Exact Mass: 620.3954031999999
Exact Mass Matches: 620.3954031999999
Found 346 metabolites which its exact mass value is equals to given mass value 620.3954031999999
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Ginsenoside Rh4
Ginsenoside Rh4 is found in tea. Ginsenoside Rh4 is isolated from ginseng. Isolated from ginseng. Ginsenoside Rh4 is found in tea.
Soyasapogenol B 24-O-b-D-glucoside
Soyasapogenol B 24-O-b-D-glucoside is found in pulses. Soyasapogenol B 24-O-b-D-glucoside is a constituent of French bean seeds (Phaseolus vulgaris). Constituent of French bean seeds (Phaseolus vulgaris). Soyasapogenol B 24-O-b-D-glucoside is found in pulses, yellow wax bean, and green bean.
(1alpha,3beta,20S,22R,24S,25S)-Pubescenin
(1alpha,3beta,20S,22R,24S,25S)-Pubescenin is found in fruits. (1alpha,3beta,20S,22R,24S,25S)-Pubescenin is a constituent of Physalis pubescens (ground cherry)
(3b,7b,22x)-Cucurbita-5,24-diene-3,7,23-triol 7-glucoside
(3b,7b,22x)-Cucurbita-5,24-diene-3,7,23-triol 7-glucoside is found in fruits. (3b,7b,22x)-Cucurbita-5,24-diene-3,7,23-triol 7-glucoside is a constituent of Momordica charantia (bitter melon). Constituent of Momordica charantia (bitter melon). (3b,7b,22x)-Cucurbita-5,24-diene-3,7,23-triol 7-glucoside is found in fruits.
Fasciculic acid A
Fasciculic acid A is found in mushrooms. Fasciculic acid A is from the toxic sulphur tuft mushroom Naematoloma fasciculare. From the toxic sulphur tuft mushroom Naematoloma fasciculare. Fasciculic acid A is found in mushrooms.
Physagulin D
Constituent of the famine food Physalis angulata (cutleaf ground cherry). Physagulin D is found in herbs and spices and fruits. Physagulin D is found in fruits. Physagulin D is a constituent of the famine food Physalis angulata (cutleaf ground cherry).
PA(8:0/22:0)
PA(8:0/22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/22:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(16:0/14:0)
PA(16:0/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/14:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/10:0)
PA(20:0/10:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/10:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of capric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:0/8:0)
PA(22:0/8:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/8:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of caprylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(10:0/i-20:0)
PA(10:0/i-20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/i-20:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(8:0/i-22:0)
PA(8:0/i-22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/i-22:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of isodocosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-13:0/a-17:0)
PA(a-13:0/a-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/a-17:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-13:0/i-17:0)
PA(a-13:0/i-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/i-17:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-12:0/i-18:0)
PA(i-12:0/i-18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/i-18:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isooctadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-13:0/a-17:0)
PA(i-13:0/a-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/a-17:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-13:0/i-17:0)
PA(i-13:0/i-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/i-17:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-14:0/i-16:0)
PA(i-14:0/i-16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-14:0/i-16:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of isohexadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-20:0/10:0)
PA(i-20:0/10:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/10:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of capric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-22:0/8:0)
PA(i-22:0/8:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-22:0/8:0), in particular, consists of one chain of isodocosanoic acid at the C-1 position and one chain of caprylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
DG(13:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(13:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(13:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/13:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(13:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(13:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/13:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-13:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(a-13:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-13:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-13:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-13:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(a-13:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/a-13:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/a-13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-13:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(i-13:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-13:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-13:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-13:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(i-13:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-13:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
3-O-(beta-D-Glucopyranosyl)-soyasapogenol B
3-o-(beta-d-glucopyranosyl)-soyasapogenol b is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3-o-(beta-d-glucopyranosyl)-soyasapogenol b can be found in soy bean, which makes 3-o-(beta-d-glucopyranosyl)-soyasapogenol b a potential biomarker for the consumption of this food product.
cimigenol 3AAP
Cimiracemoside C is a natural product found in Actaea dahurica, Actaea elata, and other organisms with data available. See also: Black Cohosh (part of).
Ginsenoside Rk3
Ginsenoside Rk3 is a natural product found in Panax ginseng and Panax notoginseng with data available. Ginsenoside Rk3 is present in the roots Panax ginseng herbs. Ginsenoside Rk3 significantly inhibits TNF-α-induced NF-κB transcriptional activity, with an IC50 of 14.24±1.30 μM in HepG2 cells. Ginsenoside Rk3 is present in the roots Panax ginseng herbs. Ginsenoside Rk3 significantly inhibits TNF-α-induced NF-κB transcriptional activity, with an IC50 of 14.24±1.30 μM in HepG2 cells.
Ginsenoside RH4
Ginsenoside Rh4 is a triterpenoid saponin. Ginsenoside Rh4 is a natural product found in Panax vietnamensis and Panax notoginseng with data available.
Cimigoside
Cimigenol 3-O-beta-D-xylopyranoside is a cucurbitacin and a glycoside. It has a role as a metabolite. Cimigenoside is a natural product found in Actaea pachypoda, Actaea dahurica, and other organisms with data available. See also: Black Cohosh (part of). Cimigenoside is an active compound from genus Cimicifuga[1]. Cimigenoside is an active compound from genus Cimicifuga[1].
3beta,23,28-Trihydroxy-12-oleanene 3beta-caffeate
(2E)-6-{13,17-dihydroxy-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl}-2-methylhept-2-enoic acid
24-Hydroxy-12??-acetoxy-25,26,27-trinorcycloartan-16,23-dione 3??-O-??-L-arabinopyranoside
3-[[12-acetyloxy-17-(2,5-dihydroxy-6-methylhept-6-en-2-yl)-17-hydroxy-4,4,8,10,14-pentamethyl-1,2,3,5,6,7,9,11,12,13,15,16-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-3-oxopropanoic acid
2alpha,3beta,19alpha-trihydroxy-olean-12-en-17-oic acid-28-O-beta-D-xylopyranoside
olean-12-ene-3beta,19beta,24-triol-3-O-beta-D-glucopyranoside|sigmoiside F
3-(3-hydroxy-5,18-seco-ibogamin-13-yl)-22-nor-vobasan-17-oic acid methyl ester|Desmethylcapuvosine
C39H48N4O3 (620.3726217999999)
20(S),22(R),23(R),24(S)-16beta:23beta,23alpha:24alpha-diepoxy-3beta,22beta,25-trihydroxy-9,19-cyclolanostane 3-O-beta-D-xylopyranoside|rubraside A
3beta,19,25-trihydroxy-16,23-dioneranuncul-9(10)-ene 3-O-alpha-L-arabinopyranoside|podocarpaside|ranunculane
3beta-(beta-glucopyranosyloxyuronic acid)-16-hydroxy-5alpha,14beta-cholest-16-ene-15,23-dione methyl ester|pandaroside D methyl ester
(22S)-cholesta-5,24-diene-3beta,11beta,16beta,22-tetrol 16-O-(3-O-acetyl-alpha-L-rhamnopyranoside)
16alpha,24alpha-dihydroxy-12beta-acetoxy-25,26,27-trinor-16,24-cycloartan-23-one 3-beta-O-alpha-L-arabonopyranoside
17-(4-Hydroxyphenyl)-2,4,6,8,10,12,14,16-heptadecaoctaensaeure-(2-dodecyl-3-hydroxy-5-methylphenylester)|17-(4-Hydroxyphenyl)-2,4,6,8,10,12,14,16-heptadecaoctaensaeure-<2-dodecyl-3-hydroxy-5-methylphenylester>
24-methylenecycloartane-3beta,6beta,7beta16beta-tetraol 3-Obeta-D-xylopyranoside
3beta,19alpha,23-trihydroxy-20alpha(H)-urs-12-en-28-oic acid 3beta-O-alpha-L-arabinopyranoside
3beta,20(S)-dihydroxydammar-24-en-12beta,23beta-epoxy-20-O-beta-D-glucopyranoside
3beta-O-beta-D-glucopyranosyloxy-5alpha-stigmasta-7,9(11),24(28)Z-triene-16beta,26,29-triol
3-beta,23,28-trihydroxy-olean-12-en-3-O-beta-D-glucopyranoside
3beta-O-beta-D-glucopyranosyloxy-5alpha-stigmasta-7,9(11),24(28)Z-triene-6beta,16beta,29-triol
2-methoxy-4-carbomethoxyphenyl 3beta-hydroxylup-20(29)-en-28-oate
3beta,15alpha,25-Trihydroxy-16beta:23alpha,16alpha:24-diepoxy-9,19-cyclolanostane 3-O-beta-D-xylopyranoside|Cimigenol 3-O-beta-D-xylopyranoside
1alpha,20-dihydroxy-3beta-(O-beta-D-glucopyranosyl)-(20S,22R)-witha-5,24-dienolide|coagulin Q
3-O-alpha-L-arabinopyranosyl-22alpha-hydroxyhederagenin
3-O-(alpha-L-arabinopyranosyl)bayogenin|3-O-alpha-L-arabinopyranosyl bayogenin|3-O-[alpha-L-arabinopyranosyl] bayogenin
(23R,24S)-16beta,23;16alpha,24-diepoxycycloartane-3beta,12beta,25-triol 3-O-beta-D-xylopyranoside
(-)-2alpha,16alpha-diacetoxy-9beta,11beta-epoxybuxamidine
C37H52N2O6 (620.3825171999999)
(+)-buxapapillinine|buxapapilinine
C37H52N2O6 (620.3825171999999)
C35H56O9_(1S,3S,9S,12R,14S,17R,19R,21R,22S)-2-Hydroxy-22-(2-hydroxy-2-propanyl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0~1,18~.0~3,17~.0~4,14~.0~7,12~.0~12,14~]tetracos-9-yl beta-L-xylopyranoside
C35H56O9_9,19-Cyclolanost-24-en-26-oic acid, 12,15-dihydroxy-3-(pentopyranosyloxy)-, (24E)
(2E)-6-{13,17-dihydroxy-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl}-2-methylhept-2-enoic acid_major
(3R,5R,7R,8R,9S,10S,12S,13R,14S,17R)-17-((R)-7-acetoxy-6-(acetoxymethyl)heptan-2-yl)-12-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthrene-3,7-diyl diacetate
(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-17-((R)-7-acetoxy-6-(acetoxymethyl)heptan-2-yl)-12-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthrene-3,7-diyl diacetate
(2E)-6-{13,17-dihydroxy-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,?.0¹²,¹?]octadecan-15-yl}-2-methylhept-2-enoic acid
(1alpha,3beta,20S,22R,24S,25S)-Pubescenin
Fasciculic acid A
(3b,7b,22x)-Cucurbita-5,24-diene-3,7,23-triol 7-glucoside
3-DPHMC
Physagulin D
Butyl 4-O-hexadecanoyl-neohesperidoside
(3beta)-3-[[(2E)-3-(4-Chlorophenyl)-1-oxo-2-propenyl]oxy]-olean-12-en-28-oic acid
C39H53ClO4 (620.3632167999999)
1,5-Anhydro-2-deoxy-6-O-[tris(1-methylethyl)silyl]-4-O-[6-O-[tris(1-methylethyl)silyl]-beta-D-galactopyranosyl]-D-arabino-hex-1-enitol
3-[[12-Acetyloxy-17-(2,5-dihydroxy-6-methylhept-6-en-2-yl)-17-hydroxy-4,4,8,10,14-pentamethyl-1,2,3,5,6,7,9,11,12,13,15,16-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-3-oxopropanoic acid
6-O-beta-D-glucopyranosyldammar-20(22),24-diene-3beta,6alpha,12beta-triol
DG(a-13:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-13:0/0:0)
DG(a-13:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/a-13:0)
DG(i-13:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-13:0/0:0)
DG(i-13:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-13:0)
2-[[(2R)-3-acetyloxy-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C30H55NO10P+ (620.3563399999999)
2-[[(2R)-2-acetyloxy-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C30H55NO10P+ (620.3563399999999)
(5R,6S,7S)-5,6-dihydroxy-N-nonyl-7-(octanoylamino)-8-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]oxy}octanamide (non-preferred name)
(3R,5R,7R,8R,9S,10S,12S,13R,14S,17R)-17-((R)-7-acetoxy-6-(acetoxymethyl)heptan-2-yl)-12-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthrene-3,7-diyl diacetate
(2R,3S,4R,5S)-2-[[(1S,3S,9S,12R,14S,17R,19R,21R,22S)-2-hydroxy-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.01,18.03,17.04,14.07,12.012,14]tetracosan-9-yl]oxy]oxane-3,4,5-triol
2-[hydroxy-[(2R)-3-[(Z)-octadec-9-enoyl]oxy-2-(5-oxopentanoyloxy)propoxy]phosphoryl]oxyethyl-trimethylazanium
(2S)-2-[(3S,9E,14S)-7,14-dimethyl-15-[(2R)-15-methylhexadecan-2-yl]-11-methylidene-2,5,8,13-tetraoxo-1-oxa-4,7,12-triazacyclopentadec-9-en-3-yl]-2-hydroxyacetamide
C33H56N4O7 (620.4148786000001)
2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (3Z,6Z,9Z)-dodeca-3,6,9-trienoate
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (15Z,18Z)-hexacosa-15,18-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] decanoate
[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (Z)-tridec-9-enoate
[1-propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
Phosphoric acid ethyl 2,3-bis(1-oxotetradecyloxy)propyl-ester
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-propanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
(1-Butanoyloxy-3-phosphonooxypropan-2-yl) hexacosanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
(1-Heptanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate
(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) henicosanoate
(1-Hexanoyloxy-3-phosphonooxypropan-2-yl) tetracosanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
(1-Octanoyloxy-3-phosphonooxypropan-2-yl) docosanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
(1-Phosphonooxy-3-propanoyloxypropan-2-yl) heptacosanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
(1-Pentanoyloxy-3-phosphonooxypropan-2-yl) pentacosanoate
(2-Pentadecanoyloxy-3-phosphonooxypropyl) pentadecanoate
(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) heptadecanoate
(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) octadecanoate
(1-Phosphonooxy-3-tetradecanoyloxypropan-2-yl) hexadecanoate
(1-Decanoyloxy-3-phosphonooxypropan-2-yl) icosanoate
(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) nonadecanoate
(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-17-((R)-7-acetoxy-6-(acetoxymethyl)heptan-2-yl)-12-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthrene-3,7-diyl diacetate
[2-(acetyloxymethyl)-6-[(5S,7R,8R,9S,12S,14S,17R)-3,7-diacetyloxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]heptyl] acetate
[2-(acetyloxymethyl)-6-[(7R,8R,9S,12S,14S,17R)-3,7-diacetyloxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]heptyl] acetate
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate
[1-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
2-[[(2R)-3-decanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] nonadecanoate
[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoate
[1-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] icosanoate
2-[[(2R)-2-decanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] nonadecanoate
2-[hydroxy-[2-[(Z)-tridec-9-enoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-butanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-decanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-hexanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-acetyloxy-2-[(Z)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-nonanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-heptadec-9-enoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-henicos-11-enoyl]oxy-3-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-pentanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[2-(acetyloxymethyl)-6-[(8R,9S,12S,14S,17R)-3,7-diacetyloxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]heptyl] acetate
[2-(acetyloxymethyl)-6-[(5S,8R,9S,12S,14S,17R)-3,7-diacetyloxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]heptyl] acetate
Cimigenol 3-O-beta-D-xylopyranoside
A natural product found in Actaea racemosa.
1-Hexadecanoyl-2-tetradecanoyl-sn-glycero-3-phosphate
A 1-acyl-2-tetradecanoyl-sn-glycero-3-phosphate in which the 1-acyl group is specified as hexadecanoyl (palmitoyl).
Framycetin(6+)
An organic cation obtained by protonation of the six amino groups of framycetin; major species at pH 7.3.
TG(37:9)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
(1r,3as,5ar,5br,7ar,8r,9s,11ar,11br,13ar,13br)-3a,8-bis(hydroxymethyl)-5a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate
(1r,3r,4r,6r,8r)-3-benzoyl-8-[(2r)-2,3-dihydroxy-3-methylbutyl]-4-(2-hydroxypropan-2-yl)-7,7-dimethyl-1-[(2s)-5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl]tricyclo[4.3.1.1³,⁸]undecane-2,9,11-trione
2-[(3s,14s,15s)-15-(heptadecan-2-yl)-5,13-dihydroxy-7,14-dimethyl-11-methylidene-2,8-dioxo-1-oxa-4,7,12-triazacyclopentadeca-4,9,12-trien-3-yl]-2-hydroxyethanimidic acid
C33H56N4O7 (620.4148786000001)
(2s,3r,4s,5r)-2-{[(1r,2r,3s,4s,7r,9s,12r,14s,17r,18r,19r,21r)-2-hydroxy-21-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-9-yl]oxy}oxane-3,4,5-triol
2-{[(1s,5r,7s,10r,12s,15r,16r,17s,18r,21r,22r,24s)-21,22-dihydroxy-1,6,6,15,17,20,20-heptamethyl-19,23-dioxaheptacyclo[13.10.0.0²,¹².0⁵,¹⁰.0¹⁰,¹².0¹⁶,²⁴.0¹⁸,²²]pentacosan-7-yl]oxy}oxane-3,4,5-triol
[(1s,4s,5r,9s,10r,13r,14s)-5-formyl-14-hydroxy-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]methyl (1r,4s,5r,9s,10r,13r,14r)-5-formyl-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-14-carboxylate
7-hydroxy-2,2,5a,7-tetramethyl-6-(2-{1,4,4,6-tetramethyl-1-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-hexahydro-2h-azulen-5-ylidene}ethyl)-hexahydro-1-benzoxepin-3-one
3-{[11-(acetyloxy)-1-(2,5-dihydroxy-6-methylhept-6-en-2-yl)-1-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3-oxopropanoic acid
methyl 10-(acetyloxy)-8a-[(acetyloxy)methyl]-7,8,14a,14b-tetrahydroxy-4a,6a,9,12b-tetramethyl-2-methylidene-tetradecahydro-1h-picene-4-carboxylate
3-[(3s,3as,4r,5ar,6s,7s,9ar,9br)-3-[(2s)-2-hydroxy-6-methyl-5-methylideneheptan-2-yl]-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-decahydrocyclopenta[a]naphthalen-6-yl]propanoic acid
2-[3'-(2-hydroxypropan-2-yl)-4,6,12,17,17-pentamethyl-9-oxaspiro[hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosane-8,2'-oxiran]-7-oloxy]oxane-3,4,5-triol
{5-formyl-14-hydroxy-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl}methyl 5-formyl-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-14-carboxylate
(1r,4ar,5s)-5-{[(1r,2s,7s,8r,9r,13s)-8,15-dihydroxy-16-isopropyl-2,6,6,12-tetramethyl-14,17-dioxotetracyclo[7.4.4.0¹,⁹.0²,⁷]heptadeca-11,15-dien-13-yl]methyl}-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid
3a,8-bis(hydroxymethyl)-5a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate
(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-{[2-hydroxy-21-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-9-yl]oxy}oxane-3,4,5-triol
1-(6-hydroxy-6-methyl-4-oxoheptan-2-yl)-10-(hydroxymethyl)-3a,6,6,11a-tetramethyl-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1h,3h,3bh,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-2-one
1-({1-[2-(2-isopropyl-3-methoxy-5-oxo-2h-pyrrole-1-carbonyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl}(methyl)carbamoyl)-2-methylbutyl 2-(dimethylamino)-4-methylpentanoate
C33H56N4O7 (620.4148786000001)
(4ar,5r,6as,6br,8ar,9r,10s,12ar,12br,14bs)-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
7-(3,4-dihydroxybenzoyl)-3-(3-hydroxy-3-methylbutyl)-4,4,10,10-tetramethyl-9,11-bis(3-methylbut-2-en-1-yl)-5-oxatricyclo[7.3.1.0¹,⁶]tridec-6-ene-8,13-dione
[(1s,4s,5r,9s,10r,13r,14s)-5-formyl-14-hydroxy-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]methyl (1s,4s,5r,9s,10r,13r,14r)-5-formyl-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-14-carboxylate
(2r,4as,6as,6br,8as,9r,10s,12s,12as,12bs,14bs)-10,12-dihydroxy-2,4a,6a,6b,12a-pentamethyl-9-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)-3,4,5,6,7,8,8a,9,10,11,12,12b,13,14b-tetradecahydro-1h-picene-2-carboxylic acid
(4ar,5r,6as,6br,9r,10s,12ar)-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
2-{[5-hydroxy-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-9-yl]oxy}oxane-3,4,5-triol
16-(3,9-dihydroxy-4,8,10-trimethyl-5-oxoundec-7-en-2-yl)-8,10-dihydroxy-3,15-dimethoxy-5,7,9,11-tetramethyl-1-oxacyclohexadeca-3,5,11,13-tetraen-2-one
2-[5,13-dihydroxy-7,14-dimethyl-15-(15-methylhexadecan-2-yl)-11-methylidene-2,8-dioxo-1-oxa-4,7,12-triazacyclopentadeca-4,9,12-trien-3-yl]-2-hydroxyethanimidic acid
C33H56N4O7 (620.4148786000001)