Exact Mass: 599.5318132

Exact Mass Matches: 599.5318132

Found 147 metabolites which its exact mass value is equals to given mass value 599.5318132, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Ceramide AP

2-Hydroxy-N-(1,3,4-trihydroxyoctadecan-2-yl)octadecanimidate

C36H73NO5 (599.5488448)


   

Cer(d18:1/20:4(6E,8Z,11Z,14Z)+=O(5))

(6E,8Z,11Z,14Z)-N-[(2S,3R,4E)-1,3-dihydroxyoctadec-4-en-2-yl]-5-oxoicosa-6,8,11,14-tetraenamide

C38H65NO4 (599.4913329999999)


Cer(d18:1/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:1/20:4(5Z,8Z,11Z,13E)+=O(15))

(5Z,8Z,11Z,13E)-N-[(2S,3R,4E)-1,3-dihydroxyoctadec-4-en-2-yl]-15-oxoicosa-5,8,11,13-tetraenamide

C38H65NO4 (599.4913329999999)


Cer(d18:1/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(5Z,8Z,11Z,14Z,16E,18R)-N-[(2S,3R,4E)-1,3-dihydroxyoctadec-4-en-2-yl]-18-hydroxyicosa-5,8,11,14,16-pentaenamide

C38H65NO4 (599.4913329999999)


Cer(d18:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(5Z,8Z,11Z,13E,17Z)-N-[(2S,3R,4E)-1,3-dihydroxyoctadec-4-en-2-yl]-16-hydroxyicosa-5,8,11,13,17-pentaenamide

C38H65NO4 (599.4913329999999)


Cer(d18:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(5Z,8Z,10E,14Z,17Z)-N-[(2S,3R,4E)-1,3-dihydroxyoctadec-4-en-2-yl]-12-hydroxyicosa-5,8,10,14,17-pentaenamide

C38H65NO4 (599.4913329999999)


Cer(d18:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(6E,8Z,11Z,14Z,17Z)-N-[(2S,3R,4E)-1,3-dihydroxyoctadec-4-en-2-yl]-5-hydroxyicosa-6,8,11,14,17-pentaenamide

C38H65NO4 (599.4913329999999)


Cer(d18:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

(5Z,8Z,11Z)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

(5Z,8Z)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:3(5Z,11Z,14Z)-O(8,9))

(5Z)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:3(8Z,11Z,14Z)-O(5,6))

N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

(5Z,8Z,11Z,14Z)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-20-hydroxyicosa-5,8,11,14-tetraenamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

(5R,6E,8Z,11Z,14Z)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-5-hydroxyicosa-6,8,11,14-tetraenamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(5Z,8Z,11Z,14Z,19S)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-19-hydroxyicosa-5,8,11,14-tetraenamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(5Z,8Z,11Z,14Z,18R)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-18-hydroxyicosa-5,8,11,14-tetraenamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

(5Z,8Z,11Z,14Z)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-17-hydroxyicosa-5,8,11,14-tetraenamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(5Z,8Z,11Z,14Z,16R)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-16-hydroxyicosa-5,8,11,14-tetraenamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

(5Z,8Z,11Z,13E,15S)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-15-hydroxyicosa-5,8,11,13-tetraenamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

(5Z,8Z,10E,12S,14Z)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-12-hydroxyicosa-5,8,10,14-tetraenamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

(5E,8Z,11R,12Z,14Z)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-11-hydroxyicosa-5,8,12,14-tetraenamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

Cer(d18:2(4E,14Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

(5E,7Z,11Z,14Z)-N-[(2S,3R,4E,14Z)-1,3-dihydroxyoctadeca-4,14-dien-2-yl]-9-hydroxyicosa-5,7,11,14-tetraenamide

C38H65NO4 (599.4913329999999)


Cer(d18:2(4E,14Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   
   

(2S,3S,4R)-2-[(R)-2-hydroxytricosanoylamino]-1,3,4-tridecanetriol

(2S,3S,4R)-2-[(R)-2-hydroxytricosanoylamino]-1,3,4-tridecanetriol

C36H73NO5 (599.5488448)


   
   

3,3,4,4,5,5-Hexabromo-1H,1H-2,2-bipyrrole

3,3,4,4,5,5-Hexabromo-1H,1H-2,2-bipyrrole

C8H2Br6N2 (599.5318132)


   

Cer[AP] t36:0

Cer[AP] t36:0

C36H73NO5 (599.5488448)


Found in mouse small intestine; TwoDicalId=2039; MgfFile=160907_Small_Intestine_normal_Neg_03; MgfId=1155

   

Cer(t18:0/18:0(2OH))

N-(2-hydroxyoctadecanoyl)-4R-hydroxysphinganine

C36H73NO5 (599.5488448)


   

Cer(t20:0/16:0(2OH))

N-(2-hydroxyhexadecanoyl)-4R-hydroxyeicosasphinganine

C36H73NO5 (599.5488448)


   

Cer[AP]

N-(2-hydroxyhexadecanoyl)-4R-hydroxyeicosasphinganine

C36H73NO5 (599.5488448)


   

Cer 13:0;3O/23:0;(2OH)

Cer 13:0;3O/23:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer(d18:1/20:4(6E,8Z,11Z,14Z)+=O(5))

Cer(d18:1/20:4(6E,8Z,11Z,14Z)+=O(5))

C38H65NO4 (599.4913329999999)


   

Cer(d18:1/20:4(5Z,8Z,11Z,13E)+=O(15))

Cer(d18:1/20:4(5Z,8Z,11Z,13E)+=O(15))

C38H65NO4 (599.4913329999999)


   

Cer(d18:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

Cer(d18:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C38H65NO4 (599.4913329999999)


   

Cer(d18:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

Cer(d18:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C38H65NO4 (599.4913329999999)


   

Cer(d18:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

Cer(d18:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C38H65NO4 (599.4913329999999)


   

Cer(d18:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

Cer(d18:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

Cer(d18:2(4E,14Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

Cer(d18:2(4E,14Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:3(5Z,11Z,14Z)-O(8,9))

Cer(d18:2(4E,14Z)/20:3(5Z,11Z,14Z)-O(8,9))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:3(8Z,11Z,14Z)-O(5,6))

Cer(d18:2(4E,14Z)/20:3(8Z,11Z,14Z)-O(5,6))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

Cer(d18:2(4E,14Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

Cer(d18:2(4E,14Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

Cer(d18:2(4E,14Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C38H65NO4 (599.4913329999999)


   

Cer(d18:2(4E,14Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

Cer(d18:2(4E,14Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

C38H65NO4 (599.4913329999999)


   

N-(2-hydroxynonadecanoyl)-4-hydroxy-15-methylhexadecasphinganine

N-(2-hydroxynonadecanoyl)-4-hydroxy-15-methylhexadecasphinganine

C36H73NO5 (599.5488448)


   
   

(18Z,21Z,24Z,27Z)-N-[(E)-1,3-dihydroxynon-4-en-2-yl]triaconta-18,21,24,27-tetraenamide

(18Z,21Z,24Z,27Z)-N-[(E)-1,3-dihydroxynon-4-en-2-yl]triaconta-18,21,24,27-tetraenamide

C39H69NO3 (599.5277163999999)


   

(15Z,18Z,21Z,24Z,27Z)-N-(1,3-dihydroxynonan-2-yl)triaconta-15,18,21,24,27-pentaenamide

(15Z,18Z,21Z,24Z,27Z)-N-(1,3-dihydroxynonan-2-yl)triaconta-15,18,21,24,27-pentaenamide

C39H69NO3 (599.5277163999999)


   

(13Z,16Z,19Z,22Z,25Z)-N-(1,3-dihydroxyundecan-2-yl)octacosa-13,16,19,22,25-pentaenamide

(13Z,16Z,19Z,22Z,25Z)-N-(1,3-dihydroxyundecan-2-yl)octacosa-13,16,19,22,25-pentaenamide

C39H69NO3 (599.5277163999999)


   

(12Z,15Z,18Z)-N-[(4E,8E)-1,3-dihydroxytrideca-4,8-dien-2-yl]hexacosa-12,15,18-trienamide

(12Z,15Z,18Z)-N-[(4E,8E)-1,3-dihydroxytrideca-4,8-dien-2-yl]hexacosa-12,15,18-trienamide

C39H69NO3 (599.5277163999999)


   

(6Z,9Z,12Z,15Z)-N-[(E)-1,3-dihydroxyhenicos-4-en-2-yl]octadeca-6,9,12,15-tetraenamide

(6Z,9Z,12Z,15Z)-N-[(E)-1,3-dihydroxyhenicos-4-en-2-yl]octadeca-6,9,12,15-tetraenamide

C39H69NO3 (599.5277163999999)


   

(9Z,12Z)-N-[(4E,8E,12E)-1,3-dihydroxyicosa-4,8,12-trien-2-yl]nonadeca-9,12-dienamide

(9Z,12Z)-N-[(4E,8E,12E)-1,3-dihydroxyicosa-4,8,12-trien-2-yl]nonadeca-9,12-dienamide

C39H69NO3 (599.5277163999999)


   

(9Z,12Z)-N-[(4E,8E,12E)-1,3-dihydroxyhenicosa-4,8,12-trien-2-yl]octadeca-9,12-dienamide

(9Z,12Z)-N-[(4E,8E,12E)-1,3-dihydroxyhenicosa-4,8,12-trien-2-yl]octadeca-9,12-dienamide

C39H69NO3 (599.5277163999999)


   

(7Z,10Z,13Z,16Z,19Z)-N-(1,3-dihydroxyheptadecan-2-yl)docosa-7,10,13,16,19-pentaenamide

(7Z,10Z,13Z,16Z,19Z)-N-(1,3-dihydroxyheptadecan-2-yl)docosa-7,10,13,16,19-pentaenamide

C39H69NO3 (599.5277163999999)


   

(11Z,14Z)-N-[(4E,8E,12E)-1,3-dihydroxyoctadeca-4,8,12-trien-2-yl]henicosa-11,14-dienamide

(11Z,14Z)-N-[(4E,8E,12E)-1,3-dihydroxyoctadeca-4,8,12-trien-2-yl]henicosa-11,14-dienamide

C39H69NO3 (599.5277163999999)


   

(13Z,16Z)-N-[(4E,8E,12E)-1,3-dihydroxypentadeca-4,8,12-trien-2-yl]tetracosa-13,16-dienamide

(13Z,16Z)-N-[(4E,8E,12E)-1,3-dihydroxypentadeca-4,8,12-trien-2-yl]tetracosa-13,16-dienamide

C39H69NO3 (599.5277163999999)


   

(10Z,13Z,16Z)-N-[(4E,8E)-1,3-dihydroxypentadeca-4,8-dien-2-yl]tetracosa-10,13,16-trienamide

(10Z,13Z,16Z)-N-[(4E,8E)-1,3-dihydroxypentadeca-4,8-dien-2-yl]tetracosa-10,13,16-trienamide

C39H69NO3 (599.5277163999999)


   

(10Z,13Z,16Z)-N-[(4E,8E)-1,3-dihydroxyheptadeca-4,8-dien-2-yl]docosa-10,13,16-trienamide

(10Z,13Z,16Z)-N-[(4E,8E)-1,3-dihydroxyheptadeca-4,8-dien-2-yl]docosa-10,13,16-trienamide

C39H69NO3 (599.5277163999999)


   

(5Z,8Z,11Z,14Z,17Z)-N-(1,3-dihydroxynonadecan-2-yl)icosa-5,8,11,14,17-pentaenamide

(5Z,8Z,11Z,14Z,17Z)-N-(1,3-dihydroxynonadecan-2-yl)icosa-5,8,11,14,17-pentaenamide

C39H69NO3 (599.5277163999999)


   

(13Z,16Z)-N-[(4E,8E,12E)-1,3-dihydroxyheptadeca-4,8,12-trien-2-yl]docosa-13,16-dienamide

(13Z,16Z)-N-[(4E,8E,12E)-1,3-dihydroxyheptadeca-4,8,12-trien-2-yl]docosa-13,16-dienamide

C39H69NO3 (599.5277163999999)


   

(8Z,11Z,14Z,17Z)-N-[(E)-1,3-dihydroxynonadec-4-en-2-yl]icosa-8,11,14,17-tetraenamide

(8Z,11Z,14Z,17Z)-N-[(E)-1,3-dihydroxynonadec-4-en-2-yl]icosa-8,11,14,17-tetraenamide

C39H69NO3 (599.5277163999999)


   

(9Z,12Z,15Z)-N-[(4E,8E)-1,3-dihydroxyhenicosa-4,8-dien-2-yl]octadeca-9,12,15-trienamide

(9Z,12Z,15Z)-N-[(4E,8E)-1,3-dihydroxyhenicosa-4,8-dien-2-yl]octadeca-9,12,15-trienamide

C39H69NO3 (599.5277163999999)


   

(11Z,14Z,17Z)-N-[(4E,8E)-1,3-dihydroxynonadeca-4,8-dien-2-yl]icosa-11,14,17-trienamide

(11Z,14Z,17Z)-N-[(4E,8E)-1,3-dihydroxynonadeca-4,8-dien-2-yl]icosa-11,14,17-trienamide

C39H69NO3 (599.5277163999999)


   

(14Z,17Z,20Z,23Z)-N-[(E)-1,3-dihydroxytridec-4-en-2-yl]hexacosa-14,17,20,23-tetraenamide

(14Z,17Z,20Z,23Z)-N-[(E)-1,3-dihydroxytridec-4-en-2-yl]hexacosa-14,17,20,23-tetraenamide

C39H69NO3 (599.5277163999999)


   

(12Z,15Z,18Z,21Z)-N-[(E)-1,3-dihydroxypentadec-4-en-2-yl]tetracosa-12,15,18,21-tetraenamide

(12Z,15Z,18Z,21Z)-N-[(E)-1,3-dihydroxypentadec-4-en-2-yl]tetracosa-12,15,18,21-tetraenamide

C39H69NO3 (599.5277163999999)


   

(11Z,14Z,17Z,20Z,23Z)-N-(1,3-dihydroxytridecan-2-yl)hexacosa-11,14,17,20,23-pentaenamide

(11Z,14Z,17Z,20Z,23Z)-N-(1,3-dihydroxytridecan-2-yl)hexacosa-11,14,17,20,23-pentaenamide

C39H69NO3 (599.5277163999999)


   

(4Z,7Z,10Z,13Z)-N-[(E)-1,3-dihydroxytricos-4-en-2-yl]hexadeca-4,7,10,13-tetraenamide

(4Z,7Z,10Z,13Z)-N-[(E)-1,3-dihydroxytricos-4-en-2-yl]hexadeca-4,7,10,13-tetraenamide

C39H69NO3 (599.5277163999999)


   

(10Z,13Z,16Z,19Z)-N-[(E)-1,3-dihydroxyheptadec-4-en-2-yl]docosa-10,13,16,19-tetraenamide

(10Z,13Z,16Z,19Z)-N-[(E)-1,3-dihydroxyheptadec-4-en-2-yl]docosa-10,13,16,19-tetraenamide

C39H69NO3 (599.5277163999999)


   

(3Z,6Z,9Z,12Z,15Z)-N-(1,3-dihydroxyhenicosan-2-yl)octadeca-3,6,9,12,15-pentaenamide

(3Z,6Z,9Z,12Z,15Z)-N-(1,3-dihydroxyhenicosan-2-yl)octadeca-3,6,9,12,15-pentaenamide

C39H69NO3 (599.5277163999999)


   

(7Z,10Z,13Z)-N-[(4E,8E)-1,3-dihydroxytricosa-4,8-dien-2-yl]hexadeca-7,10,13-trienamide

(7Z,10Z,13Z)-N-[(4E,8E)-1,3-dihydroxytricosa-4,8-dien-2-yl]hexadeca-7,10,13-trienamide

C39H69NO3 (599.5277163999999)


   

(16Z,19Z,22Z,25Z)-N-[(E)-1,3-dihydroxyundec-4-en-2-yl]octacosa-16,19,22,25-tetraenamide

(16Z,19Z,22Z,25Z)-N-[(E)-1,3-dihydroxyundec-4-en-2-yl]octacosa-16,19,22,25-tetraenamide

C39H69NO3 (599.5277163999999)


   

(9Z,12Z,15Z,18Z,21Z)-N-(1,3-dihydroxypentadecan-2-yl)tetracosa-9,12,15,18,21-pentaenamide

(9Z,12Z,15Z,18Z,21Z)-N-(1,3-dihydroxypentadecan-2-yl)tetracosa-9,12,15,18,21-pentaenamide

C39H69NO3 (599.5277163999999)


   

(9Z,12Z)-N-[(4E,8E,12E)-1,3-dihydroxydocosa-4,8,12-trien-2-yl]heptadeca-9,12-dienamide

(9Z,12Z)-N-[(4E,8E,12E)-1,3-dihydroxydocosa-4,8,12-trien-2-yl]heptadeca-9,12-dienamide

C39H69NO3 (599.5277163999999)


   

(9Z,12Z)-N-[(4E,8E,12E)-1,3-dihydroxytricosa-4,8,12-trien-2-yl]hexadeca-9,12-dienamide

(9Z,12Z)-N-[(4E,8E,12E)-1,3-dihydroxytricosa-4,8,12-trien-2-yl]hexadeca-9,12-dienamide

C39H69NO3 (599.5277163999999)


   

Cer 8:0;3O/28:0;(2OH)

Cer 8:0;3O/28:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 9:0;3O/27:0;(2OH)

Cer 9:0;3O/27:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 10:0;3O/26:0;(2OH)

Cer 10:0;3O/26:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 11:0;3O/25:0;(2OH)

Cer 11:0;3O/25:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 12:0;3O/24:0;(2OH)

Cer 12:0;3O/24:0;(2OH)

C36H73NO5 (599.5488448)


   

(11Z,14Z)-N-[(4E,8E,12E)-1,3-dihydroxynonadeca-4,8,12-trien-2-yl]icosa-11,14-dienamide

(11Z,14Z)-N-[(4E,8E,12E)-1,3-dihydroxynonadeca-4,8,12-trien-2-yl]icosa-11,14-dienamide

C39H69NO3 (599.5277163999999)


   

Cer 20:0;3O/16:0;(2OH)

Cer 20:0;3O/16:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 19:0;3O/17:0;(2OH)

Cer 19:0;3O/17:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 21:0;3O/15:0;(2OH)

Cer 21:0;3O/15:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 22:0;3O/14:0;(2OH)

Cer 22:0;3O/14:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 15:0;3O/21:0;(2OH)

Cer 15:0;3O/21:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 23:0;3O/13:0;(2OH)

Cer 23:0;3O/13:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 16:0;3O/20:0;(2OH)

Cer 16:0;3O/20:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 14:0;3O/22:0;(2OH)

Cer 14:0;3O/22:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 17:0;3O/19:0;(2OH)

Cer 17:0;3O/19:0;(2OH)

C36H73NO5 (599.5488448)


   

Cer 24:0;3O/12:0;(2OH)

Cer 24:0;3O/12:0;(2OH)

C36H73NO5 (599.5488448)


   

(4Z,7Z)-N-[(4E,8E,12E)-1,3-dihydroxytricosa-4,8,12-trien-2-yl]hexadeca-4,7-dienamide

(4Z,7Z)-N-[(4E,8E,12E)-1,3-dihydroxytricosa-4,8,12-trien-2-yl]hexadeca-4,7-dienamide

C39H69NO3 (599.5277163999999)


   

(18Z,21Z)-N-[(4E,8E,12E)-1,3-dihydroxypentadeca-4,8,12-trien-2-yl]tetracosa-18,21-dienamide

(18Z,21Z)-N-[(4E,8E,12E)-1,3-dihydroxypentadeca-4,8,12-trien-2-yl]tetracosa-18,21-dienamide

C39H69NO3 (599.5277163999999)


   

(10Z,12Z)-N-[(4E,8E,12E)-1,3-dihydroxyhenicosa-4,8,12-trien-2-yl]octadeca-10,12-dienamide

(10Z,12Z)-N-[(4E,8E,12E)-1,3-dihydroxyhenicosa-4,8,12-trien-2-yl]octadeca-10,12-dienamide

C39H69NO3 (599.5277163999999)


   

(14Z,16Z)-N-[(4E,8E,12E)-1,3-dihydroxyheptadeca-4,8,12-trien-2-yl]docosa-14,16-dienamide

(14Z,16Z)-N-[(4E,8E,12E)-1,3-dihydroxyheptadeca-4,8,12-trien-2-yl]docosa-14,16-dienamide

C39H69NO3 (599.5277163999999)


   

(5E,8E,11E,14E)-N-[(E,2S,3R)-1,3-dihydroxypentadec-8-en-2-yl]tetracosa-5,8,11,14-tetraenamide

(5E,8E,11E,14E)-N-[(E,2S,3R)-1,3-dihydroxypentadec-8-en-2-yl]tetracosa-5,8,11,14-tetraenamide

C39H69NO3 (599.5277163999999)


   

(5E,8E,11E,14E)-N-[(E,2S,3R)-1,3-dihydroxypentadec-4-en-2-yl]tetracosa-5,8,11,14-tetraenamide

(5E,8E,11E,14E)-N-[(E,2S,3R)-1,3-dihydroxypentadec-4-en-2-yl]tetracosa-5,8,11,14-tetraenamide

C39H69NO3 (599.5277163999999)


   

N-(2-hydroxyoctadecanoyl)-hydroxysphinganine

N-(2-hydroxyoctadecanoyl)-hydroxysphinganine

C36H73NO5 (599.5488448)


   

N-(2-hydroxyhexadecanoyl)-4R-hydroxyeicosasphinganine

N-(2-hydroxyhexadecanoyl)-4R-hydroxyeicosasphinganine

C36H73NO5 (599.5488448)


   

N-(2-hydroxyoctadecanoyl)-4-hydroxysphinganine

N-(2-hydroxyoctadecanoyl)-4-hydroxysphinganine

C36H73NO5 (599.5488448)


A phytoceramide in which the ceramide N-acyl group is specified as 2-hydroxyoctadecanoyl

   

Cer(40:4)

Cer(m17:0_23:4)

C40H73NO2 (599.5640997999999)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   

Cer 14:0;O3/22:0;2OH

Cer 14:0;O3/22:0;2OH

C36H73NO5 (599.5488448)


   

Cer 14:0;O3/22:0;3OH

Cer 14:0;O3/22:0;3OH

C36H73NO5 (599.5488448)


   
   

Cer 15:0;O3/21:0;2OH

Cer 15:0;O3/21:0;2OH

C36H73NO5 (599.5488448)


   

Cer 15:0;O3/21:0;3OH

Cer 15:0;O3/21:0;3OH

C36H73NO5 (599.5488448)


   
   

Cer 16:0;O3/20:0;2OH

Cer 16:0;O3/20:0;2OH

C36H73NO5 (599.5488448)


   

Cer 16:0;O3/20:0;3OH

Cer 16:0;O3/20:0;3OH

C36H73NO5 (599.5488448)


   
   
   

Cer 17:0;O3/19:0;2OH

Cer 17:0;O3/19:0;2OH

C36H73NO5 (599.5488448)


   

Cer 17:0;O3/19:0;3OH

Cer 17:0;O3/19:0;3OH

C36H73NO5 (599.5488448)


   
   

Cer 18:0;O3/18:0;2OH

Cer 18:0;O3/18:0;2OH

C36H73NO5 (599.5488448)


   

Cer 18:0;O3/18:0;3OH

Cer 18:0;O3/18:0;3OH

C36H73NO5 (599.5488448)


   
   

Cer 19:0;O3/17:0;2OH

Cer 19:0;O3/17:0;2OH

C36H73NO5 (599.5488448)


   

Cer 19:0;O3/17:0;3OH

Cer 19:0;O3/17:0;3OH

C36H73NO5 (599.5488448)


   
   

Cer 20:0;O3/16:0;2OH

Cer 20:0;O3/16:0;2OH

C36H73NO5 (599.5488448)


   

Cer 20:0;O3/16:0;3OH

Cer 20:0;O3/16:0;3OH

C36H73NO5 (599.5488448)


   
   

Cer 21:0;O3/15:0;2OH

Cer 21:0;O3/15:0;2OH

C36H73NO5 (599.5488448)


   

Cer 21:0;O3/15:0;3OH

Cer 21:0;O3/15:0;3OH

C36H73NO5 (599.5488448)


   
   

Cer 22:0;O3/14:0;2OH

Cer 22:0;O3/14:0;2OH

C36H73NO5 (599.5488448)


   

Cer 22:0;O3/14:0;3OH

Cer 22:0;O3/14:0;3OH

C36H73NO5 (599.5488448)


   
   
   

Cer(39:5)

Cer(d18:1_21:4)

C39H69NO3 (599.5277163999999)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved