Exact Mass: 624.3873
Exact Mass Matches: 624.3873
Found 328 metabolites which its exact mass value is equals to given mass value 624.3873
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Caribenolide I
PG(a-13:0/i-12:0)
PG(a-13:0/i-12:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(a-13:0/i-12:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.
PG(i-12:0/a-13:0)
PG(i-12:0/a-13:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-12:0/a-13:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.
PG(i-12:0/i-13:0)
PG(i-12:0/i-13:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-12:0/i-13:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.
PG(i-13:0/i-12:0)
PG(i-13:0/i-12:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-13:0/i-12:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.
PA(8:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))
PA(8:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/8:0)
PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/8:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))
PA(8:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/8:0)
PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/8:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))
PA(8:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/8:0)
PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/8:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))
PA(8:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/8:0)
PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/8:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))
PA(8:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/8:0)
PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/8:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
23-O-beta-D-Glucopyranosyl-25-methyldolichosterone
teikagenin-3-O-beta-D-digitalosyl-20-O-beta-D-canaroside|teikaside A-Ia
26-O-beta-D-glucopyranosyl-22alpha-furosta-5,25(27)-diene-1beta,3beta,11alpha,22alpha,26-pentaol|26-[(beta-D-glucopyranosyl)oxy]-22alpha-hydroxyfurosta-5,25(27)-diene-1beta,3beta,11alpha-triol|helleboroside B
(25R)-spirost-7-ene-2alpha,3beta,5alpha,9alpha-tetrol 3-O-beta-D-glucopyranoside
14-deoxy-14alpha,15alpha-epoxyponasteroside A|brainesteroside A
3-O-beta-D-(2,3-di-O-methyl-beta-xylopyranosyl)-22E-27-nor-24-methyl-5alpha-cholesta-4,22-diene-3beta,6beta,8,15alpha,16beta,26-hexaol|leviusculoside J
(25S)-3beta,27-dihydroxy-5alpha-spirostan-6alpha-yl-O-beta-D-glucopyranoside
(5alpha)-pregna-16-en-3beta-ol-20-one 6-O-[alpha-L-rhamnopyranosyl-(1?3)-beta-D-quinovopyranoside]|torvpregnanoside A
7-Deepoxy,6-hydroxy,7-chloro,2,3,4,5-tetrahydro-Huratoxin
3-(3,4-Dihydroxybenzoyl)-2,3,27-Thrihydroxy-12-lupen-28-oic acid
(25S)-22alpha,25-epoxy-3beta,11alpha-dihydroxyfurost-5-en-26-yl beta-D-glucopyranoside
calogenin 3-O-beta-D-digitalopyranoside-20-O-beta-D-canaropyranoside
Phe Phe Arg Arg
Phe Arg Phe Arg
Phe Arg Arg Phe
Arg Phe Phe Arg
Arg Phe Arg Phe
Arg Arg Phe Phe
PG(12:0/13:0)
Brainesteroside A
Mantuoluoside A
Mantuoluoside B
Spongipregnoloside A
ST 33:2_O7
Aspacoside A
Aspacoside B
Linkckoside F
1-(D-Mannosyloxy)-3,4-didenhydro-1,2-dihydro-8-apolycopen-8-oic acid
Methyl mannosyl-3,4-dehydro-apo-8-lycopenoate
Methyl glucosyl-3,4-dehydro-apo-8-lycopenoate
Tirilazad
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D000975 - Antioxidants N - Nervous system
Chol-6-en-24-oic acid, 3,7-bis[(trimethylsilyl)oxy]-, phenylmethyl ester, (3α,5β)-
Testosterone enantate benzilic acid hydrazone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
1-(1,3-benzodioxol-5-yl)-3-[(3S,9R,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
N-[(3R,9S,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
1-(1,3-benzodioxol-5-yl)-3-[(3R,9R,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
N-[(3R,9R,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
N-[[(3R,9R,10R)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
N-[(3R,9R,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
1-(1,3-benzodioxol-5-yl)-3-[(3R,9R,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
1-(1,3-benzodioxol-5-yl)-3-[(3R,9R,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
N-[(3R,9S,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
N-[(3S,9R,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
1-(1,3-benzodioxol-5-yl)-3-[(3S,9S,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
N-[[(3R,9R,10S)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
1-(1,3-benzodioxol-5-yl)-3-[(3R,9S,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
N-[[(3R,9R,10R)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
N-[[(3S,9S,10R)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
N-[[(3S,9S,10S)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
N-[(3S,9R,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
1-(1,3-benzodioxol-5-yl)-3-[(3S,9S,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
N-[[(3S,9S,10S)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
N-[(3S,9S,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
1-(1,3-benzodioxol-5-yl)-3-[(3R,9S,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
N-[[(3R,9S,10R)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
N-[(3R,9S,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
N-[(3S,9S,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
N-[(3S,9S,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
N-[(3S,9S,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
N-[(3S,9R,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
N-[[(3R,9S,10S)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
N-[(3R,9R,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
N-[(3R,9S,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
N-[(3R,9R,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
2-[[(2R)-3-hexadecanoyloxy-2-(7-hydroxyheptanoyloxy)propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[3-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] hexacosanoate
[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] pentadecanoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] tridecanoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] dodecanoate
[1-Decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] hexadecanoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] undecanoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] tetradecanoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] decanoate
[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]undec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxytridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]undecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-propanoyloxypropoxy)phosphoryl]oxypropan-2-yl] docosanoate
[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] icosanoate
[1-[(2-Acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] tricosanoate
[1-[(2-Hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] nonadecanoate
[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] hexadecanoate
[1-[(2-Butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] henicosanoate
[1-[(2-Heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] octadecanoate
[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] heptadecanoate
[1-[(2-Dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] tridecanoate
[1-[(2-Decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] pentadecanoate
[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] tetradecanoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] hexadecanoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] heptadecanoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] icosanoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] docosanoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] nonadecanoate
[1-Butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] henicosanoate
[1-Acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] tricosanoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] octadecanoate
(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] tridecanoate
[1-Decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] pentadecanoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] tetradecanoate
[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] tridecanoate
[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] pentadecanoate
[1-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[1-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] tetradecanoate
[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] pentadecanoate
[1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] tetradecanoate
2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-butanoyloxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-acetyloxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-{[15-(5,6-dihydroxy-6-methylheptan-2-yl)-9,14-dihydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxane-3,4,5-triol
(1's,2r,2's,5'r,6'r,10's,12's,14's)-5'-[(2s,3r,5r)-5,6-dihydroxy-5,6-dimethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptan-2-yl]-6',10'-dimethyl-13'-oxaspiro[oxolane-2,11'-tetracyclo[7.5.0.0²,⁶.0¹²,¹⁴]tetradecan]-8'-en-5-one
methyl (2e,4e,6e,8e,10e,12e,14e,16e,18e,20e)-2,6,11,15,19,23-hexamethyl-23-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracosa-2,4,6,8,10,12,14,16,18,20-decaenoate
(1s,2s,4s,6r,7s,8r,9s,11r,12s,13r,14r,16r)-7,9,13-trimethyl-6-[3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-ene-6,11,14,16-tetrol
1-(2,3-dihydroxy-6-methyl-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptan-2-yl)-7,8-dihydroxy-9a,11a-dimethyl-1h,2h,4h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-5-one
5-(acetyloxy)-14-(butanoyloxy)-6,10-dihydroxy-3-isopropyl-6,10,14-trimethyl-11-(prop-2-enoyloxy)-15-oxatricyclo[6.6.1.0²,⁷]pentadecan-4-yl butanoate
(1r,3r,9r,10r,13r,15r,21s,23r)-23-{[(2r,3r,4r,5r,6s)-4,5-dihydroxy-3-methoxy-6-methyloxan-2-yl]oxy}-13-hydroxy-15-(hydroxymethyl)-3,10-dimethyl-16,25,26-trioxatricyclo[19.3.1.1⁹,¹²]hexacosa-4,6,18-trien-17-one
n-(1-{[(4e,10e,12z)-6,22-dihydroxy-16-methoxy-5,7-dimethyl-18-oxo-25-oxa-19-azatetracyclo[12.9.2.0¹⁵,¹⁹.0²⁰,²⁴]pentacosa-1(24),4,10,12,20,22-hexaen-8-yl]oxy}-1-oxopropan-2-yl)-4-methylpentanimidic acid
5-methyl-n-[(2r)-1-oxo-1-{[(5r,13s,14r,15r)-3,15,22-trihydroxy-5-methoxy-14,16-dimethyl-2-azabicyclo[18.3.1]tetracosa-1(24),2,6,8,10,16,20,22-octaen-13-yl]oxy}propan-2-yl]hexanimidic acid
(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-15-[(2r,5s)-5,6-dihydroxy-6-methylheptan-2-yl]-6,14-dihydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}oxane-3,4,5-triol
(1r,2r,3r,3as,3bs,5r,7s,9ar,9br,11ar)-7-{[(2s,3r,4s,5r)-5-hydroxy-3,4-dimethoxyoxan-2-yl]oxy}-1-[(2r,3e)-7-hydroxy-5-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,3,3b,5-tetrol
4,17(20)-(cis)-pregnadiene-3,16-dione
{"Ingredient_id": "HBIN009836","Ingredient_name": "4,17(20)-(cis)-pregnadiene-3,16-dione","Alias": "4,17(20)-(trans)-pregnadiene-3,16-dione","Ingredient_formula": "C42H56O4","Ingredient_Smile": "CC=C1C(=O)CC2C1(CCC3C2CCC4=CC(=O)CCC34C)C.CC=C1C(=O)CC2C1(CCC3C2CCC4=CC(=O)CCC34C)C","Ingredient_weight": "624.9 g/mol","OB_score": "51.41738673","CAS_id": "NA","SymMap_id": "SMIT03473","TCMID_id": "NA","TCMSP_id": "MOL000988","TCM_ID_id": "NA","PubChem_id": "139064727","DrugBank_id": "NA"}