Exact Mass: 594.3321
Exact Mass Matches: 594.3321
Found 435 metabolites which its exact mass value is equals to given mass value 594.3321
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Urobilin
Glucosyl-4,4-diaponeurosporenoate
7,8-Dehydroastaxanthianthin
7,8-Dehydroastaxanthianthin is found in crustaceans. 7,8-Dehydroastaxanthianthin is found in lobster eggs. Found in lobster eggs
Stercobilin
Stercobilin is the tetrapyrrole chemical compound that is primarily responsible for the brown color of feces. It was originally isolated from feces in 1932. Stercobilin is formed through the reduction of its parent compound stercblinogen. Urobilinogen is actually generated through the degradation of heme, the red pigment in haemoglobin and red blood cells (RBCs). RBCs have a life span of about 120 days. When the RBCs have reached the end of their useful lifespan, the cells are engulfed by macrophages and their constituents recycled or disposed of. Heme is broken down when the heme ring is opened by the enzyme known as heme oxygenase, which is found in the endoplasmic reticulum of the macrophages. The oxidation process produces the linear tetrapyrrole known as biliverdin along with ferric iron (Fe3+), and carbon monoxide (CO). In the next reaction, a second methylene group (located between rings III and IV of the porphyrin ring) is reduced by the enzyme known as biliverdin reductase, producing bilirubin. Bilirubin is significantly less extensively conjugated than biliverdin. This reduction causes a change in the color of the biliverdin molecule from blue-green (vert or verd for green) to yellow-red, which is the color of bilirubin (ruby or rubi for red). In plasma virtually all the bilirubin is tightly bound to plasma proteins, largely albumin, because it is only sparingly soluble in aqueous solutions at physiological pH. In the sinusoids unconjugated bilirubin dissociates from albumin, enters the liver cells across the cell membrane through non-ionic diffusion to the smooth endoplasmatic reticulum. In hepatocytes, bilirubin-UDP-glucuronyltransferase (bilirubin-UGT) adds 2 additional glucuronic acid molecules to bilirubin to produce the more water-soluble version of the molecule known as bilirubin diglucuronide. The bilirubin diglucuronide is transferred rapidly across the canalicular membrane into the bile canaliculi where it is then excreted as bile into the large intestine. The bilirubin is further degraded (reduced) by microbes present in the large intestine to form a colorless product known as urobilinogen. Urobilinogen that remains in the colon can either be reduced to stercobilinogen and finally oxidized to stercobilin, or it can be directly reduced to stercobilin. Stercobilin is responsible for the brown color of human feces. Stercobilin is then excreted in the feces. It is a microbial metabolite.
Cholyltryptophan
Cholyltryptophan belongs to a class of molecules known as bile acid-amino acid conjugates. These are bile acid conjugates that consist of a primary bile acid such as cholic acid, doxycholic acid and chenodeoxycholic acid, conjugated to an amino acid. Cholyltryptophan consists of the bile acid cholic acid conjugated to the amino acid Tryptophan conjugated at the C24 acyl site.Bile acids play an important role in regulating various physiological systems, such as fat digestion, cholesterol metabolism, vitamin absorption, liver function, and enterohepatic circulation through their combined signaling, detergent, and antimicrobial mechanisms (PMID: 34127070). Bile acids also act as detergents in the gut and support the absorption of fats through the intestinal membrane. These same properties allow for the disruption of bacterial membranes, thereby allowing them to serve a bacteriocidal or bacteriostatic function. In humans (and other mammals) bile acids are normally conjugated with the amino acids glycine and taurine by the liver. This conjugation catalyzed by two liver enzymes, bile acid CoA ligase (BAL) and bile acid CoA: amino acid N-acyltransferase (BAT). Glycine and taurine bound BAs are also referred to as bile salts due to their decreased pKa and complete ionization resulting in these compounds being present as anions in vivo. Unlike glycine and taurine-conjugated bile acids, these recently discovered bile acids, such as Cholyltryptophan, are produced by the gut microbiota, making them secondary bile acids (PMID: 32103176) or microbially conjugated bile acids (MCBAs) (PMID: 34127070). Evidence suggests that these bile acid-amino acid conjugates are produced by microbes belonging to Clostridia species (PMID: 32103176). These unusual bile acid-amino acid conjugates are found in higher frequency in patients with inflammatory bowel disease (IBD), cystic fibrosis (CF) and in infants (PMID: 32103176). Cholyltryptophan appears to act as an agonist for the farnesoid X receptor (FXR) and it can also lead to reduced expression of bile acid synthesis genes (PMID: 32103176). It currently appears that microbially conjugated bile acids (MCBAs) or amino acid-bile acid conjugates are only conjugated to cholic acid, deoxycholic acid and chenodeoxycholic acid (PMID: 34127070). It has been estimated that if microbial conjugation of bile acids is very promiscuous and occurs for all potential oxidized, epimerized, and dehydroxylated states of each hydroxyl group present on cholic acid (C3, C7, C12) in addition to ring orientation, the total number of potential human bile acid conjugates could be over 2800 (PMID: 34127070).
Tyr-ile-gly-ser-arg
PA(8:0/18:1(12Z)-2OH(9,10))
PA(8:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-2OH(9,10)/8:0)
PA(18:1(12Z)-2OH(9,10)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/8:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
Capsicoside A1
Capsicoside a1 is a member of the class of compounds known as steroidal saponins. Steroidal saponins are saponins in which the aglycone moiety is a steroid. The steroidal aglycone is usually a spirostane, furostane, spirosolane, solanidane, or curcubitacin derivative. Capsicoside a1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Capsicoside a1 can be found in a number of food items such as red bell pepper, yellow bell pepper, pepper (c. annuum), and orange bell pepper, which makes capsicoside a1 a potential biomarker for the consumption of these food products.
(3S,3S,4R)-4-keto-4-Hydroxyalloxanthin
4-Keto-4-hydroxyalloxanthin
4,6,8,12,14,16-hexahydroxy-3-ethyl-15-carboxyl-27,28-dimethyloxacyclooctacosa-17,19,21,23,25-pentaen-2-one|strevertene B
sarmentogenin-3-O-6-O-acetyl-beta-D-allopyranoside
3-O-angeloyl-17-[(2Z,4E,6Z)-deca-2,4,6-trienoyloxy]ingenol|[(1R,1aR,2S,5R,5aS,6S,8aS,9R,10aR)-1a,2,5,5a,6,9,10,10a-octahydro-5,5a-dihydroxy-4-(hydroxymethyl)-1,7,9-trimethyl-6-[(2Z)-2-methyl-1-oxobutoxy]-11-oxo-1H-2,8a-methanocyclopenta[a]cyclopropa[e]cyclodecen-1-yl]methyl (2Z,4E,6Z)-deca-2,4,6-trienoate
16beta-[(beta-D-glucopyranosyl)oxy]-3beta,7beta-dihydroxycholest-5-en-23-one|16??-[(??-D-Glucopyranosyl)-oxy]-3??,7??-dihydroxycholest-5-en-23-one
(25R)-6alpha-hydroxy-5alpha-spirostan-3beta-yl beta-D-glucopyranoside|chlorogenin 3beta-O-beta-D-glucopyranoside
(25R)-2alpha,3beta,17alpha-trihydroxy-spirost-5-en-1beta-yl O-beta-D-xylopyranoside|atropuroside C
4,6,8,12,14,16-hexahydroxy-15-carboxyl-3,27-dimethyl-28-ethyloxacyclooctacosa-17,19,21,23,25-pentaen-2-one|strevertene C
-16alpha-acetoxy-heteroclitalactone H|heteroclitalactone J
11-O-Beta-D-Galactopyranoside-(3beta,5beta,11alpha,25R)-Spirostane-3,11-diol
2-{[2,4,6-trihydroxy-5-(3-methyl-2-butenyl)-3-butanoylphenyl]methyl}-3,5-dihydroxy-4-methyl-4-(3,7-dimethyl-2,6-octadienyl)-6-acetyl-2,5-cyclohexadien-1-one|yungensin D
3beta,11alpha,16beta-trihydroxycholest-5,25(26)-dien-24-yl beta-D-glucopyranoside
(25S)-spirostane-3beta,5beta-diol 5-beta-D-glucopyranoside|reinocarnoside B
2,3-Didehydro-3,3-dihydroxy-beta,beta-carotene-4,4-doone-(S)-form|2,3-Didehydro-3,3-dihydroxy-beta,beta-carotene-4,4-doone-(??)-form
Trikendiol
A gamma-lactam that is an unusual red pigment isolated from the marine sponge Trikentrion laeve. It has been shown to exhibit anti-HIV1 activity.
(25R)-3beta-hydroxy-5alpha-spirostan-1beta-yl beta-D-glucopyranoside
Tyr Lys Glu Arg
Tyr Lys Arg Glu
Tyr Thr Arg Arg
3-(2-methylbutanoyl)-3,4-di(3-methylbutanoyl)sucrose
Ala Arg Trp Tyr
Ala Arg Tyr Trp
Ala Trp Arg Tyr
Ala Trp Tyr Arg
Ala Tyr Arg Trp
Ala Tyr Trp Arg
Glu Lys Arg Tyr
Glu Lys Tyr Arg
Glu Arg Lys Tyr
Glu Arg Tyr Lys
Glu Tyr Lys Arg
Glu Tyr Arg Lys
Phe Arg Ser Trp
Phe Arg Trp Ser
Phe Ser Arg Trp
Phe Ser Trp Arg
Phe Trp Arg Ser
Phe Trp Ser Arg
His Pro Arg Trp
His Pro Trp Arg
His Arg Pro Trp
His Arg Trp Pro
His Trp Pro Arg
His Trp Arg Pro
Lys Glu Arg Tyr
Lys Glu Tyr Arg
Lys Arg Glu Tyr
Lys Arg Tyr Glu
Lys Val Trp Tyr
Lys Val Tyr Trp
Lys Trp Val Tyr
Lys Trp Tyr Val
Lys Tyr Glu Arg
Lys Tyr Arg Glu
Lys Tyr Val Trp
Lys Tyr Trp Val
Pro His Arg Trp
Pro His Trp Arg
Pro Arg His Trp
Pro Arg Trp His
Pro Trp His Arg
Pro Trp Arg His
Arg Ala Trp Tyr
Arg Ala Tyr Trp
Arg Glu Lys Tyr
Arg Glu Tyr Lys
Arg Phe Ser Trp
Arg Phe Trp Ser
Arg His Pro Trp
Arg His Trp Pro
Arg Lys Glu Tyr
Arg Lys Tyr Glu
Arg Pro His Trp
Arg Pro Trp His
Arg Arg Thr Tyr
Arg Arg Tyr Thr
Arg Ser Phe Trp
Arg Ser Trp Phe
Arg Thr Arg Tyr
Arg Thr Tyr Arg
Arg Trp Ala Tyr
Arg Trp Phe Ser
Arg Trp His Pro
Arg Trp Pro His
Arg Trp Ser Phe
Arg Trp Tyr Ala
Arg Tyr Ala Trp
Arg Tyr Glu Lys
Arg Tyr Lys Glu
Arg Tyr Arg Thr
Arg Tyr Thr Arg
Arg Tyr Trp Ala
Ser Phe Arg Trp
Ser Phe Trp Arg
Ser Arg Phe Trp
Ser Arg Trp Phe
Ser Trp Phe Arg
Ser Trp Arg Phe
Thr Arg Arg Tyr
Thr Arg Tyr Arg
Thr Tyr Arg Arg
Val Lys Trp Tyr
Val Lys Tyr Trp
Val Trp Lys Tyr
Val Trp Tyr Lys
Val Tyr Lys Trp
Val Tyr Trp Lys
Trp Ala Arg Tyr
Trp Ala Tyr Arg
Trp Phe Arg Ser
Trp Phe Ser Arg
Trp His Pro Arg
Trp His Arg Pro
Trp Lys Val Tyr
Trp Lys Tyr Val
Trp Pro His Arg
Trp Pro Arg His
Trp Arg Ala Tyr
Trp Arg Phe Ser
Trp Arg His Pro
Trp Arg Pro His
Trp Arg Ser Phe
Trp Arg Tyr Ala
Trp Ser Phe Arg
Trp Ser Arg Phe
Trp Val Lys Tyr
Trp Val Tyr Lys
Trp Tyr Ala Arg
Trp Tyr Lys Val
Trp Tyr Arg Ala
Trp Tyr Val Lys
Tyr Ala Arg Trp
Tyr Ala Trp Arg
Tyr Glu Lys Arg
Tyr Glu Arg Lys
Tyr Lys Val Trp
Tyr Lys Trp Val
Tyr Arg Ala Trp
Tyr Arg Glu Lys
Tyr Arg Lys Glu
Tyr Arg Arg Thr
Tyr Arg Thr Arg
Tyr Arg Trp Ala
Tyr Val Lys Trp
Tyr Val Trp Lys
Tyr Trp Ala Arg
Tyr Trp Lys Val
Tyr Trp Arg Ala
Tyr Trp Val Lys
7,8-Didehydroastaxanthin
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Asterinic acid
6-O-(Glcb)-(25R)-5alpha-spirostan-3beta,6alpha-diol
Sodium tauroglycocholate
Ethanesulfonic acid, 2-[[2-[[(3α,5β,7α,12α)-3,7,12-trihydroxy-24-oxocholan-24-yl]amino]acetyl]amino]-, sodium salt (1:1). CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=41945-48-6 (retrieved 2024-07-16) (CAS RN: 41945-48-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
tris(2,2,6,6-tetramethyl-3,5-heptanedionato)scandium(iii)
21H,23H-Porphine-2,18-dipropanoicacid, 7,12-diethyl-3,8,13,17-tetramethyl-, 2,18-dimethyl ester
N-[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-pyridinecarboxamide
1-[n[(Phenylmethoxy)carbonyl]-l-leucyl-4-[[n/n-[(phenylmethoxy)carbonyl]-/nl-leucyl]amino]-3-pyrrolidinone/n
3-[(11R,12R,21S,22S)-16-ethenyl-11-ethyl-4-hydroxy-3-methoxycarbonyl-12,17,21,26-tetramethyl-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,13,15(24),16,18,20(23)-decaen-22-yl]propanoic acid
3-[(21S,22S)-26-ethyl-4-hydroxy-16-[(1R)-1-hydroxyethyl]-12,17,21-trimethyl-11-(2-methylpropyl)-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoic acid
3-[(21S,22S)-11,26-diethyl-12-formyl-4-hydroxy-16-[(1R)-1-hydroxyethyl]-17,19,21-trimethyl-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoic acid
3-[(21S,22S)-26-ethyl-4-hydroxy-16-[(1R)-1-hydroxyethyl]-12,17,19,21-tetramethyl-11-propyl-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoic acid
2-[[3-Hexadecanoyloxy-2-(5-oxopentanoyloxy)propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
3-[(2Z)-2-[[3-(2-carboxyethyl)-5-[(4-ethyl-3-methyl-5-oxopyrrolidin-2-yl)methyl]-4-methyl-1H-pyrrol-2-yl]methylidene]-5-[(3-ethyl-4-methyl-5-oxopyrrolidin-2-yl)methyl]-4-methylpyrrol-3-yl]propanoic acid
1-O-palmitoyl-2-O-(5-oxovaleryl)-sn-glycero-3-phosphocholine(1+)
A 1,2-diacyl-sn-glycero-3-phosphocholine having palmitoyl and 5-oxovaleryl groups at the 1- and 2-positions respectively.
1-Hexadecyl-2-glutaryl-sn-glycero-3-phosphocholine(1-)
N-[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-pyridinecarboxamide
N-[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-pyridinecarboxamide
N-[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-pyridinecarboxamide
N-[(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-pyridinecarboxamide
N-[(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-pyridinecarboxamide
N-[(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-pyridinecarboxamide
N-[(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-4-pyridinecarboxamide
N-[[(3R,9R,10R)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N,3,5-trimethyl-4-isoxazolesulfonamide
N-[[(3S,9R,10R)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N,3,5-trimethyl-4-isoxazolesulfonamide
N-[[(3S,9S,10S)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N,3,5-trimethyl-4-isoxazolesulfonamide
N-[[(3R,9S,10S)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N,3,5-trimethyl-4-isoxazolesulfonamide
1-[(3R,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-[4-(trifluoromethyl)phenyl]urea
1-[(3R,9S,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-[4-(trifluoromethyl)phenyl]urea
1-[(3R,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-[4-(trifluoromethyl)phenyl]urea
N-[[(3S,9S,10S)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N,3,5-trimethyl-4-isoxazolesulfonamide
N-[(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-4-pyridinecarboxamide
N-[(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-4-pyridinecarboxamide
N-[[(3R,9S,10S)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N,3,5-trimethyl-4-isoxazolesulfonamide
N-[[(3S,9R,10R)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N,3,5-trimethyl-4-isoxazolesulfonamide
N-[[(3R,9R,10R)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N,3,5-trimethyl-4-isoxazolesulfonamide
N-[(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-4-pyridinecarboxamide
N-[[(3R,9R,10S)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N,3,5-trimethyl-4-isoxazolesulfonamide
N-[[(3S,9R,10S)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N,3,5-trimethyl-4-isoxazolesulfonamide
N-[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-4-pyridinecarboxamide
N-[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-4-pyridinecarboxamide
N-[(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-4-pyridinecarboxamide
N-[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-4-pyridinecarboxamide
N-[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenoxyphenyl)methyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-4-pyridinecarboxamide
N-[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(1-naphthalenylamino)-oxomethyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-2-phenylacetamide
1-[(3S,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-[4-(trifluoromethyl)phenyl]urea
1-[(3R,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-[4-(trifluoromethyl)phenyl]urea
1-[(3R,9R,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-[4-(trifluoromethyl)phenyl]urea
1-[(3S,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-[4-(trifluoromethyl)phenyl]urea
1-[(3S,9R,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-[4-(trifluoromethyl)phenyl]urea
1-[(3S,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-[4-(trifluoromethyl)phenyl]urea
1-[(3S,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-[4-(trifluoromethyl)phenyl]urea
1-[(3R,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-[4-(trifluoromethyl)phenyl]urea
1-[(3R,9S,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-(methylaminomethyl)-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-[4-(trifluoromethyl)phenyl]urea
3-[(3R,21S,22S)-16-Ethenyl-11-ethyl-3-methoxycarbonyl-12,17,21,26-tetramethyl-4-oxo-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,5,8(26),9,11,13,15,17,19-nonaen-22-yl]propanoic acid
S-[2-[3-[[(2R)-2-hydroxy-3,3-dimethyl-4-phosphonooxybutanoyl]amino]propanoylamino]ethyl] (Z)-hexadec-9-enethioate
[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate
[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexadec-9-enoate
[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate
[1-[(2-acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-henicos-11-enoate
[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-nonadec-9-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-propanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate
[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tridec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] (Z)-octadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (Z)-heptadec-9-enoate
[1-acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] (Z)-icos-11-enoate
(1-heptanoyloxy-3-phosphonooxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-tetradec-9-enoate
[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-pentadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-hexadec-9-enoate
[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate
[1-phosphonooxy-3-[(E)-tridec-8-enoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
S-hexadecanoyl-4-phosphopantetheine(2-)
An S-acyl-4-phosphopantetheine obtained by deprotonation of the phosphate OH groups of S-hexadecanoyl-4-phosphopantetheine; major species at pH 7.3.
(11s)-11-[(4-hydroxy-2-isopropyl-8,8-dimethyl-5-oxo-6,7-dihydrophenanthren-3-yl)oxy]-4-isopropyl-8,8-dimethyl-9h,10h,11h-naphtho[1,2-c]oxepine-1,3-dione
(2e)-4-[(1r,2r,7s,14s,15s,16s,18s)-11,15-dihydroxy-16-methoxy-6,6,7,20,20-pentamethyl-10-(3-methylbut-2-en-1-yl)-13,17-dioxo-3,8,19-trioxahexacyclo[14.4.1.0²,¹⁴.0²,¹⁸.0⁴,¹².0⁵,⁹]henicosa-4(12),5(9),10-trien-18-yl]-2-methylbut-2-enal
11-[(4-hydroxy-2-isopropyl-8,8-dimethyl-5-oxo-6,7-dihydrophenanthren-3-yl)oxy]-4-isopropyl-8,8-dimethyl-9h,10h,11h-naphtho[1,2-c]oxepine-1,3-dione
(1r,2s,3r,4r,4as,8ar)-2-{[2-(acetyloxy)-3-methylbutanoyl]oxy}-3-hydroxy-3,4,8,8a-tetramethyl-4-[(1e)-2-(5-oxo-2h-furan-3-yl)ethenyl]-2,4a,5,6-tetrahydro-1h-naphthalen-1-yl benzoate
2-{2,4-dihydroxy-4-methyl-3,6-bis[(2-methylbut-2-enoyl)oxy]-5-oxocyclohexyl}-5-hydroxy-6-methoxy-6-methylhept-1-en-3-yl 2-methylbut-2-enoate
2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-oloxy}oxane-3,4,5-triol
2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-19'-oloxy}oxane-3,4,5-triol
5,6-dihydroxy-7-(hydroxymethyl)-3,11,14-trimethyl-11-{[(2-methylbut-2-enoyl)oxy]methyl}-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl deca-2,4,6-trienoate
(1s,4s,5s,6r,9s,10r,11r,12r,14r)-5,6-dihydroxy-7-(hydroxymethyl)-3,11,14-trimethyl-11-({[(2e)-2-methylbut-2-enoyl]oxy}methyl)-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl (2e,4e,6e)-deca-2,4,6-trienoate
(2r,3r,4s,5r,6r)-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,15'r,16'r,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy]oxane-3,4,5-triol
12-o-cinnamoyl-20-o-tigloyl sarcostin
{"Ingredient_id": "HBIN000927","Ingredient_name": "12-o-cinnamoyl-20-o-tigloyl sarcostin","Alias": "NA","Ingredient_formula": "C35H46O8","Ingredient_Smile": "CC=C(C)C(=O)OC(C)C1(CCC2(C1(C(CC3C2(CC=C4C3(CCC(C4)O)C)O)OC(=O)C=CC5=CC=CC=C5)C)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "3722","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
22-epirhodeasapogenin-3-o-β-d-glucopyrano-side
{"Ingredient_id": "HBIN003728","Ingredient_name": "22-epirhodeasapogenin-3-o-\u03b2-d-glucopyrano-side","Alias": "NA","Ingredient_formula": "C33H54O9","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "7004","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
4(15)-eudesmene-1,6,11,14-tetrol; (1α,5β,6β,10α)-form,6-o-[beta-d-glucopyranosyl-(1→6)-beta-d-glucopyranoside]
{"Ingredient_id": "HBIN009832","Ingredient_name": "4(15)-eudesmene-1,6,11,14-tetrol; (1\u03b1,5\u03b2,6\u03b2,10\u03b1)-form,6-o-[beta-d-glucopyranosyl-(1\u21926)-beta-d-glucopyranoside]","Alias": "NA","Ingredient_formula": "C27H46O14","Ingredient_Smile": "NA","Ingredient_weight": "594.65","OB_score": "NA","CAS_id": "256528-97-9","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "7976","PubChem_id": "NA","DrugBank_id": "NA"}