0:0/15:0)

(2S)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-hydroxypropyl pentadecanoic acid

C38H68O9 (668.4863)


DG(6 keto-PGF1alpha/0:0/15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(15:0/TXB2/0:0)

(2S)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-hydroxypropyl pentadecanoic acid

C38H68O9 (668.4863)


DG(15:0/TXB2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(15:0/TXB2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(TXB2/15:0/0:0)

(2S)-1-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-hydroxypropan-2-yl pentadecanoic acid

C38H68O9 (668.4863)


DG(TXB2/15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(TXB2/15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(15:0/0:0/TXB2)

(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-hydroxypropyl pentadecanoic acid

C38H68O9 (668.4863)


DG(15:0/0:0/TXB2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(TXB2/0:0/15:0)

(2S)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-hydroxypropyl pentadecanoic acid

C38H68O9 (668.4863)


DG(TXB2/0:0/15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(a-15:0/6 keto-PGF1alpha/0:0)

(2S)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-hydroxypropyl 12-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(a-15:0/6 keto-PGF1alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-15:0/6 keto-PGF1alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(6 keto-PGF1alpha/a-15:0/0:0)

(2S)-1-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-hydroxypropan-2-yl 12-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(6 keto-PGF1alpha/a-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(6 keto-PGF1alpha/a-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(a-15:0/0:0/6 keto-PGF1alpha)

(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-hydroxypropyl 12-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(a-15:0/0:0/6 keto-PGF1alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(6 keto-PGF1alpha/0:0/a-15:0)

(2S)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-hydroxypropyl 12-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(6 keto-PGF1alpha/0:0/a-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(a-15:0/TXB2/0:0)

(2S)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-hydroxypropyl 12-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(a-15:0/TXB2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-15:0/TXB2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(TXB2/a-15:0/0:0)

(2S)-1-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-hydroxypropan-2-yl 12-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(TXB2/a-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(TXB2/a-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(a-15:0/0:0/TXB2)

(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-hydroxypropyl 12-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(a-15:0/0:0/TXB2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(TXB2/0:0/a-15:0)

(2S)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-hydroxypropyl 12-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(TXB2/0:0/a-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-15:0/6 keto-PGF1alpha/0:0)

(2S)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-hydroxypropyl 13-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(i-15:0/6 keto-PGF1alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-15:0/6 keto-PGF1alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(6 keto-PGF1alpha/i-15:0/0:0)

(2S)-1-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-hydroxypropan-2-yl 13-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(6 keto-PGF1alpha/i-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(6 keto-PGF1alpha/i-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-15:0/0:0/6 keto-PGF1alpha)

(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-hydroxypropyl 13-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(i-15:0/0:0/6 keto-PGF1alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(6 keto-PGF1alpha/0:0/i-15:0)

(2S)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-hydroxypropyl 13-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(6 keto-PGF1alpha/0:0/i-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-15:0/TXB2/0:0)

(2S)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-hydroxypropyl 13-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(i-15:0/TXB2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-15:0/TXB2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(TXB2/i-15:0/0:0)

(2S)-1-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-hydroxypropan-2-yl 13-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(TXB2/i-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(TXB2/i-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-15:0/0:0/TXB2)

(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-hydroxypropyl 13-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(i-15:0/0:0/TXB2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(TXB2/0:0/i-15:0)

(2S)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-hydroxypropyl 13-methyltetradecanoic acid

C38H68O9 (668.4863)


DG(TXB2/0:0/i-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   
   

Calocedimer D

Calocedimer D

C44H60O5 (668.4441)


   
   
   

13-O-acetylphorbol-20-(9Z,12Z-octadecadienoate)|13-O-acetylphorbol-20-linoleate

13-O-acetylphorbol-20-(9Z,12Z-octadecadienoate)|13-O-acetylphorbol-20-linoleate

C40H60O8 (668.4288)


   

21beta,22alpha-di-O-angeloyl camelliagenin D|21beta,22alpha-O-diangeloyl camelliagenin D

21beta,22alpha-di-O-angeloyl camelliagenin D|21beta,22alpha-O-diangeloyl camelliagenin D

C40H60O8 (668.4288)


   

misakinolide|misakinolide-A

misakinolide|misakinolide-A

C37H64O10 (668.4499)


   

MEGxp0_000986

MEGxp0_000986

C36H60O11 (668.4135)


   

(1alpha,3beta,24zeta)-1,24,25-trihydroxy-24-(hydroxymethyl)-3-(beta-D-xylopyranosyloxy)-9,19-cyclolanostan-28-oic acid|(1alpha,3beta,24zeta)-1,3,24,25-tetrahydroxy-24-(hydroxymethyl)cycloartan-28-oic acid 3-(beta-D-xylopyranoside)|nerviside D

(1alpha,3beta,24zeta)-1,24,25-trihydroxy-24-(hydroxymethyl)-3-(beta-D-xylopyranosyloxy)-9,19-cyclolanostan-28-oic acid|(1alpha,3beta,24zeta)-1,3,24,25-tetrahydroxy-24-(hydroxymethyl)cycloartan-28-oic acid 3-(beta-D-xylopyranoside)|nerviside D

C36H60O11 (668.4135)


   

(1alpha,3beta,24R)-1,24,25-trihydroxy-3-(beta-D-glucopyranosyloxy)-9,19-cyclolanostan-28-oic acid|(1alpha,3beta,24R)-1,3,24,25-tetrahydroxycycloartan-28-oic acid 3-(beta-D-glucopyranoside)|nerviside F

(1alpha,3beta,24R)-1,24,25-trihydroxy-3-(beta-D-glucopyranosyloxy)-9,19-cyclolanostan-28-oic acid|(1alpha,3beta,24R)-1,3,24,25-tetrahydroxycycloartan-28-oic acid 3-(beta-D-glucopyranoside)|nerviside F

C36H60O11 (668.4135)


   

24(S)-25-methoxycycloartan-3beta,6alpha,16beta,24,25-pentaol 3-O-beta-D-glucopyranoside|cycloquivinoside A

24(S)-25-methoxycycloartan-3beta,6alpha,16beta,24,25-pentaol 3-O-beta-D-glucopyranoside|cycloquivinoside A

C37H64O10 (668.4499)


   

cumingianoside R

cumingianoside R

C37H64O10 (668.4499)


   

capsanthin diester

capsanthin diester

C44H60O5 (668.4441)


   

cyclindrocyclophane D|cylindrocyclophane D

cyclindrocyclophane D|cylindrocyclophane D

C40H60O8 (668.4288)


   

NCGC00380457-01!

NCGC00380457-01!

C36H60O11 (668.4135)


   
   

PA(12:0/22:4(7Z,10Z,13Z,16Z))

1-dodecanoyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA(14:1(9Z)/20:3(8Z,11Z,14Z))

1-(9Z-tetradecenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA(16:1(9Z)/18:3(6Z,9Z,12Z))

1-(9Z-hexadecenoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA(16:1(9Z)/18:3(9Z,12Z,15Z))

1-(9Z-hexadecenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA(18:3(6Z,9Z,12Z)/16:1(9Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA(18:3(9Z,12Z,15Z)/16:1(9Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA(18:4(6Z,9Z,12Z,15Z)/16:0)

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-hexadecanoyl-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA(20:3(8Z,11Z,14Z)/14:1(9Z))

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA(20:4(5Z,8Z,11Z,14Z)/14:0)

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-tetradecanoyl-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA(22:4(7Z,10Z,13Z,16Z)/12:0)

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-dodecanoyl-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA(17:2(9Z,12Z)/17:2(9Z,12Z))

1,2-di-(9Z,12Z-heptadecadienoyl)-sn-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA(16:0/18:4(6Z,9Z,12Z,15Z))

1-hexadecanoyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA(14:0/20:4(5Z,8Z,11Z,14Z))

1-tetradecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C37H65O8P (668.4417)


   

PA 34:4

1-hexadecanoyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C37H65O8P (668.4417)


   

Dinochrome A

(3S,5R,6R,3S,5R,8R)-5,8-epoxy-6,7-didehydro-5,6,5,8-tetrahydro-β,β-carotene-3,5,3-triol 3-O-acetate

C44H60O5 (668.4441)


   

Dinochrome B

(3S,5R,6R,3S,5R,8S)-5,8-epoxy-6,7-didehydro-5,6,5,8-tetrahydro-β,β-carotene-3,5,3-triol 3-O-acetate

C44H60O5 (668.4441)


   

sodium 1,4-dihexadecyl sulphonatosuccinate

sodium 1,4-dihexadecyl sulphonatosuccinate

C36H69NaO7S (668.4661)


   

(6E)-4-cyclohexyl-6-[[4-[1-[4-[(2E)-2-(3-cyclohexyl-6-oxocyclohexa-2,4-dien-1-ylidene)hydrazinyl]-3-methylphenyl]cyclohexyl]-2-methylphenyl]hydrazinylidene]cyclohexa-2,4-dien-1-one

(6E)-4-cyclohexyl-6-[[4-[1-[4-[(2E)-2-(3-cyclohexyl-6-oxocyclohexa-2,4-dien-1-ylidene)hydrazinyl]-3-methylphenyl]cyclohexyl]-2-methylphenyl]hydrazinylidene]cyclohexa-2,4-dien-1-one

C44H52N4O2 (668.409)


   

mycinamicin VI(1+)

mycinamicin VI(1+)

C35H58NO11+ (668.401)


   

1-Linoleoyl-2-palmitoleoyl-sn-glycerol 3-phosphate

1-Linoleoyl-2-palmitoleoyl-sn-glycerol 3-phosphate

C37H65O8P-2 (668.4417)


   

1-alpha-Linolenoyl-2-palmitoyl-sn-glycerol 3-phosphate

1-alpha-Linolenoyl-2-palmitoyl-sn-glycerol 3-phosphate

C37H65O8P-2 (668.4417)


   

2-[[(Z)-2-[[1-[1-[(2S)-3-azaniumyl-2-[[(2S)-2-azaniumyl-5-(diaminomethylideneazaniumyl)-3-methylpentanoyl]amino]butanoyl]piperidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]but-2-enoyl]amino]-3-hydroxypropanoate

2-[[(Z)-2-[[1-[1-[(2S)-3-azaniumyl-2-[[(2S)-2-azaniumyl-5-(diaminomethylideneazaniumyl)-3-methylpentanoyl]amino]butanoyl]piperidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]but-2-enoyl]amino]-3-hydroxypropanoate

C29H52N10O8+2 (668.3969)


   

[(2R)-2-[(E)-hexadec-4-enoyl]oxy-3-phosphonooxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[(2R)-2-[(E)-hexadec-4-enoyl]oxy-3-phosphonooxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C37H65O8P (668.4417)


   

PA(13:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(13:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C36H61O9P (668.4053)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/13:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/13:0)

C36H61O9P (668.4053)


   

PA(a-13:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(a-13:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C36H61O9P (668.4053)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/a-13:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/a-13:0)

C36H61O9P (668.4053)


   

PA(a-13:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(a-13:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C36H61O9P (668.4053)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/a-13:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/a-13:0)

C36H61O9P (668.4053)


   

PA(i-13:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(i-13:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C36H61O9P (668.4053)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-13:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-13:0)

C36H61O9P (668.4053)


   

PA(i-13:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(i-13:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C36H61O9P (668.4053)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-13:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-13:0)

C36H61O9P (668.4053)


   

PA(13:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(13:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C36H61O9P (668.4053)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/13:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/13:0)

C36H61O9P (668.4053)


   

PA(13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C36H61O9P (668.4053)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/13:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/13:0)

C36H61O9P (668.4053)


   

PA(13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C36H61O9P (668.4053)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/13:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/13:0)

C36H61O9P (668.4053)


   

PA(13:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(13:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C36H61O9P (668.4053)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/13:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/13:0)

C36H61O9P (668.4053)


   

PA(13:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(13:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C36H61O9P (668.4053)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/13:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/13:0)

C36H61O9P (668.4053)


   

PA(a-13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(a-13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C36H61O9P (668.4053)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/a-13:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/a-13:0)

C36H61O9P (668.4053)


   

PA(a-13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(a-13:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C36H61O9P (668.4053)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/a-13:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/a-13:0)

C36H61O9P (668.4053)


   

PA(a-13:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(a-13:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C36H61O9P (668.4053)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/a-13:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/a-13:0)

C36H61O9P (668.4053)


   

PA(a-13:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(a-13:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C36H61O9P (668.4053)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/a-13:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/a-13:0)

C36H61O9P (668.4053)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-13:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-13:0)

C36H61O9P (668.4053)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-13:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-13:0)

C36H61O9P (668.4053)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-13:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-13:0)

C36H61O9P (668.4053)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-13:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-13:0)

C36H61O9P (668.4053)


   

DG(15:0/6 keto-PGF1alpha/0:0)

DG(15:0/6 keto-PGF1alpha/0:0)

C38H68O9 (668.4863)


   

DG(6 keto-PGF1alpha/15:0/0:0)

DG(6 keto-PGF1alpha/15:0/0:0)

C38H68O9 (668.4863)


   

DG(15:0/0:0/6 keto-PGF1alpha)

DG(15:0/0:0/6 keto-PGF1alpha)

C38H68O9 (668.4863)


   

DG(6 keto-PGF1alpha/0:0/15:0)

DG(6 keto-PGF1alpha/0:0/15:0)

C38H68O9 (668.4863)


   

DG(15:0/TXB2/0:0)

DG(15:0/TXB2/0:0)

C38H68O9 (668.4863)


   

DG(TXB2/15:0/0:0)

DG(TXB2/15:0/0:0)

C38H68O9 (668.4863)


   

DG(15:0/0:0/TXB2)

DG(15:0/0:0/TXB2)

C38H68O9 (668.4863)


   

DG(TXB2/0:0/15:0)

DG(TXB2/0:0/15:0)

C38H68O9 (668.4863)


   

DG(a-15:0/TXB2/0:0)

DG(a-15:0/TXB2/0:0)

C38H68O9 (668.4863)


   

DG(TXB2/a-15:0/0:0)

DG(TXB2/a-15:0/0:0)

C38H68O9 (668.4863)


   

DG(a-15:0/0:0/TXB2)

DG(a-15:0/0:0/TXB2)

C38H68O9 (668.4863)


   

DG(TXB2/0:0/a-15:0)

DG(TXB2/0:0/a-15:0)

C38H68O9 (668.4863)


   

DG(i-15:0/TXB2/0:0)

DG(i-15:0/TXB2/0:0)

C38H68O9 (668.4863)


   

DG(TXB2/i-15:0/0:0)

DG(TXB2/i-15:0/0:0)

C38H68O9 (668.4863)


   

DG(i-15:0/0:0/TXB2)

DG(i-15:0/0:0/TXB2)

C38H68O9 (668.4863)


   

DG(TXB2/0:0/i-15:0)

DG(TXB2/0:0/i-15:0)

C38H68O9 (668.4863)


   

DG(a-15:0/6 keto-PGF1alpha/0:0)

DG(a-15:0/6 keto-PGF1alpha/0:0)

C38H68O9 (668.4863)


   

DG(6 keto-PGF1alpha/a-15:0/0:0)

DG(6 keto-PGF1alpha/a-15:0/0:0)

C38H68O9 (668.4863)


   

DG(a-15:0/0:0/6 keto-PGF1alpha)

DG(a-15:0/0:0/6 keto-PGF1alpha)

C38H68O9 (668.4863)


   

DG(6 keto-PGF1alpha/0:0/a-15:0)

DG(6 keto-PGF1alpha/0:0/a-15:0)

C38H68O9 (668.4863)


   

DG(i-15:0/6 keto-PGF1alpha/0:0)

DG(i-15:0/6 keto-PGF1alpha/0:0)

C38H68O9 (668.4863)


   

DG(6 keto-PGF1alpha/i-15:0/0:0)

DG(6 keto-PGF1alpha/i-15:0/0:0)

C38H68O9 (668.4863)


   

DG(i-15:0/0:0/6 keto-PGF1alpha)

DG(i-15:0/0:0/6 keto-PGF1alpha)

C38H68O9 (668.4863)


   

DG(6 keto-PGF1alpha/0:0/i-15:0)

DG(6 keto-PGF1alpha/0:0/i-15:0)

C38H68O9 (668.4863)


   

Hydrabamine dihydrochloride

Hydrabamine dihydrochloride

C42H66Cl2N2 (668.4603)


   

(2S,3R,4R)-4-[(2S,7S,8R,9S)-2-[(2R,5S)-5-ethyl-5-[(3S,5R)-5-[(3S,5R,6S)-6-ethyl-6-hydroxy-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]oxolan-2-yl]-7-hydroxy-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-3-methoxy-2-methylpentanoic acid

(2S,3R,4R)-4-[(2S,7S,8R,9S)-2-[(2R,5S)-5-ethyl-5-[(3S,5R)-5-[(3S,5R,6S)-6-ethyl-6-hydroxy-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]oxolan-2-yl]-7-hydroxy-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-3-methoxy-2-methylpentanoic acid

C37H64O10 (668.4499)


   

NAGlySer 16:4/18:3

NAGlySer 16:4/18:3

C39H60N2O7 (668.44)


   

NAGlySer 18:5/16:2

NAGlySer 18:5/16:2

C39H60N2O7 (668.44)


   

NAGlySer 18:4/16:3

NAGlySer 18:4/16:3

C39H60N2O7 (668.44)


   

Dgdg O-9:0_8:0

Dgdg O-9:0_8:0

C32H60O14 (668.3983)


   

Dgdg O-8:0_9:0

Dgdg O-8:0_9:0

C32H60O14 (668.3983)


   

Dgdg O-13:0_4:0

Dgdg O-13:0_4:0

C32H60O14 (668.3983)


   

Dgdg O-11:0_6:0

Dgdg O-11:0_6:0

C32H60O14 (668.3983)


   

Dgdg O-12:0_5:0

Dgdg O-12:0_5:0

C32H60O14 (668.3983)


   

Mgdg O-24:3_5:0

Mgdg O-24:3_5:0

C38H68O9 (668.4863)


   

Mgdg O-22:3_7:0

Mgdg O-22:3_7:0

C38H68O9 (668.4863)


   

Mgdg O-20:3_9:0

Mgdg O-20:3_9:0

C38H68O9 (668.4863)


   

Dgdg O-14:0_3:0

Dgdg O-14:0_3:0

C32H60O14 (668.3983)


   

Mgdg O-9:0_20:3

Mgdg O-9:0_20:3

C38H68O9 (668.4863)


   

Mgdg O-26:3_3:0

Mgdg O-26:3_3:0

C38H68O9 (668.4863)


   

Dgdg O-10:0_7:0

Dgdg O-10:0_7:0

C32H60O14 (668.3983)


   

Dgdg O-15:0_2:0

Dgdg O-15:0_2:0

C32H60O14 (668.3983)


   

Mgdg O-13:0_16:3

Mgdg O-13:0_16:3

C38H68O9 (668.4863)


   

Mgdg O-16:3_13:0

Mgdg O-16:3_13:0

C38H68O9 (668.4863)


   

Mgdg O-18:3_11:0

Mgdg O-18:3_11:0

C38H68O9 (668.4863)


   

Mgdg O-16:2_13:1

Mgdg O-16:2_13:1

C38H68O9 (668.4863)


   

Mgdg O-13:1_16:2

Mgdg O-13:1_16:2

C38H68O9 (668.4863)


   

Mgdg O-11:0_18:3

Mgdg O-11:0_18:3

C38H68O9 (668.4863)


   

PE-Cer 15:0;2O/20:4

PE-Cer 15:0;2O/20:4

C37H69N2O6P (668.4893)


   

PE-Cer 17:0;2O/18:4

PE-Cer 17:0;2O/18:4

C37H69N2O6P (668.4893)


   

PE-Cer 19:2;2O/16:2

PE-Cer 19:2;2O/16:2

C37H69N2O6P (668.4893)


   

PE-Cer 19:1;2O/16:3

PE-Cer 19:1;2O/16:3

C37H69N2O6P (668.4893)


   

PE-Cer 15:2;2O/20:2

PE-Cer 15:2;2O/20:2

C37H69N2O6P (668.4893)


   

PE-Cer 13:1;2O/22:3

PE-Cer 13:1;2O/22:3

C37H69N2O6P (668.4893)


   

PE-Cer 17:1;2O/18:3

PE-Cer 17:1;2O/18:3

C37H69N2O6P (668.4893)


   

PE-Cer 15:1;2O/20:3

PE-Cer 15:1;2O/20:3

C37H69N2O6P (668.4893)


   

PE-Cer 14:3;2O/21:1

PE-Cer 14:3;2O/21:1

C37H69N2O6P (668.4893)


   

PE-Cer 16:3;2O/19:1

PE-Cer 16:3;2O/19:1

C37H69N2O6P (668.4893)


   

PE-Cer 17:3;2O/18:1

PE-Cer 17:3;2O/18:1

C37H69N2O6P (668.4893)


   

PE-Cer 15:3;2O/20:1

PE-Cer 15:3;2O/20:1

C37H69N2O6P (668.4893)


   

PE-Cer 13:2;2O/22:2

PE-Cer 13:2;2O/22:2

C37H69N2O6P (668.4893)


   

PE-Cer 21:3;2O/14:1

PE-Cer 21:3;2O/14:1

C37H69N2O6P (668.4893)


   

PE-Cer 19:3;2O/16:1

PE-Cer 19:3;2O/16:1

C37H69N2O6P (668.4893)


   

PE-Cer 20:3;2O/15:1

PE-Cer 20:3;2O/15:1

C37H69N2O6P (668.4893)


   

PE-Cer 22:3;2O/13:1

PE-Cer 22:3;2O/13:1

C37H69N2O6P (668.4893)


   

PE-Cer 13:0;2O/22:4

PE-Cer 13:0;2O/22:4

C37H69N2O6P (668.4893)


   

PE-Cer 18:2;2O/17:2

PE-Cer 18:2;2O/17:2

C37H69N2O6P (668.4893)


   

PE-Cer 16:2;2O/19:2

PE-Cer 16:2;2O/19:2

C37H69N2O6P (668.4893)


   

PE-Cer 17:2;2O/18:2

PE-Cer 17:2;2O/18:2

C37H69N2O6P (668.4893)


   

PE-Cer 19:0;2O/16:4

PE-Cer 19:0;2O/16:4

C37H69N2O6P (668.4893)


   

PE-Cer 18:3;2O/17:1

PE-Cer 18:3;2O/17:1

C37H69N2O6P (668.4893)


   

PE-Cer 14:2;2O/21:2

PE-Cer 14:2;2O/21:2

C37H69N2O6P (668.4893)


   

PE-Cer 18:3;2O/16:2;O

PE-Cer 18:3;2O/16:2;O

C36H65N2O7P (668.4529)


   

PE-Cer 16:3;2O/18:2;O

PE-Cer 16:3;2O/18:2;O

C36H65N2O7P (668.4529)


   

PE-Cer 14:3;2O/20:2;O

PE-Cer 14:3;2O/20:2;O

C36H65N2O7P (668.4529)


   

[(E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]dodecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]dodecyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]tetradecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]tetradecyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]tetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]tetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E,12E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxypentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxypentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxydecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxydecyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyhexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyhexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E,12E)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyhexadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyhexadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]dodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]dodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxypentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxypentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhexadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhexadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

PMeOH 15:1_18:3

PMeOH 15:1_18:3

C37H65O8P (668.4417)


   

PMeOH 17:0_16:4

PMeOH 17:0_16:4

C37H65O8P (668.4417)


   

PMeOH 13:0_20:4

PMeOH 13:0_20:4

C37H65O8P (668.4417)


   

PMeOH 13:1_20:3

PMeOH 13:1_20:3

C37H65O8P (668.4417)


   

PEtOH 14:0_18:4

PEtOH 14:0_18:4

C37H65O8P (668.4417)


   

PEtOH 14:1_18:3

PEtOH 14:1_18:3

C37H65O8P (668.4417)


   

PMeOH 16:2_17:2

PMeOH 16:2_17:2

C37H65O8P (668.4417)


   

PMeOH 17:1_16:3

PMeOH 17:1_16:3

C37H65O8P (668.4417)


   

PEtOH 16:2_16:2

PEtOH 16:2_16:2

C37H65O8P (668.4417)


   

PEtOH 12:0_20:4

PEtOH 12:0_20:4

C37H65O8P (668.4417)


   

PEtOH 16:1_16:3

PEtOH 16:1_16:3

C37H65O8P (668.4417)


   

PMeOH 15:0_18:4

PMeOH 15:0_18:4

C37H65O8P (668.4417)


   

PEtOH 16:0_16:4

PEtOH 16:0_16:4

C37H65O8P (668.4417)


   

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C37H64O10 (668.4499)


   

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C37H64O10 (668.4499)


   

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C37H64O10 (668.4499)


   

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C37H64O10 (668.4499)


   

[3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]octyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]octyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl] 15-(5,6-dihydroxy-6-methylheptan-2-yl)-4,6-dihydroxy-7,12,16-trimethylpentacyclo[9.7.0.01,3.03,8.012,16]octadecane-7-carboxylate

[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl] 15-(5,6-dihydroxy-6-methylheptan-2-yl)-4,6-dihydroxy-7,12,16-trimethylpentacyclo[9.7.0.01,3.03,8.012,16]octadecane-7-carboxylate

C36H60O11 (668.4135)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]octadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]octadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

(1-octanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

(1-octanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C37H65O8P (668.4417)


   

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C37H65O8P (668.4417)


   

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C37H65O8P (668.4417)


   

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C37H65O8P (668.4417)


   

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C37H65O8P (668.4417)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

C37H65O8P (668.4417)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C37H65O8P (668.4417)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C37H65O8P (668.4417)


   

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C37H65O8P (668.4417)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-octadec-9-enoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-octadec-9-enoate

C37H65O8P (668.4417)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate

C37H65O8P (668.4417)


   

[(4E,8E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyhexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyhexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E,12E)-2-[[(Z)-hexadec-7-enoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(Z)-hexadec-7-enoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E,12E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxyicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxyicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-11-enoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-11-enoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(2S,3R,4E,6E)-3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]tetradeca-4,6-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S,3R,4E,6E)-3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]tetradeca-4,6-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C37H65O8P (668.4417)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C37H65O8P (668.4417)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H62NO7+ (668.4526)


   

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C37H65O8P (668.4417)


   

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H62NO7+ (668.4526)


   

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H62NO7+ (668.4526)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C37H65O8P (668.4417)


   

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C37H64O10 (668.4499)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C37H65O8P (668.4417)


   

2-[[3-[(E)-dodec-5-enoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(E)-dodec-5-enoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H63NO8P+ (668.4291)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

C37H65O8P (668.4417)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C40H62NO7+ (668.4526)


   

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C37H65O8P (668.4417)


   

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H62NO7+ (668.4526)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C37H65O8P (668.4417)


   

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C37H65O8P (668.4417)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C37H65O8P (668.4417)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C37H65O8P (668.4417)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C37H65O8P (668.4417)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C37H65O8P (668.4417)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C37H65O8P (668.4417)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (10E,12E)-octadeca-10,12-dienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (10E,12E)-octadeca-10,12-dienoate

C37H65O8P (668.4417)


   

2-[[3-dodecanoyloxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-dodecanoyloxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H63NO8P+ (668.4291)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C37H65O8P (668.4417)


   

[1-[(E)-dodec-5-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[(E)-dodec-5-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C37H64O10 (668.4499)


   

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C37H65O8P (668.4417)


   

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C37H64O10 (668.4499)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C37H65O8P (668.4417)


   

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C37H64O10 (668.4499)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C37H65O8P (668.4417)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C37H65O8P (668.4417)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C37H65O8P (668.4417)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

C37H65O8P (668.4417)


   

[(2S,3R,4E,8E)-3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S,3R,4E,8E)-3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H69N2O6P (668.4893)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C37H65O8P (668.4417)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C37H65O8P (668.4417)


   

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C40H62NO7+ (668.4526)


   

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C37H64O10 (668.4499)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C37H65O8P (668.4417)


   

2-[[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H63NO8P+ (668.4291)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C37H65O8P (668.4417)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C37H65O8P (668.4417)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,12E)-heptadeca-9,12-dienoate

C37H65O8P (668.4417)


   

[1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C37H64O10 (668.4499)


   

2-[[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H63NO8P+ (668.4291)


   

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H67NO7P+ (668.4655)


   

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C36H63NO8P+ (668.4291)


   

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H63NO8P+ (668.4291)


   

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H67NO7P+ (668.4655)


   

2-[[3-decanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H63NO8P+ (668.4291)


   

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H67NO7P+ (668.4655)


   

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-nonoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-nonoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H67NO7P+ (668.4655)


   

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-undecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-undecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H67NO7P+ (668.4655)


   

2-[hydroxy-[2-pentanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-pentanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C37H67NO7P+ (668.4655)


   

2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H67NO7P+ (668.4655)


   

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H67NO7P+ (668.4655)


   

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H67NO7P+ (668.4655)


   

MGDG(28:3)

MGDG(16:1_12:2)

C37H64O10 (668.4499)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

SM(32:4)

SM(d14:0_18:4)

C37H69N2O6P (668.4893)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

TG(40:13)

TG(20:5_10:4_10:4)

C43H56O6 (668.4077)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

FAHFA 19:5/O-26:7

FAHFA 19:5/O-26:7

C45H64O4 (668.4804)


   

FAHFA 19:6/O-26:6

FAHFA 19:6/O-26:6

C45H64O4 (668.4804)


   

FAHFA 20:5/O-25:7

FAHFA 20:5/O-25:7

C45H64O4 (668.4804)


   

FAHFA 20:6/O-25:6

FAHFA 20:6/O-25:6

C45H64O4 (668.4804)


   

FAHFA 21:5/O-24:7

FAHFA 21:5/O-24:7

C45H64O4 (668.4804)


   

FAHFA 21:6/O-24:6

FAHFA 21:6/O-24:6

C45H64O4 (668.4804)


   

FAHFA 21:7/O-24:5

FAHFA 21:7/O-24:5

C45H64O4 (668.4804)


   

FAHFA 22:5/O-23:7

FAHFA 22:5/O-23:7

C45H64O4 (668.4804)


   

FAHFA 22:6/O-23:6

FAHFA 22:6/O-23:6

C45H64O4 (668.4804)


   

FAHFA 22:7/O-23:5

FAHFA 22:7/O-23:5

C45H64O4 (668.4804)


   

FAHFA 23:5/O-22:7

FAHFA 23:5/O-22:7

C45H64O4 (668.4804)


   

FAHFA 23:6/O-22:6

FAHFA 23:6/O-22:6

C45H64O4 (668.4804)


   

FAHFA 23:7/O-22:5

FAHFA 23:7/O-22:5

C45H64O4 (668.4804)


   

FAHFA 24:5/O-21:7

FAHFA 24:5/O-21:7

C45H64O4 (668.4804)


   

FAHFA 24:6/O-21:6

FAHFA 24:6/O-21:6

C45H64O4 (668.4804)


   

FAHFA 24:7/O-21:5

FAHFA 24:7/O-21:5

C45H64O4 (668.4804)


   

FAHFA 25:6/O-20:6

FAHFA 25:6/O-20:6

C45H64O4 (668.4804)


   

FAHFA 25:7/O-20:5

FAHFA 25:7/O-20:5

C45H64O4 (668.4804)


   

FAHFA 26:6/O-19:6

FAHFA 26:6/O-19:6

C45H64O4 (668.4804)


   

FAHFA 26:7/O-19:5

FAHFA 26:7/O-19:5

C45H64O4 (668.4804)


   

MGDG 10:0_18:3

MGDG 10:0_18:3

C37H64O10 (668.4499)


   
   

MGDG O-28:4;O

MGDG O-28:4;O

C37H64O10 (668.4499)


   

MGDG O-29:3

MGDG O-29:3

C38H68O9 (668.4863)


   
   
   
   
   
   

PA O-18:2/17:2

PA O-18:2/17:2

C38H69O7P (668.4781)


   
   
   
   

PA P-16:1/18:3;O

PA P-16:1/18:3;O

C37H65O8P (668.4417)


   

PA P-18:1/17:2

PA P-18:1/17:2

C38H69O7P (668.4781)


   

PA P-18:1/17:2 or PA O-18:2/17:2

PA P-18:1/17:2 or PA O-18:2/17:2

C38H69O7P (668.4781)


   

PA P-20:1/13:4;O2

PA P-20:1/13:4;O2

C36H61O9P (668.4053)


   
   

PA P-35:3 or PA O-35:4

PA P-35:3 or PA O-35:4

C38H69O7P (668.4781)


   

PA 20:2/13:3;O

PA 20:2/13:3;O

C36H61O9P (668.4053)


   
   
   
   
   
   
   
   
   

PG O-18:0/9:1;O2

PG O-18:0/9:1;O2

C33H65O11P (668.4264)


   
   
   
   
   
   
   
   

CerPE 13:0;O2/22:4

CerPE 13:0;O2/22:4

C37H69N2O6P (668.4893)


   

CerPE 15:0;O2/20:4

CerPE 15:0;O2/20:4

C37H69N2O6P (668.4893)


   

CerPE 15:1;O2/20:3

CerPE 15:1;O2/20:3

C37H69N2O6P (668.4893)


   

CerPE 15:2;O2/20:2

CerPE 15:2;O2/20:2

C37H69N2O6P (668.4893)


   

CerPE 17:0;O2/18:4

CerPE 17:0;O2/18:4

C37H69N2O6P (668.4893)


   

CerPE 17:1;O2/18:3

CerPE 17:1;O2/18:3

C37H69N2O6P (668.4893)


   

CerPE 17:2;O2/18:2

CerPE 17:2;O2/18:2

C37H69N2O6P (668.4893)


   

CerPE 18:2;O2/17:2

CerPE 18:2;O2/17:2

C37H69N2O6P (668.4893)


   
   
   
   
   
   
   
   

4-[4,6-dihydroxy-2-methyl-3-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)phenyl]-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-3,5-diene-1,2-dione

4-[4,6-dihydroxy-2-methyl-3-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)phenyl]-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-3,5-diene-1,2-dione

C44H60O5 (668.4441)


   

2-{4,6-dihydroxy-2-methyl-3-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]phenyl}-5-hydroxy-3-methyl-6-[(6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-2,5-diene-1,4-dione

2-{4,6-dihydroxy-2-methyl-3-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]phenyl}-5-hydroxy-3-methyl-6-[(6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-2,5-diene-1,4-dione

C44H60O5 (668.4441)


   

15-(3,7-dimethylocta-2,6-dien-1-yl)-6,7-dihydroxy-16-methyl-1,13-bis(3-methylbut-2-en-1-yl)-16-(4-methylpent-3-en-1-yl)-3-oxatetracyclo[11.3.1.0²,¹¹.0⁴,⁹]heptadeca-2(11),4,6,8-tetraene-10,12,17-trione

15-(3,7-dimethylocta-2,6-dien-1-yl)-6,7-dihydroxy-16-methyl-1,13-bis(3-methylbut-2-en-1-yl)-16-(4-methylpent-3-en-1-yl)-3-oxatetracyclo[11.3.1.0²,¹¹.0⁴,⁹]heptadeca-2(11),4,6,8-tetraene-10,12,17-trione

C43H56O6 (668.4077)


   

(2s)-5-carbamimidamido-2-{[(2e,4s)-1-hydroxy-4-[(2s)-2-{[1-hydroxy-3-(1h-indol-3-yl)-3-methyl-2-(methylamino)butylidene]amino}-n,3,3-trimethylbutanamido]-2,5-dimethylhex-2-en-1-ylidene]amino}pentanoic acid

(2s)-5-carbamimidamido-2-{[(2e,4s)-1-hydroxy-4-[(2s)-2-{[1-hydroxy-3-(1h-indol-3-yl)-3-methyl-2-(methylamino)butylidene]amino}-n,3,3-trimethylbutanamido]-2,5-dimethylhex-2-en-1-ylidene]amino}pentanoic acid

C35H56N8O5 (668.4373)


   

[(2r,3s,4s,5r)-6-{[(2s,3s,4s,5r,6r)-3,5-dihydroxy-2-{2-hydroxy-3-[(12-methyltetradecyl)oxy]propoxy}-6-(hydroxymethyl)oxan-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r)-6-{[(2s,3s,4s,5r,6r)-3,5-dihydroxy-2-{2-hydroxy-3-[(12-methyltetradecyl)oxy]propoxy}-6-(hydroxymethyl)oxan-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C32H60O14 (668.3983)


   

(2r,3s,8s,13r,14s,19s)-13-(acetyloxy)-8,19-dibutyl-10,21,24,26-tetrahydroxy-3,14-dimethyltricyclo[18.2.2.2⁹,¹²]hexacosa-1(22),9,11,20,23,25-hexaen-2-yl acetate

(2r,3s,8s,13r,14s,19s)-13-(acetyloxy)-8,19-dibutyl-10,21,24,26-tetrahydroxy-3,14-dimethyltricyclo[18.2.2.2⁹,¹²]hexacosa-1(22),9,11,20,23,25-hexaen-2-yl acetate

C40H60O8 (668.4288)


   

13-o-acetylphorbol-20-linoleate

9,12-Octadecadienoic acid (9Z,12Z)-, ((1aR,1bS,4aR,7aS,7bS,8R,9R,9aS)-9a-(acetyloxy)-1a,1b,4,4a,5,7a,7b,8,9,9a-decahydro-4a,7b,9-trihydroxy-1,1,6,8-tetramethyl-5-oxo-1H-cyclopropa(3,4)benz(1,2-e)azulen-3-yl)methyl ester; 13-O-Acetylphorbol-20-(9Z,12Z)-octadecadienoate; 13-0-Acetylphorbol-20-linoleate; 13-O-Acetylphorbol-20-linoleate; 250268-53-2; (acetoxy-trihydroxy-tetramethyl-oxo-[?]yl)methyl (9Z,12Z)-octadeca-9,12-dienoate; 9,12-Octadecadienoic acid (9Z,12Z)-, [(1aR,1bS,4aR,7aS,7bS,8R,9R,9aS)-9a-(acetyloxy)-1a,1b,4,4a,5,7a,7b,8,9,9a-decahydro-4a,7b,9-trihydroxy-1,1,6,8-tetramethyl-5-oxo-1H-cyclopropa[3,4]benz[1,2-e]azulen-3-yl]methyl ester; CHEMBL2375782

C40H60O8 (668.4288)


{"Ingredient_id": "HBIN001270","Ingredient_name": "13-o-acetylphorbol-20-linoleate","Alias": "9,12-Octadecadienoic acid (9Z,12Z)-, ((1aR,1bS,4aR,7aS,7bS,8R,9R,9aS)-9a-(acetyloxy)-1a,1b,4,4a,5,7a,7b,8,9,9a-decahydro-4a,7b,9-trihydroxy-1,1,6,8-tetramethyl-5-oxo-1H-cyclopropa(3,4)benz(1,2-e)azulen-3-yl)methyl ester; 13-O-Acetylphorbol-20-(9Z,12Z)-octadecadienoate; 13-0-Acetylphorbol-20-linoleate; 13-O-Acetylphorbol-20-linoleate; 250268-53-2; (acetoxy-trihydroxy-tetramethyl-oxo-[?]yl)methyl (9Z,12Z)-octadeca-9,12-dienoate; 9,12-Octadecadienoic acid (9Z,12Z)-, [(1aR,1bS,4aR,7aS,7bS,8R,9R,9aS)-9a-(acetyloxy)-1a,1b,4,4a,5,7a,7b,8,9,9a-decahydro-4a,7b,9-trihydroxy-1,1,6,8-tetramethyl-5-oxo-1H-cyclopropa[3,4]benz[1,2-e]azulen-3-yl]methyl ester; CHEMBL2375782","Ingredient_formula": "C40H60O8","Ingredient_Smile": "CCCCCC=CCC=CCCCCCCCC(=O)OCC1=CC2C3C(C3(C(C(C2(C4C=C(C(=O)C4(C1)O)C)O)C)O)OC(=O)C)(C)C","Ingredient_weight": "668.9 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14161","TCMID_id": "484","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "6451043","DrugBank_id": "NA"}

   

4-[2,4-dihydroxy-6-methyl-3-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)phenyl]-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-3,5-diene-1,2-dione

4-[2,4-dihydroxy-6-methyl-3-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)phenyl]-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-3,5-diene-1,2-dione

C44H60O5 (668.4441)


   

2-(2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl)-2,6-dihydroxy-6-methylheptan-3-one

2-(2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl)-2,6-dihydroxy-6-methylheptan-3-one

C36H60O11 (668.4135)


   

{6-[(3,5-dihydroxy-2-{2-hydroxy-3-[(12-methyltetradecyl)oxy]propoxy}-6-(hydroxymethyl)oxan-4-yl)oxy]-3,4,5-trihydroxyoxan-2-yl}methyl acetate

{6-[(3,5-dihydroxy-2-{2-hydroxy-3-[(12-methyltetradecyl)oxy]propoxy}-6-(hydroxymethyl)oxan-4-yl)oxy]-3,4,5-trihydroxyoxan-2-yl}methyl acetate

C32H60O14 (668.3983)


   

[(1s,2s,6r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,6,14-trihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-8-yl]methyl octadeca-9,12-dienoate

[(1s,2s,6r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,6,14-trihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-8-yl]methyl octadeca-9,12-dienoate

C40H60O8 (668.4288)


   

(4bs,8as,9r,10s)-10-(acetyloxy)-9-{[(4bs,8as)-2-isopropyl-4b,8,8-trimethyl-5,6,7,8a-tetrahydrophenanthren-3-yl]oxy}-2-isopropyl-4b,8,8-trimethyl-5,6,7,8a,9,10-hexahydrophenanthren-3-yl acetate

(4bs,8as,9r,10s)-10-(acetyloxy)-9-{[(4bs,8as)-2-isopropyl-4b,8,8-trimethyl-5,6,7,8a-tetrahydrophenanthren-3-yl]oxy}-2-isopropyl-4b,8,8-trimethyl-5,6,7,8a,9,10-hexahydrophenanthren-3-yl acetate

C44H60O5 (668.4441)


   

4-{2,4-dihydroxy-6-methyl-3-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]phenyl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-3,5-diene-1,2-dione

4-{2,4-dihydroxy-6-methyl-3-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]phenyl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-3,5-diene-1,2-dione

C44H60O5 (668.4441)


   

(2s)-5-carbamimidamido-2-{[(2e,4s)-1-hydroxy-4-[(2s,3r)-2-{[(2r)-1-hydroxy-3-(1h-indol-3-yl)-3-methyl-2-(methylamino)butylidene]amino}-n,3-dimethylpentanamido]-2,5-dimethylhex-2-en-1-ylidene]amino}pentanoic acid

(2s)-5-carbamimidamido-2-{[(2e,4s)-1-hydroxy-4-[(2s,3r)-2-{[(2r)-1-hydroxy-3-(1h-indol-3-yl)-3-methyl-2-(methylamino)butylidene]amino}-n,3-dimethylpentanamido]-2,5-dimethylhex-2-en-1-ylidene]amino}pentanoic acid

C35H56N8O5 (668.4373)


   

bis((1r,2s,3s,6r,7s,10s,12r)-6-isopropyl-10,16-dimethyl-13,14-dioxatetracyclo[10.2.2.0²,¹⁰.0³,⁷]hexadec-15-ene-7-carboxylic acid)

bis((1r,2s,3s,6r,7s,10s,12r)-6-isopropyl-10,16-dimethyl-13,14-dioxatetracyclo[10.2.2.0²,¹⁰.0³,⁷]hexadec-15-ene-7-carboxylic acid)

C40H60O8 (668.4288)


   

[(1s,2r,6r,10r,11s,13s,14r,15r)-13-(acetyloxy)-1,6,14-trihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-8-yl]methyl (9z,12z)-octadeca-9,12-dienoate

[(1s,2r,6r,10r,11s,13s,14r,15r)-13-(acetyloxy)-1,6,14-trihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-8-yl]methyl (9z,12z)-octadeca-9,12-dienoate

C40H60O8 (668.4288)


   

4-{4,6-dihydroxy-2-methyl-3-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]phenyl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-3,5-diene-1,2-dione

4-{4,6-dihydroxy-2-methyl-3-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]phenyl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-3,5-diene-1,2-dione

C44H60O5 (668.4441)


   

methyl 13-{[3,4-dihydroxy-6-(hydroxymethyl)-5-methoxyoxan-2-yl]oxy}-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethylicosa-2,6,10,14-tetraenoate

methyl 13-{[3,4-dihydroxy-6-(hydroxymethyl)-5-methoxyoxan-2-yl]oxy}-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethylicosa-2,6,10,14-tetraenoate

C37H64O10 (668.4499)


   

(2r)-2-[(1r,2r,3as,3br,7s,8r,9ar,9bs,11ar)-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,6-dihydroxy-6-methylheptan-3-one

(2r)-2-[(1r,2r,3as,3br,7s,8r,9ar,9bs,11ar)-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,6-dihydroxy-6-methylheptan-3-one

C36H60O11 (668.4135)


   

methyl (4s,5s,8s,9s,12s,13s,16s,18s)-13-{[(2r,3s,4s,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-methoxyoxan-2-yl]oxy}-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethylicosa-2,6,10,14-tetraenoate

methyl (4s,5s,8s,9s,12s,13s,16s,18s)-13-{[(2r,3s,4s,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-methoxyoxan-2-yl]oxy}-5,9-dihydroxy-2,4,6,8,10,12,14,16,18-nonamethylicosa-2,6,10,14-tetraenoate

C37H64O10 (668.4499)


   

(1s,13s,15s,16r)-15-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-6,7-dihydroxy-16-methyl-1,13-bis(3-methylbut-2-en-1-yl)-16-(4-methylpent-3-en-1-yl)-3-oxatetracyclo[11.3.1.0²,¹¹.0⁴,⁹]heptadeca-2(11),4,6,8-tetraene-10,12,17-trione

(1s,13s,15s,16r)-15-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-6,7-dihydroxy-16-methyl-1,13-bis(3-methylbut-2-en-1-yl)-16-(4-methylpent-3-en-1-yl)-3-oxatetracyclo[11.3.1.0²,¹¹.0⁴,⁹]heptadeca-2(11),4,6,8-tetraene-10,12,17-trione

C43H56O6 (668.4077)


   

2-{4,6-dihydroxy-2-methyl-3-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]phenyl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-2,5-diene-1,4-dione

2-{4,6-dihydroxy-2-methyl-3-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]phenyl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-2,5-diene-1,4-dione

C44H60O5 (668.4441)


   

[(1s,2s,6r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,6,14-trihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-8-yl]methyl (9z,12z)-octadeca-9,12-dienoate

[(1s,2s,6r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,6,14-trihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-8-yl]methyl (9z,12z)-octadeca-9,12-dienoate

C40H60O8 (668.4288)


   

[13-(acetyloxy)-1,6,14-trihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-8-yl]methyl octadeca-9,12-dienoate

[13-(acetyloxy)-1,6,14-trihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-8-yl]methyl octadeca-9,12-dienoate

C40H60O8 (668.4288)


   

10-(acetyloxy)-2-isopropyl-9-[(2-isopropyl-4b,8,8-trimethyl-5,6,7,8a-tetrahydrophenanthren-3-yl)oxy]-4b,8,8-trimethyl-5,6,7,8a,9,10-hexahydrophenanthren-3-yl acetate

10-(acetyloxy)-2-isopropyl-9-[(2-isopropyl-4b,8,8-trimethyl-5,6,7,8a-tetrahydrophenanthren-3-yl)oxy]-4b,8,8-trimethyl-5,6,7,8a,9,10-hexahydrophenanthren-3-yl acetate

C44H60O5 (668.4441)