Chemical Formula: C37H65O8P
Chemical Formula C37H65O8P
Found 92 metabolite its formula value is C37H65O8P
PA(14:0/20:4(5Z,8Z,11Z,14Z))
PA(14:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(14:0/20:4(8Z,11Z,14Z,17Z))
PA(14:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(14:1(9Z)/20:3(5Z,8Z,11Z))
PA(14:1(9Z)/20:3(5Z,8Z,11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of mead acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(16:0/18:4(6Z,9Z,12Z,15Z))
PA(16:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(16:1(9Z)/18:3(6Z,9Z,12Z))
PA(16:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(16:1(9Z)/18:3(9Z,12Z,15Z))
PA(16:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(6Z,9Z,12Z)/16:1(9Z))
PA(18:3(6Z,9Z,12Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/16:1(9Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(9Z,12Z,15Z)/16:1(9Z))
PA(18:3(9Z,12Z,15Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/16:1(9Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:4(6Z,9Z,12Z,15Z)/16:0)
PA(18:4(6Z,9Z,12Z,15Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/16:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:3(5Z,8Z,11Z)/14:1(9Z))
PA(20:3(5Z,8Z,11Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(5Z,8Z,11Z)/14:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:4(5Z,8Z,11Z,14Z)/14:0)
PA(20:4(5Z,8Z,11Z,14Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/14:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:4(8Z,11Z,14Z,17Z)/14:0)
PA(20:4(8Z,11Z,14Z,17Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/14:0), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(14:1(9Z)/20:3(8Z,11Z,14Z))
PA(14:1(9Z)/20:3(8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:3(8Z,11Z,14Z)/14:1(9Z))
PA(20:3(8Z,11Z,14Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(8Z,11Z,14Z)/14:1(9Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.