Exact Mass: 654.4107778

Exact Mass Matches: 654.4107778

Found 266 metabolites which its exact mass value is equals to given mass value 654.4107778, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

all-trans-Heptaprenyl diphosphate

[({[(2E,6E,10E,14E,18E,22E)-3,7,11,15,19,23,27-heptamethyloctacosa-2,6,10,14,18,22,26-heptaen-1-yl]oxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C35H60O7P2 (654.381407)


all-trans-Heptaprenyl diphosphate is the final product of the heptaprenyl diphosphate biosynthesis pathway. In this pathway, multiple units of isopentenyl diphosphate (IPP) undergo a series of polymerizations to form a polyisoprenoid chain. The sequential addition of isoprenyl units to all-trans-farnesyl diphosphate is performed by polyprenyl diphosphate synthase enzymes such as the E. coli enzyme octaprenyl diphosphate synthase. Additional isoprenoid units are added to a maximal length that is determined by the specific enzyme. Most organisms generate polyprenyl chains of predominantly one length. Once completed, the polyprenyl chain is incorporated into other molecules, such as quinones. The enzyme that attaches the polyprenyl chain to the quinone precursor molecule does not have a preference for any particular length. Thus, the length of the polyprenyl chain in the mature quinone molecule is determined by the predominant polyprenyl diphosphate synthase enzyme of the organism. In most organisms, there is one type of predominant quinone, with a specific polyprenyl chain length. However, most organisms also have minor amounts of quinones with a different polyprenyl chain length. Organisms whose main quinone contains a chain of 7 isoprenyl units include some Gram-negative bacteria (e.g. the gliding bacterium Flexibacter elegans and the phototroph Allochromatium vinosum strain D), but mostly Gram-positive bacteria, such as many members of the Bacillus, Staphylococcus, and Listeria genera. All-trans-heptaprenyl diphosphate is the final product of heptaprenyl diphosphate biosynthesis pathway.In this pathway multiple units of isopentenyl diphosphate (IPP) undergo a series of polymerizations to form a polyisoprenoid chain.

   

ditrans,tetracis-Heptaprenyl diphosphate

ditrans,tetracis-Heptaprenyl diphosphate

C35H60O7P2 (654.381407)


   

Notoginsenoside R9

2-({14-[(3E)-2,6-dihydroxy-6-methylhept-3-en-2-yl]-5,16-dihydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O10 (654.4342752)


Notoginsenoside R8 is found in tea. Notoginsenoside R8 is a constituent of Panax notoginseng (sanchi).

   

Ginsenoside M7cd

2-[(5-hydroxy-6-methyl-2-{5,8,16-trihydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl}hept-6-en-2-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O10 (654.4342752)


Ginsenoside M7cd is found in tea. Ginsenoside M7cd is isolated from ginseng. Isolated from ginseng. Ginsenoside M7cd is found in tea.

   

Momorcharaside B

2-methyl-6-[4,4,9,13,14-pentamethyl-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3,7,8,10,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-17-yl]heptane-2,3,4,5-tetrol

C36H62O10 (654.4342752)


Momorcharaside B is found in bitter gourd. Momorcharaside B is a constituent of Momordica charantia (bitter melon). Constituent of Momordica charantia (bitter melon). Momorcharaside B is found in bitter gourd and fruits.

   

PA(15:0/18:4(6Z,9Z,12Z,15Z))

[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-(pentadecanoyloxy)propoxy]phosphonic acid

C36H63O8P (654.4260328)


PA(15:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:4(6Z,9Z,12Z,15Z)/15:0)

[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-(pentadecanoyloxy)propoxy]phosphonic acid

C36H63O8P (654.4260328)


PA(18:4(6Z,9Z,12Z,15Z)/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/15:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

(17E,19E,21E,23E,25E)-4,6,8,10,12,14,16,27-Octahydroxy-3-(1-hydroxyhexyl)-17,28-dimethyl-1-oxacyclooctacosa-17,19,21,23,25-pentaen-2-one

(17E,19E,21E,23E,25E)-4,6,8,10,12,14,16,27-Octahydroxy-3-(1-hydroxyhexyl)-17,28-dimethyl-1-oxacyclooctacosa-17,19,21,23,25-pentaen-2-one

C35H58O11 (654.3978918)


   

PA(12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-(dodecanoyloxy)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(12:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/12:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-3-(dodecanoyloxy)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(12:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/12:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-3-(dodecanoyloxy)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/12:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-3-(dodecanoyloxy)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/12:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-3-(dodecanoyloxy)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/12:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-3-(dodecanoyloxy)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/12:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0)

[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0)

[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0)

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0)

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

Pseudoginsenoside RT5

(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S,5R)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O10 (654.4342752)


Pseudoginsenoside RT5 is isolated from Panax quinquefolium[1]. Pseudoginsenoside RT5 is isolated from Panax quinquefolium[1].

   

FILIPIN III

4S,6S,8S,10R,12R,14R,16S,27S-octahydroxy-3R-(1R-hydroxy-hexyl)17,28R-dimethyl-oxacyclooctacosa-17E,119E,21E,21E,23E,25E-pentaen-2-one

C35H58O11 (654.3978918)


A macrolide that is the major component of a mixture of four isomeric polyene macrolides isolated from Streptomyces filipinensis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents

   
   
   

Pseudo-ginsenoside RT4

Pseudo-ginsenoside RT4

C36H62O10 (654.4342752)


   
   

Vina-ginsenoside R10

Vina-ginsenoside R10

C36H62O10 (654.4342752)


   
   

(20S,24E)-3beta,6alpha,12beta,20beta,26-pentahydroxydammar-24-ene 20-O-beta-D-glucopyranoside|ginsenoside Km

(20S,24E)-3beta,6alpha,12beta,20beta,26-pentahydroxydammar-24-ene 20-O-beta-D-glucopyranoside|ginsenoside Km

C36H62O10 (654.4342752)


   
   
   

12-deoxyphorbol-13-(9Z)-octadecanoate-20-acetate

12-deoxyphorbol-13-(9Z)-octadecanoate-20-acetate

C40H62O7 (654.4495302)


   

14beta-(8(14),9(11)-diene-18alpha-methoxycarbonyl-18-norvouacapen-16-yl)-18alpha-methoxycarbonyl-18-norvouacapene|mimosol E

14beta-(8(14),9(11)-diene-18alpha-methoxycarbonyl-18-norvouacapen-16-yl)-18alpha-methoxycarbonyl-18-norvouacapene|mimosol E

C42H54O6 (654.3920184000001)


   

(3beta,14beta,17beta,20S)-3,14,17,20-tetrahydroxy-21-methoxypregn-5-ene-3-O-beta-cymaropyranosyl-(1->4)-O-beta-digitoxopyranoside|perisepiumoside A

(3beta,14beta,17beta,20S)-3,14,17,20-tetrahydroxy-21-methoxypregn-5-ene-3-O-beta-cymaropyranosyl-(1->4)-O-beta-digitoxopyranoside|perisepiumoside A

C35H58O11 (654.3978918)


   
   
   

lipidyl pseudopterane C

lipidyl pseudopterane C

C39H58O8 (654.4131468)


   

1-(4,5-Dihydroxy-1,5-dimethylhexyl)-2,5-dihydroxy-3a,6,6,12a-tetramethyltetradecahydro-1H-cyclopenta[a]cyclopropa[e]phenanthren-7-yl hexopyranoside

1-(4,5-Dihydroxy-1,5-dimethylhexyl)-2,5-dihydroxy-3a,6,6,12a-tetramethyltetradecahydro-1H-cyclopenta[a]cyclopropa[e]phenanthren-7-yl hexopyranoside

C36H62O10 (654.4342752)


   
   

(20S)-dammar-23(E)-ene-3beta,6alpha,12beta,20,25-pentol 6-O-beta-D-glucopyranoside|(20S)-ginsenoside ST2

(20S)-dammar-23(E)-ene-3beta,6alpha,12beta,20,25-pentol 6-O-beta-D-glucopyranoside|(20S)-ginsenoside ST2

C36H62O10 (654.4342752)


   

21,22-Diangeloyl-(3beta,16alpha,21beta,22alpha)-12-Oleanene-3,16,21,22,28-pentol

21,22-Diangeloyl-(3beta,16alpha,21beta,22alpha)-12-Oleanene-3,16,21,22,28-pentol

C40H62O7 (654.4495302)


   

3-deacetyl-3-hydroxy-fusicoccin A|fusicoccin R

3-deacetyl-3-hydroxy-fusicoccin A|fusicoccin R

C34H54O12 (654.3615084)


   

3beta-D-glucopyranosyloxy-6alpha,16alpha,20(S),27-tetrahydroxydammar-24(Z)-ene|trilocularol A 3-glucoside

3beta-D-glucopyranosyloxy-6alpha,16alpha,20(S),27-tetrahydroxydammar-24(Z)-ene|trilocularol A 3-glucoside

C36H62O10 (654.4342752)


   
   
   

Chikusetsusaponin-L(9a)

Chikusetsusaponin-L(9a)

C36H62O10 (654.4342752)


   

Chikusetusaponin-L(9bc)

Chikusetusaponin-L(9bc)

C36H62O10 (654.4342752)


   
   

(20R)-3-O-beta-D-(2-O-methylxylopyranosyl)-24-propylcholest-4-ene-3beta,6beta,8,15alpha,16beta,24-hexaol|sanguinoside A

(20R)-3-O-beta-D-(2-O-methylxylopyranosyl)-24-propylcholest-4-ene-3beta,6beta,8,15alpha,16beta,24-hexaol|sanguinoside A

C36H62O10 (654.4342752)


   

(20S)-2alpha,3beta,12beta,24(S)-pentahydroxydammar-25-ene 20-O-beta-glucopyranoside

(20S)-2alpha,3beta,12beta,24(S)-pentahydroxydammar-25-ene 20-O-beta-glucopyranoside

C36H62O10 (654.4342752)


   
   

12-deoxyphorbol 13-(9Z)-octadecenoate 20-acetate

12-deoxyphorbol 13-(9Z)-octadecenoate 20-acetate

C40H62O7 (654.4495302)


   

irciniasulfonic acid O-methyl (5Z,9Z)-5,9-tetracosenoate

irciniasulfonic acid O-methyl (5Z,9Z)-5,9-tetracosenoate

C37H66O7S (654.4529006)


   

(20S,23E)-3beta,12beta,20,25-tetrahydroxydammarane-23-ene 20-O-beta-D-glucopyranoside|ginsenoside Rh13

(20S,23E)-3beta,12beta,20,25-tetrahydroxydammarane-23-ene 20-O-beta-D-glucopyranoside|ginsenoside Rh13

C36H62O10 (654.4342752)


   

16-O-(beta-D-glucopyranosyl)-3beta,12beta,16beta,21alpha,22-pentahydroxy hopane|glinoside C

16-O-(beta-D-glucopyranosyl)-3beta,12beta,16beta,21alpha,22-pentahydroxy hopane|glinoside C

C36H62O10 (654.4342752)


   
   

13-O-acetyl-4-deoxy-4α-phorbol-20-oleate

13-O-acetyl-4-deoxy-4α-phorbol-20-oleate

C40H62O7 (654.4495302)


   

3beta,6alpha,12beta,24,25-pentahydroxydammar-20(22)(E)-ene-6-O-beta-D-glucopyranoside|notoginsenoside ST-1

3beta,6alpha,12beta,24,25-pentahydroxydammar-20(22)(E)-ene-6-O-beta-D-glucopyranoside|notoginsenoside ST-1

C36H62O10 (654.4342752)


   

(24R)-5alpha,6alpha-epoxycucurbit-3beta,11alpha,24,25-tetrol 3-O-beta-D-glucopyranoside|5alpha,6alpha-epoxymogroside I E1

(24R)-5alpha,6alpha-epoxycucurbit-3beta,11alpha,24,25-tetrol 3-O-beta-D-glucopyranoside|5alpha,6alpha-epoxymogroside I E1

C36H62O10 (654.4342752)


   
   
   
   

(20R,22E,24R,25S)-3-O-(2,3,4-tri-O-methyl-beta-D-xylopyranosyl)-24-methyl-5alpha-cholest-22-ene-3beta,4beta,8beta,15alpha,26-hexol|sanguinoside C

(20R,22E,24R,25S)-3-O-(2,3,4-tri-O-methyl-beta-D-xylopyranosyl)-24-methyl-5alpha-cholest-22-ene-3beta,4beta,8beta,15alpha,26-hexol|sanguinoside C

C36H62O10 (654.4342752)


   
   
   

(20S)-3beta,6alpha,7beta,20,27-pentahydroxy-dammar-24-ene 20-O-beta-D-glucopyranoside

(20S)-3beta,6alpha,7beta,20,27-pentahydroxy-dammar-24-ene 20-O-beta-D-glucopyranoside

C36H62O10 (654.4342752)


   

PI(22:1(11Z)/0:0)

1-(11Z-docosenoyl)-glycero-3-phospho-(1-myo-inositol)

C31H59O12P (654.3743944)


   

PA(13:0/20:4(5Z,8Z,11Z,14Z))

1-tridecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C36H63O8P (654.4260328)


   

PA(15:0/18:4(6Z,9Z,12Z,15Z))

1-pentadecanoyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C36H63O8P (654.4260328)


   

PA(15:1(9Z)/18:3(6Z,9Z,12Z))

1-(9Z-pentadecenoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C36H63O8P (654.4260328)


   

PA(15:1(9Z)/18:3(9Z,12Z,15Z))

1-(9Z-pentadecenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C36H63O8P (654.4260328)


   

PA(18:3(6Z,9Z,12Z)/15:1(9Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C36H63O8P (654.4260328)


   

PA(18:3(9Z,12Z,15Z)/15:1(9Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C36H63O8P (654.4260328)


   

PA(18:4(6Z,9Z,12Z,15Z)/15:0)

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-pentadecanoyl-glycero-3-phosphate

C36H63O8P (654.4260328)


   

PA(20:4(5Z,8Z,11Z,14Z)/13:0)

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-tridecanoyl-glycero-3-phosphate

C36H63O8P (654.4260328)


   

Momorcharaside B

2-methyl-6-(1,6,6,11,15-pentamethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-14-yl)heptane-2,3,4,5-tetrol

C36H62O10 (654.4342752)


   

Ginsenoside M7cd

2-[(5-hydroxy-6-methyl-2-{5,8,16-trihydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}hept-6-en-2-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O10 (654.4342752)


   

Vinaginsenoside R10

2-{[5,16-dihydroxy-14-(5-hydroxy-2,6,6-trimethyloxan-2-yl)-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-8-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O10 (654.4342752)


   

Notoginsenoside R9

2-({14-[(3E)-2,6-dihydroxy-6-methylhept-3-en-2-yl]-5,16-dihydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-8-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O10 (654.4342752)


   

2-(9R-(5Z,9Z-tetracosadienoyloxy)-3-methyl-2Z-decenoyloxy)-ethanesulfonic acid

2-(9R-(5Z,9Z-tetracosadienoyloxy)-3-methyl-2Z-decenoyloxy)-ethanesulfonic acid

C37H66O7S (654.4529006)


   

DGMG 16:0

1-palmitoyl-3-O-(6-O-alpha-D-galactopyranosyl-beta-D-galactopyranosyl)-sn-glycerol

C31H58O14 (654.3826368)


   

LPI 22:1

1-(11Z-docosenoyl)-glycero-3-phospho-(1-myo-inositol)

C31H59O12P (654.3743944)


   

PA 33:4

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-pentadecanoyl-glycero-3-phosphate

C36H63O8P (654.4260328)


   

PA-PG

1-hexadecanoyl-2-azeloyl-sn-glycero-3-phospho-(1-sn-glycerol)

C31H59O12P (654.3743944)


   

All-trans-heptaprenyl diphosphate

(2E,6E,10E,14E,18E,22E)-3,7,11,15,19,23,27-heptamethyloctacosa-2,6,10,14,18,22,26-heptaen-1-yl trihydrogen diphosphate

C35H60O7P2 (654.381407)


An all-trans-polyprenyl diphosphate composed from seven isoprenyl units.

   

strontium,octadecanoate

strontium,octadecanoate

C36H70O4Sr (654.433007)


   

2-[4,5-dihydroxy-2-(hydroxymethyl)-6-(2-octadecylsulfanylethoxy)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

2-[4,5-dihydroxy-2-(hydroxymethyl)-6-(2-octadecylsulfanylethoxy)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C32H62O11S (654.4012622)


   

[(2Z,6Z,10Z,14Z,18Z,22E)-3,7,11,15,19,23,27-heptamethyloctacosa-2,6,10,14,18,22,26-heptaenyl] phosphono hydrogen phosphate

[(2Z,6Z,10Z,14Z,18Z,22E)-3,7,11,15,19,23,27-heptamethyloctacosa-2,6,10,14,18,22,26-heptaenyl] phosphono hydrogen phosphate

C35H60O7P2 (654.381407)


   

Filipine

FILIPIN III

C35H58O11 (654.3978918)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents

   

PA(12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C35H59O9P (654.3896493999999)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/12:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/12:0)

C35H59O9P (654.3896493999999)


   

PA(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C35H59O9P (654.3896493999999)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0)

C35H59O9P (654.3896493999999)


   

PA(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C35H59O9P (654.3896493999999)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0)

C35H59O9P (654.3896493999999)


   

PA(12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C35H59O9P (654.3896493999999)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/12:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/12:0)

C35H59O9P (654.3896493999999)


   

PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C35H59O9P (654.3896493999999)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/12:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/12:0)

C35H59O9P (654.3896493999999)


   

PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C35H59O9P (654.3896493999999)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/12:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/12:0)

C35H59O9P (654.3896493999999)


   

PA(12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C35H59O9P (654.3896493999999)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/12:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/12:0)

C35H59O9P (654.3896493999999)


   

PA(12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C35H59O9P (654.3896493999999)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/12:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/12:0)

C35H59O9P (654.3896493999999)


   

PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C35H59O9P (654.3896493999999)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0)

C35H59O9P (654.3896493999999)


   

PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C35H59O9P (654.3896493999999)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0)

C35H59O9P (654.3896493999999)


   

PA(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C35H59O9P (654.3896493999999)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0)

C35H59O9P (654.3896493999999)


   

PA(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C35H59O9P (654.3896493999999)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0)

C35H59O9P (654.3896493999999)


   

(5r,6s,7s)-5,6-Dihydroxy-7-(Octanoylamino)-N-(6-Phenylhexyl)-8-{[(2s,3r,4s,5r,6r)-3,4,5-Trihydroxy-6-(Hydroxymethyl)tetrahydro-2h-Pyran-2-Yl]oxy}octanamide

(5r,6s,7s)-5,6-Dihydroxy-7-(Octanoylamino)-N-(6-Phenylhexyl)-8-{[(2s,3r,4s,5r,6r)-3,4,5-Trihydroxy-6-(Hydroxymethyl)tetrahydro-2h-Pyran-2-Yl]oxy}octanamide

C34H58N2O10 (654.4091248)


   

[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-docos-13-enoate

[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-docos-13-enoate

C31H59O12P (654.3743944)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C36H62O10 (654.4342752)


   

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C36H62O10 (654.4342752)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C36H62O10 (654.4342752)


   

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C36H62O10 (654.4342752)


   

(1-heptanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

(1-heptanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C36H63O8P (654.4260328)


   

(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C36H63O8P (654.4260328)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-heptadec-9-enoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-heptadec-9-enoate

C36H63O8P (654.4260328)


   

[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C36H63O8P (654.4260328)


   

[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C36H63O8P (654.4260328)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] heptadecanoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] heptadecanoate

C36H63O8P (654.4260328)


   

(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C36H63O8P (654.4260328)


   

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C36H63O8P (654.4260328)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C36H63O8P (654.4260328)


   

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C36H63O8P (654.4260328)


   

[(2S,3S,6S)-6-[(2S)-2,3-di(undecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-di(undecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C31H58O12S (654.3648788)


   

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H61NO8P+ (654.4134576)


   

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C36H63O8P (654.4260328)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C36H63O8P (654.4260328)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-heptadeca-11,14-dienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-heptadeca-11,14-dienoate

C36H63O8P (654.4260328)


   

[1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C36H62O10 (654.4342752)


   

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C36H63O8P (654.4260328)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C36H63O8P (654.4260328)


   

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C36H63O8P (654.4260328)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-heptadec-7-enoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-heptadec-7-enoate

C36H63O8P (654.4260328)


   

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C36H63O8P (654.4260328)


   

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C36H63O8P (654.4260328)


   

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C36H63O8P (654.4260328)


   

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C36H63O8P (654.4260328)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-dodecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-dodecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C31H58O12S (654.3648788)


   

[1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-[(E)-undec-4-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-[(E)-undec-4-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C36H62O10 (654.4342752)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] heptadecanoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] heptadecanoate

C36H63O8P (654.4260328)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C36H63O8P (654.4260328)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C36H63O8P (654.4260328)


   

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C36H63O8P (654.4260328)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H61NO8P+ (654.4134576)


   

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-dodecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-dodecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C31H58O12S (654.3648788)


   

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C36H63O8P (654.4260328)


   

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C36H63O8P (654.4260328)


   

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H61NO8P+ (654.4134576)


   

2-[hydroxy-[3-nonanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-nonanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C35H61NO8P+ (654.4134576)


   

2-[[2-decanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-decanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H65NO7P+ (654.449841)


   

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H65NO7P+ (654.449841)


   

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C36H65NO7P+ (654.449841)


   

2-[[3-heptanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-heptanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H61NO8P+ (654.4134576)


   

2-[hydroxy-[2-hydroxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-hydroxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C36H65NO7P+ (654.449841)


   

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-octoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-octoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C36H65NO7P+ (654.449841)


   

2-[[3-decoxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decoxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H65NO7P+ (654.449841)


   

2-[[2-acetyloxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-acetyloxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H65NO7P+ (654.449841)


   

2-[[2-butanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-butanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H65NO7P+ (654.449841)


   

1-palmitoyl-2-azeloyl-sn-glycero-3-phospho-(1-sn-glycerol)

1-palmitoyl-2-azeloyl-sn-glycero-3-phospho-(1-sn-glycerol)

C31H59O12P (654.3743944)


   

1-(11Z-docosenoyl)-glycero-3-phospho-(1-myo-inositol)

1-(11Z-docosenoyl)-glycero-3-phospho-(1-myo-inositol)

C31H59O12P (654.3743944)


   

heptaprenyl diphosphate

heptaprenyl diphosphate

C35H60O7P2 (654.381407)


A polyprenol diphosphate compound having seven prenyl units with undefined stereochemistry about the double bonds.

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PI P-18:0/4:0 or PI O-18:1/4:0

PI P-18:0/4:0 or PI O-18:1/4:0

C31H59O12P (654.3743944)


   
   

PI P-20:0/2:0 or PI O-20:1/2:0

PI P-20:0/2:0 or PI O-20:1/2:0

C31H59O12P (654.3743944)


   
   

PI P-22:0 or PI O-22:1

PI P-22:0 or PI O-22:1

C31H59O12P (654.3743944)


   
   
   
   
   
   
   
   

[(1r,2r,6r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,14-dihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-8-yl]methyl (9z)-octadec-9-enoate

[(1r,2r,6r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,14-dihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-8-yl]methyl (9z)-octadec-9-enoate

C40H62O7 (654.4495302)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,10s,11s,12s,14s,15r,16r)-15-[(2r,5r)-5,6-dihydroxy-6-methylheptan-2-yl]-10,14-dihydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,10s,11s,12s,14s,15r,16r)-15-[(2r,5r)-5,6-dihydroxy-6-methylheptan-2-yl]-10,14-dihydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O10 (654.4342752)


   

(1r,3s,3as,3bs,5r,5as,6r,7s,9as,9br,11ar)-1-[(2r,3e,5r,6s)-7-hydroxy-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-7-{[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy}-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,6-tetrol

(1r,3s,3as,3bs,5r,5as,6r,7s,9as,9br,11ar)-1-[(2r,3e,5r,6s)-7-hydroxy-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-7-{[(2s,3r,4s,5r)-3,4,5-trimethoxyoxan-2-yl]oxy}-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,6-tetrol

C36H62O10 (654.4342752)


   

(1r,2s,6r,10s,11r,13s,15r)-8-[(acetyloxy)methyl]-1,6-dihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-13-yl (9z)-octadec-9-enoate

(1r,2s,6r,10s,11r,13s,15r)-8-[(acetyloxy)methyl]-1,6-dihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-13-yl (9z)-octadec-9-enoate

C40H62O7 (654.4495302)


   

(1r,2r,3s,3as,3bs,5r,7s,9ar,9br,11ar)-7-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-1-[(2r,5r,7s)-7-hydroxy-5-isopropyloctan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,3,3b,5-tetrol

(1r,2r,3s,3as,3bs,5r,7s,9ar,9br,11ar)-7-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-1-[(2r,5r,7s)-7-hydroxy-5-isopropyloctan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,3,3b,5-tetrol

C36H62O10 (654.4342752)


   

(2s,3s,4s)-4-[(2s,5r,7s,8r,9s)-2-[(2r,2'r,3's,5s,5'r)-2-ethyl-5'-[(2s,3s,5r,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-3'-methyl-[2,2'-bioxolan]-5-yl]-9-hydroxy-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-3-methoxy-2-methylpentanoic acid

(2s,3s,4s)-4-[(2s,5r,7s,8r,9s)-2-[(2r,2'r,3's,5s,5'r)-2-ethyl-5'-[(2s,3s,5r,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-3'-methyl-[2,2'-bioxolan]-5-yl]-9-hydroxy-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-3-methoxy-2-methylpentanoic acid

C36H62O10 (654.4342752)


   

[(1r,2r,6r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,14-dihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-8-yl]methyl octadec-9-enoate

[(1r,2r,6r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,14-dihydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-8-yl]methyl octadec-9-enoate

C40H62O7 (654.4495302)


   

(2s,3r,4s,5s,6r)-2-{[(1s,3as,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a-(hydroxymethyl)-1-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3b,6,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(1s,3as,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a-(hydroxymethyl)-1-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3b,6,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O10 (654.4342752)


   

(1s,3s,3ar,3br,7ar,8ar)-3-{[(3r,3ar,3br,7as,8r,8ar)-3b,4,4,7a-tetramethyl-8-[(3-methylbut-2-enoyl)oxy]-octahydroindeno[1,2-c]furan-3-yl]oxy}-3b,4,4,7a-tetramethyl-octahydroindeno[1,2-c]furan-1-yl (2e)-2-methylbut-2-enoate

(1s,3s,3ar,3br,7ar,8ar)-3-{[(3r,3ar,3br,7as,8r,8ar)-3b,4,4,7a-tetramethyl-8-[(3-methylbut-2-enoyl)oxy]-octahydroindeno[1,2-c]furan-3-yl]oxy}-3b,4,4,7a-tetramethyl-octahydroindeno[1,2-c]furan-1-yl (2e)-2-methylbut-2-enoate

C40H62O7 (654.4495302)


   

(2s,3r,4s,5r)-2-{[(1r,3r,6s,8r,11r,12s,13r,14r,15r,16r,17s)-13,14,17-trihydroxy-16-(hydroxymethyl)-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(1r,3r,6s,8r,11r,12s,13r,14r,15r,16r,17s)-13,14,17-trihydroxy-16-(hydroxymethyl)-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxane-3,4,5-triol

C35H58O11 (654.3978918)


   

4,5-dihydroxy-6-{2-hydroxy-3-[(14-methylpentadecyl)oxy]propoxy}-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

4,5-dihydroxy-6-{2-hydroxy-3-[(14-methylpentadecyl)oxy]propoxy}-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C31H58O14 (654.3826368)


   

(2s,3r,4s,5s,6r)-2-{[(2s,3s,4r,6r)-6-[(1s)-1-[(1r,3as,3bs,7r,9s,9ar,9bs,11as)-7,9-dihydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl]-3-hydroxy-4-methoxy-3,4-dimethyloxan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,3s,4r,6r)-6-[(1s)-1-[(1r,3as,3bs,7r,9s,9ar,9bs,11as)-7,9-dihydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl]-3-hydroxy-4-methoxy-3,4-dimethyloxan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H58O11 (654.3978918)


   

2-[4,9,14-trihydroxy-14-(methoxymethyl)-3,10-dimethyl-8-[(3,4,5-trihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl)oxy]tricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate

2-[4,9,14-trihydroxy-14-(methoxymethyl)-3,10-dimethyl-8-[(3,4,5-trihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl)oxy]tricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate

C34H54O12 (654.3615084)


   

4-{2-[2-ethyl-5'-(6-hydroxy-3,5,6-trimethyloxan-2-yl)-3'-methyl-[2,2'-bioxolan]-5-yl]-9-hydroxy-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl}-3-methoxy-2-methylpentanoic acid

4-{2-[2-ethyl-5'-(6-hydroxy-3,5,6-trimethyloxan-2-yl)-3'-methyl-[2,2'-bioxolan]-5-yl]-9-hydroxy-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl}-3-methoxy-2-methylpentanoic acid

C36H62O10 (654.4342752)