Exact Mass: 634.4573
Exact Mass Matches: 634.4573
Found 500 metabolites which its exact mass value is equals to given mass value 634.4573
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Soyasapogenol B 3-O-b-D-glucuronide
Soyasapogenol B 3-O-b-D-glucuronide is found in tea. Soyasapogenol B 3-O-b-D-glucuronide is a constituent of the seeds of Trifolium incarnatum (crimson clover). Constituent of the seeds of Trifolium incarnatum (crimson clover). Soyasapogenol B 3-O-b-D-glucuronide is found in tea.
Momordicin II
Momordicin II is found in bitter gourd. Momordicin II is a constituent of Momordica charantia (bitter melon) Constituent of Momordica charantia (bitter melon). Momordicin II is found in bitter gourd and fruits.
Momordicoside L
Momordicoside L is found in bitter gourd. Momordicoside L is a constituent of Momordica charantia (bitter melon) Constituent of Momordica charantia (bitter melon). Momordicoside L is found in bitter gourd and fruits.
Lucyoside Q
Lucyoside Q is found in fruits. Lucyoside Q is a constituent of Luffa cylindrica (smooth luffa) Constituent of Luffa cylindrica (smooth luffa). Lucyoside Q is found in fruits.
28-Glucosylpomolate
28-Glucosylpomolate is found in herbs and spices. 28-Glucosylpomolate is a constituent of Sanguisorba officinalis (burnet bloodwort). Constituent of Sanguisorba officinalis (burnet bloodwort). 28-Glucosylpomolate is found in tea and herbs and spices.
DG(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)
DG(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:4(6Z,9Z,12Z,15Z)/0:0)
DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
Maslinic acid 3-O-b-D-glucoside
Maslinic acid 3-O-b-D-glucoside is found in fruits. Maslinic acid 3-O-b-D-glucoside is a constituent of Luffa cylindrica (smooth luffa). Constituent of Luffa cylindrica (smooth luffa). Lucyoside O is found in fruits.
DG(18:4n3/0:0/20:5n3)
DG(18:4n3/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:4n3/0:0/20:5n3), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The stearidonic acid moiety is derived from seed oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
PA(10:0/21:0)
PA(10:0/21:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/21:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of heneicosylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(16:0/15:0)
PA(16:0/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/15:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(21:0/10:0)
PA(21:0/10:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/10:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of capric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(10:0/a-21:0)
PA(10:0/a-21:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/a-21:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of anteisoheneicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(10:0/i-21:0)
PA(10:0/i-21:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/i-21:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of isoheneicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-13:0/i-18:0)
PA(a-13:0/i-18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/i-18:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isooctadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-21:0/10:0)
PA(a-21:0/10:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/10:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of capric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-12:0/i-19:0)
PA(i-12:0/i-19:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/i-19:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isononadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-13:0/i-18:0)
PA(i-13:0/i-18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/i-18:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isooctadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-14:0/a-17:0)
PA(i-14:0/a-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-14:0/a-17:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-14:0/i-17:0)
PA(i-14:0/i-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-14:0/i-17:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-21:0/10:0)
PA(i-21:0/10:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/10:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of capric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
DG(15:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)
DG(15:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(15:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/15:0/0:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(15:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
DG(15:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/15:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(15:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)
DG(15:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(15:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/15:0/0:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(15:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
DG(15:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/15:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(15:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)
DG(15:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(15:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/15:0/0:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(15:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
DG(15:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/15:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)
DG(a-15:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-15:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-15:0/0:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
DG(a-15:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/a-15:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/a-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)
DG(a-15:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-15:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-15:0/0:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
DG(a-15:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/a-15:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/a-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)
DG(a-15:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-15:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-15:0/0:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
DG(a-15:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/a-15:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/a-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-14:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(i-14:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-14:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-14:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-14:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(i-14:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-14:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)
DG(i-15:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-15:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-15:0/0:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
DG(i-15:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/i-15:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/i-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)
DG(i-15:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-15:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-15:0/0:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
DG(i-15:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/i-15:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/i-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)
DG(i-15:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-15:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-15:0/0:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
DG(i-15:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/i-15:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/i-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
28-Glc-hederagenin
Hederagenin 28-O-beta-D-glucopyranoside is a triterpenoid saponin that is the carboxylic ester obtained by the formal condensation of the carboxy group of hederagenin with beta-D-glucopyranose. It has been isolated from Juglans sinensis. It has a role as a plant metabolite and an anti-inflammatory agent. It is a triterpenoid saponin, a pentacyclic triterpenoid, a monosaccharide derivative, a beta-D-glucoside and a carboxylic ester. It is functionally related to a hederagenin. It derives from a hydride of an oleanane. hederagenin 28-O-beta-D-glucopyranosyl ester is a natural product found in Kalopanax septemlobus, Acer pictum, and other organisms with data available. A triterpenoid saponin that is the carboxylic ester obtained by the formal condensation of the carboxy group of hederagenin with beta-D-glucopyranose. It has been isolated from Juglans sinensis. Hederagenin 28-O-beta-D-glucopyranosyl ester, a triterpenoid saponin isolated from Ilex cornuta, exhibits protective effects against H2O2-induced myocardial cell injury[1].
Gleditsoside B
Echinocystic acid 3-glucoside is a triterpenoid saponin. Ecliptasaponin A is a natural product found in Eclipta alba and Eclipta prostrata with data available. Ecliptasaponin A , a pentacyclic triterpenoid saponin, is one of major compounds separated from Eclipta prostrate[1]. Eclipta prostrate is considered as a nourishing herbal medicine with pleiotropic effects, including anti-inflammatory, hepatoprotective, antioxidant, and immunomodulatory[2]. Ecliptasaponin A , a pentacyclic triterpenoid saponin, is one of major compounds separated from Eclipta prostrate[1]. Eclipta prostrate is considered as a nourishing herbal medicine with pleiotropic effects, including anti-inflammatory, hepatoprotective, antioxidant, and immunomodulatory[2].
Ecliptasaponin D
Ecliptasaponin D is a triterpenoid glucoside isolated from Eclipta alba (L.) Hassk which is the aerial part of Eclipta prostrate. Eclipta prostrate is considered as a nourishing herbal medicine with pleiotropic effects, including anti-inflammatory, hepatoprotective, antioxidant and immunomodulatory[1,2]. Ecliptasaponin D is a triterpenoid glucoside isolated from Eclipta alba (L.) Hassk which is the aerial part of Eclipta prostrate. Eclipta prostrate is considered as a nourishing herbal medicine with pleiotropic effects, including anti-inflammatory, hepatoprotective, antioxidant and immunomodulatory[1,2].
Ecliptasaponin
Echinocystic acid 3-glucoside is a triterpenoid saponin. Ecliptasaponin A is a natural product found in Eclipta alba and Eclipta prostrata with data available. Ecliptasaponin A , a pentacyclic triterpenoid saponin, is one of major compounds separated from Eclipta prostrate[1]. Eclipta prostrate is considered as a nourishing herbal medicine with pleiotropic effects, including anti-inflammatory, hepatoprotective, antioxidant, and immunomodulatory[2]. Ecliptasaponin A , a pentacyclic triterpenoid saponin, is one of major compounds separated from Eclipta prostrate[1]. Eclipta prostrate is considered as a nourishing herbal medicine with pleiotropic effects, including anti-inflammatory, hepatoprotective, antioxidant, and immunomodulatory[2].
Marianoside A
A triterpene glycoside that is lanost-8-ene substituted by hydroxy groups at positions 25 and 28, a methylidene group at position 24 and a beta-D-glucopyranosyloxy group at position 3. Isolated from the whole plant of Silybum marianum, it exhibits inhibitory activity against chymotrypsin.
(23R)-7beta,23-dihydroxycucurbita-5,24-dien-19-al 3-O-beta-D-allopyranoside|charantoside B
17-hydroxy-24-O-beta-D-glucopyranosyl-hopan-28,22-olide
3-O-beta-D-glucopyranosyl 3alpha,11alpha-dihydroxylup-20(29)-en-28-oic acid
3beta,30-dihydroxy-12-ursen-28-oic acid 28-O-beta-D-glucopyranosyl ester
23-hydroxyimberbic acid 23-O-alpha-L-rhamnopyranoside
3beta-hydroxy-7beta-methoxycucurbita-5,24-dien-23-yl beta-glucopyranoside|kuguaglycoside A
3beta-hydroxy-25-methoxycucurbita-5,23-dien-7beta-yl beta-glucopyranoside|kuguaglycoside B
3-O-beta-L-fucopyranosyl-23,28-dihydroxy-11-methoxy-12-oleanane|mimengoside H
25-methoxycucurbita-5(6),23(E)-dien-19-ol 3-O-beta-D-allopyranoside
2-Isopentenyldehydrosaproxanthin
4-[bis[4-(diethylamino)phenyl]methoxy-[4-(diethylamino)phenyl]methyl]-N,N-diethylaniline
[3-(aminomethyl)phenyl]methanamine,2-[[4-[2-[4-(oxiran-2-ylmethoxy)phenyl]propan-2-yl]phenoxy]methyl]oxirane,2,2,4-trimethylhexane-1,6-diamine
Eldacimibe
C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent
DG(i-14:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-14:0/0:0)
DG(i-14:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-14:0)
2-[[(2R)-3-[(E)-hexacos-5-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[2-(Butanoylamino)-3-hydroxypentacosyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(icosanoylamino)nonyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Heptanoylamino)-3-hydroxydocosyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(propanoylamino)hexacosyl] 2-(trimethylazaniumyl)ethyl phosphate
(2-Acetamido-3-hydroxyheptacosyl) 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(octanoylamino)henicosyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Hexanoylamino)-3-hydroxytricosyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(nonanoylamino)icosyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(pentanoylamino)tetracosyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] undecanoate
[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (Z)-tetradec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] decanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (Z)-tridec-9-enoate
[2-(Decanoylamino)-3-hydroxynonadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxytetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(undecanoylamino)octadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(nonadecanoylamino)decyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Heptadecanoylamino)-3-hydroxydodecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(octadecanoylamino)undecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Hexadecanoylamino)-3-hydroxytridecyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Henicosanoylamino)-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(pentadecanoylamino)tetradecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(tetradecanoylamino)pentadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(tridecanoylamino)hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Dodecanoylamino)-3-hydroxyheptadecyl] 2-(trimethylazaniumyl)ethyl phosphate
(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) docosanoate
(1-Octanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate
(1-Pentanoyloxy-3-phosphonooxypropan-2-yl) hexacosanoate
(1-Heptanoyloxy-3-phosphonooxypropan-2-yl) tetracosanoate
(1-Butanoyloxy-3-phosphonooxypropan-2-yl) heptacosanoate
(1-Hexanoyloxy-3-phosphonooxypropan-2-yl) pentacosanoate
(1-Pentadecanoyloxy-3-phosphonooxypropan-2-yl) hexadecanoate
(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) nonadecanoate
(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) octadecanoate
(1-Phosphonooxy-3-tetradecanoyloxypropan-2-yl) heptadecanoate
(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) icosanoate
[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
(1-Decanoyloxy-3-phosphonooxypropan-2-yl) henicosanoate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
N-(pentadecanoyl)-tetradecasphinganine-1-phosphocholine
N-(tetradecanoyl)-pentadecasphinganine-1-phosphocholine
N-(dodecanoyl)-heptadecasphinganine-1-phosphocholine
N-(tridecanoyl)-hexadecasphinganine-1-phosphocholine
[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
2-[[(2S)-2-decanoyloxy-3-[(E)-hexadec-1-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium
2-[[(2R)-3-decanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R,3S)-2-(decanoylamino)-3-hydroxynonadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate
[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoate
[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] icosanoate
[1-carboxy-3-[3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] icosanoate
2-[[(2S)-2-decanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[(2R)-3-[(E)-tetradec-9-enoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-heptadec-9-enoyl]oxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-dodecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-hexanoyloxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[3-[(Z)-octadec-9-enoxy]-2-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-heptanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
2-[[3-decanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-tetradec-9-enoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-nonanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
2-[[2-decanoyloxy-3-[(Z)-hexadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-dodecanoyloxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-hexacos-15-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-pentanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-heptanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-docos-13-enoyl]oxy-3-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-pentanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-propanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
2-[[3-butanoyloxy-2-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-octoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[carboxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-tridec-9-enoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-acetyloxy-3-[(Z)-tetracos-13-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-heptanoyloxy-3-[(Z)-nonadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-tridecanoyloxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-undecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-hexanoyloxy-3-[(Z)-icos-11-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-heptadec-9-enoyl]oxy-3-nonoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-decoxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-henicos-11-enoxy]-2-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-heptadec-9-enoxy]-2-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-butanoyloxy-3-[(Z)-docos-13-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(Z)-pentadec-9-enoxy]-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-dodecoxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1-hexadecanoyl-2-pentadecanoyl-glycero-3-phosphate
DG(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)
1-pentadecanoyl-2-hexadecanoyl-glycero-3-phosphate
1-tetradecanoyl-2-heptadecanoyl-glycero-3-phosphate
1-heptadecanoyl-2-myristoyl-sn-glycero-3-phosphate
A 1,2-diacyl-sn-glycerol 3-phosphate in which the phosphatidyl acyl groups at postions 1 and 2 are specified as heptadecanoyl and myristoyl respectively.
SM(29:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
OAHFA(42:8)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved