Exact Mass: 601.2886818000001

Exact Mass Matches: 601.2886818000001

Found 356 metabolites which its exact mass value is equals to given mass value 601.2886818000001, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Penitrem C

(1S,2R,5S,8R,9R,11S,14R,15S,24S,26S,27S)-20-chloro-14,15,32,32-tetramethyl-23-methylidene-9-prop-1-en-2-yl-10,31-dioxa-17-azanonacyclo[24.4.2.02,15.05,14.06,11.016,30.018,29.021,28.024,27]dotriaconta-6,16(30),18,20,28-pentaene-5,8-diol

C37H44ClNO4 (601.2958693999999)


   

Gly-arg-gly-glu-ser-pro

1-[2-(2-{2-[2-(2-aminoacetamido)-5-[(diaminomethylidene)amino]pentanamido]acetamido}-4-carboxybutanamido)-3-hydroxypropanoyl]pyrrolidine-2-carboxylic acid

C23H39N9O10 (601.2819754)


   

PC(2:0/20:3(5Z,8Z,11Z)-O(14R,15S))

(2-{[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:3(5Z,8Z,11Z)-O(14R,15S)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,11Z)-O(14R,15S)/2:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:3(5Z,8Z,14Z)-O(11S,12R))

(2-{[(2R)-3-(acetyloxy)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:3(5Z,8Z,14Z)-O(11S,12R)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,14Z)-O(11S,12R)/2:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:3(5Z,11Z,14Z)-O(8,9))

(2-{[(2R)-3-(acetyloxy)-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,11Z,14Z)-O(8,9)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:3(5Z,11Z,14Z)-O(8,9)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,11Z,14Z)-O(8,9)/2:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:3(8Z,11Z,14Z)-O(5,6))

(2-{[(2R)-3-(acetyloxy)-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)-O(5,6)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:3(8Z,11Z,14Z)-O(5,6)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)-O(5,6)/2:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-{[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/2:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-{[(2R)-3-(acetyloxy)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/2:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-{[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/2:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-{[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/2:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-{[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/2:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-{[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/2:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-{[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/2:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-{[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/2:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-{[(2R)-3-(acetyloxy)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/2:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(2:0/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-{[(2R)-3-(acetyloxy)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(2:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/2:0)

(2-{[(2R)-2-(acetyloxy)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C30H52NO9P (601.3379512)


PC(20:4(5Z,7E,11Z,14Z)-OH(9)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,7E,11Z,14Z)-OH(9)/2:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

8-Deacetylsungpanconitine

8-Deacetylsungpanconitine

C33H47NO9 (601.3250652)


   
   

14-O-veratroylneoline

14-O-veratroylneoline

C33H47NO9 (601.3250652)


   
   
   
   
   
   

Ala Trp Tyr Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanoic acid

C32H35N5O7 (601.253636)


   

Ala Tyr Trp Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanoic acid

C32H35N5O7 (601.253636)


   

Ala Tyr Tyr Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C32H35N5O7 (601.253636)


   

Glu Lys Tyr Tyr

(4S)-4-amino-4-{[(1S)-5-amino-1-{[(1S)-1-{[(1S)-1-carboxy-2-(4-hydroxyphenyl)ethyl]carbamoyl}-2-(4-hydroxyphenyl)ethyl]carbamoyl}pentyl]carbamoyl}butanoic acid

C29H39N5O9 (601.2747644)


   

Glu Tyr Lys Tyr

(4S)-4-amino-4-{[(1S)-1-{[(1S)-5-amino-1-{[(1S)-1-carboxy-2-(4-hydroxyphenyl)ethyl]carbamoyl}pentyl]carbamoyl}-2-(4-hydroxyphenyl)ethyl]carbamoyl}butanoic acid

C29H39N5O9 (601.2747644)


   

Glu Tyr Tyr Lys

(2S)-6-amino-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carboxybutanamido]-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanamido]hexanoic acid

C29H39N5O9 (601.2747644)


   

Phe His Ile Trp

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Phe His Leu Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Phe His Trp Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanoic acid

C32H39N7O5 (601.3012524)


   

Phe His Trp Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanoic acid

C32H39N7O5 (601.3012524)


   

Phe Ile His Trp

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Phe Ile Trp His

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Phe Leu His Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-4-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Phe Leu Trp His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Phe Ser Trp Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-hydroxypropanamido]-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanoic acid

C32H35N5O7 (601.253636)


   

Phe Ser Tyr Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-hydroxypropanamido]-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C32H35N5O7 (601.253636)


   

Phe Trp His Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-methylpentanoic acid

C32H39N7O5 (601.3012524)


   

Phe Trp His Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanoic acid

C32H39N7O5 (601.3012524)


   

Phe Trp Ile His

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-3-(1H-imidazol-4-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Phe Trp Leu His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-3-(1H-imidazol-4-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Phe Trp Ser Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-hydroxypropanamido]-3-(4-hydroxyphenyl)propanoic acid

C32H35N5O7 (601.253636)


   

Phe Trp Tyr Ser

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-hydroxypropanoic acid

C32H35N5O7 (601.253636)


   

Phe Tyr Ser Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(4-hydroxyphenyl)propanamido]-3-hydroxypropanamido]-3-(1H-indol-3-yl)propanoic acid

C32H35N5O7 (601.253636)


   

Phe Tyr Trp Ser

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-hydroxypropanoic acid

C32H35N5O7 (601.253636)


   

His Phe Ile Trp

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

His Phe Leu Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

His Phe Trp Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanoic acid

C32H39N7O5 (601.3012524)


   

His Phe Trp Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanoic acid

C32H39N7O5 (601.3012524)


   

His Ile Phe Trp

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-methylpentanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

His Ile Trp Phe

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanoic acid

C32H39N7O5 (601.3012524)


   

His Leu Phe Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

His Leu Trp Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanoic acid

C32H39N7O5 (601.3012524)


   

His Pro Trp Tyr

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

His Pro Tyr Trp

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

His Trp Phe Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-3-methylpentanoic acid

C32H39N7O5 (601.3012524)


   

His Trp Phe Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-4-methylpentanoic acid

C32H39N7O5 (601.3012524)


   

His Trp Ile Phe

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-3-phenylpropanoic acid

C32H39N7O5 (601.3012524)


   

His Trp Leu Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-3-phenylpropanoic acid

C32H39N7O5 (601.3012524)


   

His Trp Pro Tyr

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-(4-hydroxyphenyl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

His Trp Tyr Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanoyl]pyrrolidine-2-carboxylic acid

C31H35N7O6 (601.2648690000001)


   

His Tyr Pro Trp

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

His Tyr Trp Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidine-2-carboxylic acid

C31H35N7O6 (601.2648690000001)


   

Ile Phe His Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Ile Phe Trp His

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Ile His Phe Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Ile His Trp Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanoic acid

C32H39N7O5 (601.3012524)


   

Ile Gln Arg Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-4-carbamoylbutanamido]-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanoic acid

C28H43N9O6 (601.3336138)


   

Ile Gln Trp Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanoic acid

C28H43N9O6 (601.3336138)


   

Ile Arg Gln Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-5-carbamimidamidopentanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanoic acid

C28H43N9O6 (601.3336138)


   

Ile Arg Trp Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanoic acid

C28H43N9O6 (601.3336138)


   

Ile Trp Phe His

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Ile Trp His Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanoic acid

C32H39N7O5 (601.3012524)


   

Ile Trp Gln Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]-5-carbamimidamidopentanoic acid

C28H43N9O6 (601.3336138)


   

Ile Trp Arg Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanamido]-4-carbamoylbutanoic acid

C28H43N9O6 (601.3336138)


   

Lys Glu Tyr Tyr

(4S)-4-{[(1S)-1-{[(1S)-1-carboxy-2-(4-hydroxyphenyl)ethyl]carbamoyl}-2-(4-hydroxyphenyl)ethyl]carbamoyl}-4-[(2S)-2,6-diaminohexanamido]butanoic acid

C29H39N5O9 (601.2747644)


   

Lys Tyr Glu Tyr

(4S)-4-{[(1S)-1-carboxy-2-(4-hydroxyphenyl)ethyl]carbamoyl}-4-[(2S)-2-[(2S)-2,6-diaminohexanamido]-3-(4-hydroxyphenyl)propanamido]butanoic acid

C29H39N5O9 (601.2747644)


   

Lys Tyr Tyr Glu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2,6-diaminohexanamido]-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanamido]pentanedioic acid

C29H39N5O9 (601.2747644)


   

Leu Phe His Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Leu Phe Trp His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Leu His Phe Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Leu His Trp Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanoic acid

C32H39N7O5 (601.3012524)


   

Leu Gln Arg Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-4-carbamoylbutanamido]-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanoic acid

C28H43N9O6 (601.3336138)


   

Leu Gln Trp Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanoic acid

C28H43N9O6 (601.3336138)


   

Leu Arg Gln Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-5-carbamimidamidopentanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanoic acid

C28H43N9O6 (601.3336138)


   

Leu Arg Trp Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanoic acid

C28H43N9O6 (601.3336138)


   

Leu Trp Phe His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Leu Trp His Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanoic acid

C32H39N7O5 (601.3012524)


   

Leu Trp Gln Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]-5-carbamimidamidopentanoic acid

C28H43N9O6 (601.3336138)


   

Leu Trp Arg Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanamido]-4-carbamoylbutanoic acid

C28H43N9O6 (601.3336138)


   

Asn Pro Trp Trp

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-carbamoylpropanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Asn Trp Pro Trp

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Asn Trp Trp Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidine-2-carboxylic acid

C31H35N7O6 (601.2648690000001)


   

Pro His Trp Tyr

(2S)-3-(4-hydroxyphenyl)-2-[(2S)-2-[(2S)-3-(1H-imidazol-4-yl)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]-3-(1H-indol-3-yl)propanamido]propanoic acid

C31H35N7O6 (601.2648690000001)


   

Pro His Tyr Trp

(2S)-2-[(2S)-3-(4-hydroxyphenyl)-2-[(2S)-3-(1H-imidazol-4-yl)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]propanamido]-3-(1H-indol-3-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Pro Asn Trp Trp

(2S)-2-[(2S)-2-[(2S)-3-carbamoyl-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Pro Trp His Tyr

(2S)-3-(4-hydroxyphenyl)-2-[(2S)-3-(1H-imidazol-4-yl)-2-[(2S)-3-(1H-indol-3-yl)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]propanamido]propanoic acid

C31H35N7O6 (601.2648690000001)


   

Pro Trp Asn Trp

(2S)-2-[(2S)-3-carbamoyl-2-[(2S)-3-(1H-indol-3-yl)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]propanamido]-3-(1H-indol-3-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Pro Trp Trp Asn

(2S)-3-carbamoyl-2-[(2S)-3-(1H-indol-3-yl)-2-[(2S)-3-(1H-indol-3-yl)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]propanamido]propanoic acid

C31H35N7O6 (601.2648690000001)


   

Pro Trp Tyr His

(2S)-2-[(2S)-3-(4-hydroxyphenyl)-2-[(2S)-3-(1H-indol-3-yl)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Pro Tyr His Trp

(2S)-2-[(2S)-2-[(2S)-3-(4-hydroxyphenyl)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Pro Tyr Trp His

(2S)-2-[(2S)-2-[(2S)-3-(4-hydroxyphenyl)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Gln Ile Arg Trp

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-methylpentanamido]-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanoic acid

C28H43N9O6 (601.3336138)


   

Gln Ile Trp Arg

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanoic acid

C28H43N9O6 (601.3336138)


   

Gln Leu Arg Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-methylpentanamido]-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanoic acid

C28H43N9O6 (601.3336138)


   

Gln Leu Trp Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanoic acid

C28H43N9O6 (601.3336138)


   

Gln Arg Ile Trp

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-5-carbamimidamidopentanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C28H43N9O6 (601.3336138)


   

Gln Arg Leu Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-5-carbamimidamidopentanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C28H43N9O6 (601.3336138)


   

Gln Arg Trp Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanoic acid

C28H43N9O6 (601.3336138)


   

Gln Arg Trp Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanoic acid

C28H43N9O6 (601.3336138)


   

Gln Trp Ile Arg

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-5-carbamimidamidopentanoic acid

C28H43N9O6 (601.3336138)


   

Gln Trp Leu Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-5-carbamimidamidopentanoic acid

C28H43N9O6 (601.3336138)


   

Gln Trp Arg Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanamido]-3-methylpentanoic acid

C28H43N9O6 (601.3336138)


   

Gln Trp Arg Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanamido]-4-methylpentanoic acid

C28H43N9O6 (601.3336138)


   

Arg Ile Gln Trp

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-methylpentanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanoic acid

C28H43N9O6 (601.3336138)


   

Arg Ile Trp Gln

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanoic acid

C28H43N9O6 (601.3336138)


   

Arg Leu Gln Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-methylpentanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanoic acid

C28H43N9O6 (601.3336138)


   

Arg Leu Trp Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanoic acid

C28H43N9O6 (601.3336138)


   

Arg Gln Ile Trp

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-carbamoylbutanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C28H43N9O6 (601.3336138)


   

Arg Gln Leu Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-carbamoylbutanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C28H43N9O6 (601.3336138)


   

Arg Gln Trp Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanoic acid

C28H43N9O6 (601.3336138)


   

Arg Gln Trp Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanoic acid

C28H43N9O6 (601.3336138)


   

Arg Thr Tyr Tyr

(2S)-2-[(2S)-2-[(2S,3R)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-hydroxybutanamido]-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanoic acid

C28H39N7O8 (601.2859974)


   

Arg Trp Ile Gln

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-4-carbamoylbutanoic acid

C28H43N9O6 (601.3336138)


   

Arg Trp Leu Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-4-carbamoylbutanoic acid

C28H43N9O6 (601.3336138)


   

Arg Trp Gln Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]-3-methylpentanoic acid

C28H43N9O6 (601.3336138)


   

Arg Trp Gln Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]-4-methylpentanoic acid

C28H43N9O6 (601.3336138)


   

Arg Tyr Thr Tyr

(2S)-2-[(2S,3R)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-(4-hydroxyphenyl)propanamido]-3-hydroxybutanamido]-3-(4-hydroxyphenyl)propanoic acid

C28H39N7O8 (601.2859974)


   

Arg Tyr Tyr Thr

(2S,3R)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-hydroxybutanoic acid

C28H39N7O8 (601.2859974)


   

Ser Phe Trp Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-hydroxypropanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanoic acid

C32H35N5O7 (601.253636)


   

Ser Phe Tyr Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-hydroxypropanamido]-3-phenylpropanamido]-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C32H35N5O7 (601.253636)


   

Ser Trp Phe Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-hydroxypropanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-3-(4-hydroxyphenyl)propanoic acid

C32H35N5O7 (601.253636)


   

Ser Trp Tyr Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-hydroxypropanamido]-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-phenylpropanoic acid

C32H35N5O7 (601.253636)


   

Ser Tyr Phe Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-hydroxypropanamido]-3-(4-hydroxyphenyl)propanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanoic acid

C32H35N5O7 (601.253636)


   

Ser Tyr Trp Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-hydroxypropanamido]-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanoic acid

C32H35N5O7 (601.253636)


   

Thr Arg Tyr Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-5-carbamimidamidopentanamido]-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanoic acid

C28H39N7O8 (601.2859974)


   

Thr Tyr Arg Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanamido]-3-(4-hydroxyphenyl)propanoic acid

C28H39N7O8 (601.2859974)


   

Thr Tyr Tyr Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanoic acid

C28H39N7O8 (601.2859974)


   

Trp Ala Tyr Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]propanamido]-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanoic acid

C32H35N5O7 (601.253636)


   

Trp Phe His Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-3-methylpentanoic acid

C32H39N7O5 (601.3012524)


   

Trp Phe His Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanoic acid

C32H39N7O5 (601.3012524)


   

Trp Phe Ile His

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-3-methylpentanamido]-3-(1H-imidazol-4-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Trp Phe Leu His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-4-methylpentanamido]-3-(1H-imidazol-4-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Trp Phe Ser Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-3-hydroxypropanamido]-3-(4-hydroxyphenyl)propanoic acid

C32H35N5O7 (601.253636)


   

Trp Phe Tyr Ser

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-3-(4-hydroxyphenyl)propanamido]-3-hydroxypropanoic acid

C32H35N5O7 (601.253636)


   

Trp His Phe Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-3-methylpentanoic acid

C32H39N7O5 (601.3012524)


   

Trp His Phe Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-4-methylpentanoic acid

C32H39N7O5 (601.3012524)


   

Trp His Ile Phe

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-methylpentanamido]-3-phenylpropanoic acid

C32H39N7O5 (601.3012524)


   

Trp His Leu Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanamido]-3-phenylpropanoic acid

C32H39N7O5 (601.3012524)


   

Trp His Pro Tyr

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-(4-hydroxyphenyl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Trp His Tyr Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(4-hydroxyphenyl)propanoyl]pyrrolidine-2-carboxylic acid

C31H35N7O6 (601.2648690000001)


   

Trp Ile Phe His

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Trp Ile His Phe

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanoic acid

C32H39N7O5 (601.3012524)


   

Trp Ile Gln Arg

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-4-carbamoylbutanamido]-5-carbamimidamidopentanoic acid

C28H43N9O6 (601.3336138)


   

Trp Ile Arg Gln

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-5-carbamimidamidopentanamido]-4-carbamoylbutanoic acid

C28H43N9O6 (601.3336138)


   

Trp Leu Phe His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanoic acid

C32H39N7O5 (601.3012524)


   

Trp Leu His Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanoic acid

C32H39N7O5 (601.3012524)


   

Trp Leu Gln Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-4-carbamoylbutanamido]-5-carbamimidamidopentanoic acid

C28H43N9O6 (601.3336138)


   

Trp Leu Arg Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-5-carbamimidamidopentanamido]-4-carbamoylbutanoic acid

C28H43N9O6 (601.3336138)


   

Trp Asn Pro Trp

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-carbamoylpropanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Trp Asn Trp Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-carbamoylpropanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidine-2-carboxylic acid

C31H35N7O6 (601.2648690000001)


   

Trp Pro His Tyr

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-(1H-imidazol-4-yl)propanamido]-3-(4-hydroxyphenyl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Trp Pro Asn Trp

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-carbamoylpropanamido]-3-(1H-indol-3-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Trp Pro Trp Asn

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanamido]-3-carbamoylpropanoic acid

C31H35N7O6 (601.2648690000001)


   

Trp Pro Tyr His

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-(4-hydroxyphenyl)propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Trp Gln Ile Arg

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]-3-methylpentanamido]-5-carbamimidamidopentanoic acid

C28H43N9O6 (601.3336138)


   

Trp Gln Leu Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]-4-methylpentanamido]-5-carbamimidamidopentanoic acid

C28H43N9O6 (601.3336138)


   

Trp Gln Arg Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]-5-carbamimidamidopentanamido]-3-methylpentanoic acid

C28H43N9O6 (601.3336138)


   

Trp Gln Arg Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]-5-carbamimidamidopentanamido]-4-methylpentanoic acid

C28H43N9O6 (601.3336138)


   

Trp Arg Ile Gln

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanamido]-3-methylpentanamido]-4-carbamoylbutanoic acid

C28H43N9O6 (601.3336138)


   

Trp Arg Leu Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanamido]-4-methylpentanamido]-4-carbamoylbutanoic acid

C28H43N9O6 (601.3336138)


   

Trp Arg Gln Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanamido]-4-carbamoylbutanamido]-3-methylpentanoic acid

C28H43N9O6 (601.3336138)


   

Trp Arg Gln Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanamido]-4-carbamoylbutanamido]-4-methylpentanoic acid

C28H43N9O6 (601.3336138)


   

Trp Ser Phe Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-hydroxypropanamido]-3-phenylpropanamido]-3-(4-hydroxyphenyl)propanoic acid

C32H35N5O7 (601.253636)


   

Trp Ser Tyr Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-hydroxypropanamido]-3-(4-hydroxyphenyl)propanamido]-3-phenylpropanoic acid

C32H35N5O7 (601.253636)


   

Trp Trp Asn Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-carbamoylpropanoyl]pyrrolidine-2-carboxylic acid

C31H35N7O6 (601.2648690000001)


   

Trp Trp Pro Asn

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-carbamoylpropanoic acid

C31H35N7O6 (601.2648690000001)


   

Trp Tyr Ala Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanamido]propanamido]-3-(4-hydroxyphenyl)propanoic acid

C32H35N5O7 (601.253636)


   

Trp Tyr Phe Ser

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-phenylpropanamido]-3-hydroxypropanoic acid

C32H35N5O7 (601.253636)


   

Trp Tyr His Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-(1H-imidazol-4-yl)propanoyl]pyrrolidine-2-carboxylic acid

C31H35N7O6 (601.2648690000001)


   

Trp Tyr Pro His

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl]formamido}-3-(1H-imidazol-4-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Trp Tyr Ser Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-hydroxypropanamido]-3-phenylpropanoic acid

C32H35N5O7 (601.253636)


   

Trp Tyr Tyr Ala

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanamido]propanoic acid

C32H35N5O7 (601.253636)


   

Tyr Ala Trp Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]propanamido]-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanoic acid

C32H35N5O7 (601.253636)


   

Tyr Ala Tyr Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]propanamido]-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C32H35N5O7 (601.253636)


   

Tyr Glu Lys Tyr

(4S)-4-{[(1S)-5-amino-1-{[(1S)-1-carboxy-2-(4-hydroxyphenyl)ethyl]carbamoyl}pentyl]carbamoyl}-4-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]butanoic acid

C29H39N5O9 (601.2747644)


   

Tyr Glu Tyr Lys

(2S)-6-amino-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-4-carboxybutanamido]-3-(4-hydroxyphenyl)propanamido]hexanoic acid

C29H39N5O9 (601.2747644)


   

Tyr Phe Ser Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-phenylpropanamido]-3-hydroxypropanamido]-3-(1H-indol-3-yl)propanoic acid

C32H35N5O7 (601.253636)


   

Tyr Phe Trp Ser

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-hydroxypropanoic acid

C32H35N5O7 (601.253636)


   

Tyr His Pro Trp

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(1H-imidazol-4-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Tyr His Trp Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidine-2-carboxylic acid

C31H35N7O6 (601.2648690000001)


   

Tyr Lys Glu Tyr

(4S)-4-[(2S)-6-amino-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]hexanamido]-4-{[(1S)-1-carboxy-2-(4-hydroxyphenyl)ethyl]carbamoyl}butanoic acid

C29H39N5O9 (601.2747644)


   

Tyr Lys Tyr Glu

(2S)-2-[(2S)-2-[(2S)-6-amino-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]hexanamido]-3-(4-hydroxyphenyl)propanamido]pentanedioic acid

C29H39N5O9 (601.2747644)


   

Tyr Pro His Trp

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl]formamido}-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Tyr Pro Trp His

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Tyr Arg Thr Tyr

(2S)-2-[(2S,3R)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanamido]-3-hydroxybutanamido]-3-(4-hydroxyphenyl)propanoic acid

C28H39N7O8 (601.2859974)


   

Tyr Arg Tyr Thr

(2S,3R)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanamido]-3-(4-hydroxyphenyl)propanamido]-3-hydroxybutanoic acid

C28H39N7O8 (601.2859974)


   

Tyr Ser Phe Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-hydroxypropanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanoic acid

C32H35N5O7 (601.253636)


   

Tyr Ser Trp Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-hydroxypropanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanoic acid

C32H35N5O7 (601.253636)


   

Tyr Thr Arg Tyr

(2S)-2-[(2S)-2-[(2S,3R)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-hydroxybutanamido]-5-carbamimidamidopentanamido]-3-(4-hydroxyphenyl)propanoic acid

C28H39N7O8 (601.2859974)


   

Tyr Thr Tyr Arg

(2S)-2-[(2S)-2-[(2S,3R)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-hydroxybutanamido]-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanoic acid

C28H39N7O8 (601.2859974)


   

Tyr Trp Ala Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanamido]propanamido]-3-(4-hydroxyphenyl)propanoic acid

C32H35N5O7 (601.253636)


   

Tyr Trp Phe Ser

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-3-hydroxypropanoic acid

C32H35N5O7 (601.253636)


   

Tyr Trp His Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanoyl]pyrrolidine-2-carboxylic acid

C31H35N7O6 (601.2648690000001)


   

Tyr Trp Pro His

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-(1H-imidazol-4-yl)propanoic acid

C31H35N7O6 (601.2648690000001)


   

Tyr Trp Ser Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-hydroxypropanamido]-3-phenylpropanoic acid

C32H35N5O7 (601.253636)


   

Tyr Trp Tyr Ala

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-(4-hydroxyphenyl)propanamido]propanoic acid

C32H35N5O7 (601.253636)


   

Tyr Tyr Ala Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanamido]propanamido]-3-(1H-indol-3-yl)propanoic acid

C32H35N5O7 (601.253636)


   

Tyr Tyr Glu Lys

(2S)-6-amino-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanamido]-4-carboxybutanamido]hexanoic acid

C29H39N5O9 (601.2747644)


   

Tyr Tyr Lys Glu

(2S)-2-[(2S)-6-amino-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanamido]hexanamido]pentanedioic acid

C29H39N5O9 (601.2747644)


   

Tyr Tyr Arg Thr

(2S,3R)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanamido]-3-hydroxybutanoic acid

C28H39N7O8 (601.2859974)


   

Tyr Tyr Thr Arg

(2S)-2-[(2S,3R)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-hydroxybutanamido]-5-carbamimidamidopentanoic acid

C28H39N7O8 (601.2859974)


   

Tyr Tyr Trp Ala

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-(1H-indol-3-yl)propanamido]propanoic acid

C32H35N5O7 (601.253636)


   

EEVLI

Glu-Glu-Val-Leu-Ile

C27H47N5O10 (601.3322762)


   

WLVAN

Trp-Leu-Val-Ala-Asn

C29H43N7O7 (601.3223808)


   

EGLRQ

Glu-Gly-Leu-Arg-Gln

C24H43N9O9 (601.3183588)


   

LIDEL

Leu-Ile-Asp-Glu-Leu

C27H47N5O10 (601.3322762)


   

IIEEV

Ile Ile Glu Glu Val

C27H47N5O10 (601.3322762)


   

LDQQV

Leu Asp Gln Gln Val

C25H43N7O10 (601.3071258)


   

fmoc-lys(meabz-boc)-oh

fmoc-lys(meabz-boc)-oh

C34H39N3O7 (601.2787864)


   

H-Gly-Arg-Gly-Asp-Thr-Pro-OH

H-Gly-Arg-Gly-Asp-Thr-Pro-OH

C23H39N9O10 (601.2819754)


   

H-Gly-Arg-Ala-Asp-Ser-Pro-OH trifluoroacetate salt

H-Gly-Arg-Ala-Asp-Ser-Pro-OH trifluoroacetate salt

C23H39N9O10 (601.2819754)


H-Gly-Arg-Ala-Asp-Ser-Pro-OH (GRADSP) is a negative control peptide of GRGDdSP[1].

   
   

Mal-amido-PEG6-NHS ester

Mal-amido-PEG6-NHS ester

C26H39N3O13 (601.2482764)


   

Sar-Arg-Gly-Asp-Ser-Pro-OH

Sar-Arg-Gly-Asp-Ser-Pro-OH

C23H39N9O10 (601.2819754)


   

Rocacetrapib

Rocacetrapib

C31H34F7NO3 (601.2426777999999)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent CKD-519 is a selective and potent cholesteryl ester transfer protein (CETP) inhibitor, which inhibits CETP-mediated transfer of cholesteryl ester in human serum with an IC50 of 2.3 nM[1].

   

[N-[N-(4-Methoxy-2,3,6-trimethylphenylsulfonyl)-L-aspartyl]-D-(4-amidino-phenylalanyl)]-piperidine

[N-[N-(4-Methoxy-2,3,6-trimethylphenylsulfonyl)-L-aspartyl]-D-(4-amidino-phenylalanyl)]-piperidine

C29H39N5O7S (601.2570064)


   

Neojiangyouaconitine

Neojiangyouaconitine

C33H47NO9 (601.3250652)


A diterpene alkaloid with formula C33H47NO9, originally isolated from Aconitum carmichaeli.

   

(4S,4aS,5aR,11aS,12aR)-9-[[2-(tert-butylamino)acetyl]amino]-4,7-bis(dimethylamino)-1,10,11a,12a-tetrahydroxy-3,11,12-trioxo-4a,5,5a,6-tetrahydro-4H-tetracene-2-carboxamide

(4S,4aS,5aR,11aS,12aR)-9-[[2-(tert-butylamino)acetyl]amino]-4,7-bis(dimethylamino)-1,10,11a,12a-tetrahydroxy-3,11,12-trioxo-4a,5,5a,6-tetrahydro-4H-tetracene-2-carboxamide

C29H39N5O9 (601.2747644)


   

PC(2:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PC(2:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C30H52NO9P (601.3379512)


   

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/2:0)

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PC(2:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C30H52NO9P (601.3379512)


   

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/2:0)

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PC(2:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C30H52NO9P (601.3379512)


   

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/2:0)

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PC(2:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C30H52NO9P (601.3379512)


   

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/2:0)

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:3(5Z,11Z,14Z)-O(8,9))

PC(2:0/20:3(5Z,11Z,14Z)-O(8,9))

C30H52NO9P (601.3379512)


   

PC(20:3(5Z,11Z,14Z)-O(8,9)/2:0)

PC(20:3(5Z,11Z,14Z)-O(8,9)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:3(8Z,11Z,14Z)-O(5,6))

PC(2:0/20:3(8Z,11Z,14Z)-O(5,6))

C30H52NO9P (601.3379512)


   

PC(20:3(8Z,11Z,14Z)-O(5,6)/2:0)

PC(20:3(8Z,11Z,14Z)-O(5,6)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C30H52NO9P (601.3379512)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/2:0)

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C30H52NO9P (601.3379512)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/2:0)

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C30H52NO9P (601.3379512)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/2:0)

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C30H52NO9P (601.3379512)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/2:0)

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PC(2:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C30H52NO9P (601.3379512)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/2:0)

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PC(2:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C30H52NO9P (601.3379512)


   

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/2:0)

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PC(2:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C30H52NO9P (601.3379512)


   

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/2:0)

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/2:0)

C30H52NO9P (601.3379512)


   

PC(2:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PC(2:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C30H52NO9P (601.3379512)


   

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/2:0)

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/2:0)

C30H52NO9P (601.3379512)


   

N-[(3S,9R,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

N-[(3S,9R,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

C32H47N3O6S (601.3185402)


   

N-[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-oxanecarboxamide

N-[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-oxanecarboxamide

C35H43N3O6 (601.3151698)


   

1-[[(2S,3R)-10-[[(cyclohexylamino)-oxomethyl]amino]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-(1-naphthalenyl)urea

1-[[(2S,3R)-10-[[(cyclohexylamino)-oxomethyl]amino]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-(1-naphthalenyl)urea

C34H43N5O5 (601.3264028)


   

1-[[(2S,3S)-10-[[(cyclohexylamino)-oxomethyl]amino]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-(1-naphthalenyl)urea

1-[[(2S,3S)-10-[[(cyclohexylamino)-oxomethyl]amino]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-(1-naphthalenyl)urea

C34H43N5O5 (601.3264028)


   

N-[(3R,9S,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

N-[(3R,9S,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

C32H47N3O6S (601.3185402)


   

N-[(3R,9R,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

N-[(3R,9R,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

C32H47N3O6S (601.3185402)


   

N-[(5S,6R,9R)-8-[(2,5-difluorophenyl)methyl]-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-3-methylbenzenesulfonamide

N-[(5S,6R,9R)-8-[(2,5-difluorophenyl)methyl]-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-3-methylbenzenesulfonamide

C31H37F2N3O5S (601.2421856)


   

1-[[(2R,3S)-10-[[(cyclohexylamino)-oxomethyl]amino]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-(1-naphthalenyl)urea

1-[[(2R,3S)-10-[[(cyclohexylamino)-oxomethyl]amino]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-(1-naphthalenyl)urea

C34H43N5O5 (601.3264028)


   

3-cyclohexyl-1-[[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-[[(1-naphthalenylamino)-oxomethyl]amino]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methylurea

3-cyclohexyl-1-[[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-[[(1-naphthalenylamino)-oxomethyl]amino]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methylurea

C34H43N5O5 (601.3264028)


   

3-cyclohexyl-1-[[(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-[[(1-naphthalenylamino)-oxomethyl]amino]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methylurea

3-cyclohexyl-1-[[(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-[[(1-naphthalenylamino)-oxomethyl]amino]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methylurea

C34H43N5O5 (601.3264028)


   

1-[[(2R,3R)-10-[[(cyclohexylamino)-oxomethyl]amino]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-(1-naphthalenyl)urea

1-[[(2R,3R)-10-[[(cyclohexylamino)-oxomethyl]amino]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-(1-naphthalenyl)urea

C34H43N5O5 (601.3264028)


   

3-cyclohexyl-1-[[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-[[(1-naphthalenylamino)-oxomethyl]amino]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methylurea

3-cyclohexyl-1-[[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-[[(1-naphthalenylamino)-oxomethyl]amino]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methylurea

C34H43N5O5 (601.3264028)


   

3-cyclohexyl-1-[[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-[[(1-naphthalenylamino)-oxomethyl]amino]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methylurea

3-cyclohexyl-1-[[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-[[(1-naphthalenylamino)-oxomethyl]amino]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methylurea

C34H43N5O5 (601.3264028)


   

3-cyclohexyl-1-[[(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-[[(1-naphthalenylamino)-oxomethyl]amino]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methylurea

3-cyclohexyl-1-[[(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-[[(1-naphthalenylamino)-oxomethyl]amino]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methylurea

C34H43N5O5 (601.3264028)


   

1-[[(2S,3R)-10-[[(cyclohexylamino)-oxomethyl]amino]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-(1-naphthalenyl)urea

1-[[(2S,3R)-10-[[(cyclohexylamino)-oxomethyl]amino]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-(1-naphthalenyl)urea

C34H43N5O5 (601.3264028)


   

3-cyclohexyl-1-[[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-[[(1-naphthalenylamino)-oxomethyl]amino]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methylurea

3-cyclohexyl-1-[[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-[[(1-naphthalenylamino)-oxomethyl]amino]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methylurea

C34H43N5O5 (601.3264028)


   

N-[(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-oxanecarboxamide

N-[(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-oxanecarboxamide

C35H43N3O6 (601.3151698)


   

N-[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-oxanecarboxamide

N-[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-oxanecarboxamide

C35H43N3O6 (601.3151698)


   

N-[(3S,9R,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

N-[(3S,9R,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

C32H47N3O6S (601.3185402)


   

N-[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-2-[[(4-methoxyphenyl)sulfonyl-methylamino]methyl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]cyclohexanecarboxamide

N-[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-2-[[(4-methoxyphenyl)sulfonyl-methylamino]methyl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]cyclohexanecarboxamide

C31H43N3O7S (601.2821568)


   

N-[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-2-[[(4-methoxyphenyl)sulfonyl-methylamino]methyl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]cyclohexanecarboxamide

N-[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-2-[[(4-methoxyphenyl)sulfonyl-methylamino]methyl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]cyclohexanecarboxamide

C31H43N3O7S (601.2821568)


   

N-[(3R,9R,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

N-[(3R,9R,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

C32H47N3O6S (601.3185402)


   

N-[(3S,9S,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

N-[(3S,9S,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

C32H47N3O6S (601.3185402)


   

N-[(3R,9S,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

N-[(3R,9S,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

C32H47N3O6S (601.3185402)


   

N-[(3R,9S,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

N-[(3R,9S,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

C32H47N3O6S (601.3185402)


   

N-[(3R,9R,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

N-[(3R,9R,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

C32H47N3O6S (601.3185402)


   

N-[(3S,9S,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

N-[(3S,9S,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzenesulfonamide

C32H47N3O6S (601.3185402)


   
   

2-amino-3-[hydroxy-[2-hydroxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-hydroxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C30H52NO9P (601.3379512)


   
   
   
   
   
   

2-amino-3-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentanoyloxypropoxy]phosphoryl]oxypropanoic acid

C29H48NO10P (601.3015677999999)


   

2-amino-3-[[3-heptanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C29H48NO10P (601.3015677999999)


   

2-amino-3-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-propanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-propanoyloxypropoxy]phosphoryl]oxypropanoic acid

C29H48NO10P (601.3015677999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

(2s)-3-{[(4s,5s)-4-({[(3s)-2-[(2r)-3-(dihydroxycarbonimidoyl)-2-pentylpropanoyl]-1,2-diazinan-3-yl](hydroxy)methylidene}amino)-5-methyl-3-oxoheptyl]sulfanyl}-2-[(1-hydroxyethylidene)amino]propanoic acid

(2s)-3-{[(4s,5s)-4-({[(3s)-2-[(2r)-3-(dihydroxycarbonimidoyl)-2-pentylpropanoyl]-1,2-diazinan-3-yl](hydroxy)methylidene}amino)-5-methyl-3-oxoheptyl]sulfanyl}-2-[(1-hydroxyethylidene)amino]propanoic acid

C27H47N5O8S (601.3145182000001)


   

11-ethyl-5,8-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl 4-methoxybenzoate

11-ethyl-5,8-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl 4-methoxybenzoate

C33H47NO9 (601.3250652)


   

4-methylaconitane-1,6,8,13,14,15,16,18-octol; (1α,6α,14α,15α,16β)-form,o6,o16,o18,n-tetra-me,14-benzoyl,8-ac

NA

C32H43NO10 (601.2886818000001)


{"Ingredient_id": "HBIN010682","Ingredient_name": "4-methylaconitane-1,6,8,13,14,15,16,18-octol; (1\u03b1,6\u03b1,14\u03b1,15\u03b1,16\u03b2)-form,o6,o16,o18,n-tetra-me,14-benzoyl,8-ac","Alias": "NA","Ingredient_formula": "C32H43NO10","Ingredient_Smile": "NA","Ingredient_weight": "601.68","OB_score": "NA","CAS_id": "110081-95-3","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "7778","PubChem_id": "NA","DrugBank_id": "NA"}

   

8-deacetylsungpanconitine

NA

C33H47NO9 (601.3250652)


{"Ingredient_id": "HBIN013692","Ingredient_name": "8-deacetylsungpanconitine","Alias": "NA","Ingredient_formula": "C33H47NO9","Ingredient_Smile": "CCN1CC2(C(CC(C34C2C(C(C31)C5(CC(C6CC4C5C6OC(=O)C7=CC=C(C=C7)OC)OC)O)OC)OC)O)COC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "4773","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(1s,2r,5s,8r,9r,11s,14r,15s,24s,26s,27s)-20-chloro-14,15,32,32-tetramethyl-23-methylidene-9-(prop-1-en-2-yl)-10,31-dioxa-17-azanonacyclo[24.4.2.0²,¹⁵.0⁵,¹⁴.0⁶,¹¹.0¹⁶,³⁰.0¹⁸,²⁹.0²¹,²⁸.0²⁴,²⁷]dotriaconta-6,16(30),18,20,28-pentaene-5,8-diol

(1s,2r,5s,8r,9r,11s,14r,15s,24s,26s,27s)-20-chloro-14,15,32,32-tetramethyl-23-methylidene-9-(prop-1-en-2-yl)-10,31-dioxa-17-azanonacyclo[24.4.2.0²,¹⁵.0⁵,¹⁴.0⁶,¹¹.0¹⁶,³⁰.0¹⁸,²⁹.0²¹,²⁸.0²⁴,²⁷]dotriaconta-6,16(30),18,20,28-pentaene-5,8-diol

C37H44ClNO4 (601.2958693999999)


   

15-(6-amino-2-hydroxy-3-methyl-5,8-dioxonaphthalen-1-yl)-5,7,9,11-tetrahydroxy-4,6,8,10,12,14-hexamethyl-15-oxopentadeca-2,13-dienoic acid

15-(6-amino-2-hydroxy-3-methyl-5,8-dioxonaphthalen-1-yl)-5,7,9,11-tetrahydroxy-4,6,8,10,12,14-hexamethyl-15-oxopentadeca-2,13-dienoic acid

C32H43NO10 (601.2886818000001)


   

(2r)-3-({4-[({2-[3-(dihydroxycarbonimidoyl)-2-pentylpropanoyl]-1,2-diazinan-3-yl}(hydroxy)methylidene)amino]-5-methyl-3-oxoheptyl}sulfanyl)-2-[(1-hydroxyethylidene)amino]propanoic acid

(2r)-3-({4-[({2-[3-(dihydroxycarbonimidoyl)-2-pentylpropanoyl]-1,2-diazinan-3-yl}(hydroxy)methylidene)amino]-5-methyl-3-oxoheptyl}sulfanyl)-2-[(1-hydroxyethylidene)amino]propanoic acid

C27H47N5O8S (601.3145182000001)


   

(2e,4r,5s,6s,7s,8s,9r,10r,11r,12s,13e)-15-(6-amino-2-hydroxy-3-methyl-5,8-dioxonaphthalen-1-yl)-5,7,9,11-tetrahydroxy-4,6,8,10,12,14-hexamethyl-15-oxopentadeca-2,13-dienoic acid

(2e,4r,5s,6s,7s,8s,9r,10r,11r,12s,13e)-15-(6-amino-2-hydroxy-3-methyl-5,8-dioxonaphthalen-1-yl)-5,7,9,11-tetrahydroxy-4,6,8,10,12,14-hexamethyl-15-oxopentadeca-2,13-dienoic acid

C32H43NO10 (601.2886818000001)


   

20-chloro-14,15,32,32-tetramethyl-23-methylidene-9-(prop-1-en-2-yl)-10,31-dioxa-17-azanonacyclo[24.4.2.0²,¹⁵.0⁵,¹⁴.0⁶,¹¹.0¹⁶,³⁰.0¹⁸,²⁹.0²¹,²⁸.0²⁴,²⁷]dotriaconta-6,16(30),18,20,28-pentaene-5,8-diol

20-chloro-14,15,32,32-tetramethyl-23-methylidene-9-(prop-1-en-2-yl)-10,31-dioxa-17-azanonacyclo[24.4.2.0²,¹⁵.0⁵,¹⁴.0⁶,¹¹.0¹⁶,³⁰.0¹⁸,²⁹.0²¹,²⁸.0²⁴,²⁷]dotriaconta-6,16(30),18,20,28-pentaene-5,8-diol

C37H44ClNO4 (601.2958693999999)


   

(1s,2r,3r,4r,5s,6s,8r,9r,10r,13s,16s,17r,18r)-11-ethyl-5,8-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl 4-methoxybenzoate

(1s,2r,3r,4r,5s,6s,8r,9r,10r,13s,16s,17r,18r)-11-ethyl-5,8-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl 4-methoxybenzoate

C33H47NO9 (601.3250652)


   

(1s,2r,5s,8r,9r,11r,14r,15s,24s,26s,27s)-20-chloro-14,15,32,32-tetramethyl-23-methylidene-9-(prop-1-en-2-yl)-10,31-dioxa-17-azanonacyclo[24.4.2.0²,¹⁵.0⁵,¹⁴.0⁶,¹¹.0¹⁶,³⁰.0¹⁸,²⁹.0²¹,²⁸.0²⁴,²⁷]dotriaconta-6,16(30),18,20,28-pentaene-5,8-diol

(1s,2r,5s,8r,9r,11r,14r,15s,24s,26s,27s)-20-chloro-14,15,32,32-tetramethyl-23-methylidene-9-(prop-1-en-2-yl)-10,31-dioxa-17-azanonacyclo[24.4.2.0²,¹⁵.0⁵,¹⁴.0⁶,¹¹.0¹⁶,³⁰.0¹⁸,²⁹.0²¹,²⁸.0²⁴,²⁷]dotriaconta-6,16(30),18,20,28-pentaene-5,8-diol

C37H44ClNO4 (601.2958693999999)


   

(1s,2r,5s,8r,9s,11r,14s,15r,24r,26s,27s)-20-chloro-14,15,32,32-tetramethyl-23-methylidene-9-(prop-1-en-2-yl)-10,31-dioxa-17-azanonacyclo[24.4.2.0²,¹⁵.0⁵,¹⁴.0⁶,¹¹.0¹⁶,³⁰.0¹⁸,²⁹.0²¹,²⁸.0²⁴,²⁷]dotriaconta-6,16(30),18,20,28-pentaene-5,8-diol

(1s,2r,5s,8r,9s,11r,14s,15r,24r,26s,27s)-20-chloro-14,15,32,32-tetramethyl-23-methylidene-9-(prop-1-en-2-yl)-10,31-dioxa-17-azanonacyclo[24.4.2.0²,¹⁵.0⁵,¹⁴.0⁶,¹¹.0¹⁶,³⁰.0¹⁸,²⁹.0²¹,²⁸.0²⁴,²⁷]dotriaconta-6,16(30),18,20,28-pentaene-5,8-diol

C37H44ClNO4 (601.2958693999999)


   

1,11-bis(acetyloxy)-13-(benzoyloxy)-3,14-dimethyl-10-methylidenetricyclo[10.3.0.0⁵,⁷]pentadec-3-en-9-yl pyridine-3-carboxylate

1,11-bis(acetyloxy)-13-(benzoyloxy)-3,14-dimethyl-10-methylidenetricyclo[10.3.0.0⁵,⁷]pentadec-3-en-9-yl pyridine-3-carboxylate

C35H39NO8 (601.2675534)


   

(1s,3e,5s,7s,9s,11r,12r,13s,14s)-1,11-bis(acetyloxy)-13-(benzoyloxy)-3,14-dimethyl-10-methylidenetricyclo[10.3.0.0⁵,⁷]pentadec-3-en-9-yl pyridine-3-carboxylate

(1s,3e,5s,7s,9s,11r,12r,13s,14s)-1,11-bis(acetyloxy)-13-(benzoyloxy)-3,14-dimethyl-10-methylidenetricyclo[10.3.0.0⁵,⁷]pentadec-3-en-9-yl pyridine-3-carboxylate

C35H39NO8 (601.2675534)