Exact Mass: 592.3223
Exact Mass Matches: 592.3223
Found 61 metabolites which its exact mass value is equals to given mass value 592.3223
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Mesobilirubinogen
Mesobilirubinogen (also known as I-urobilinogen) is a tetrapyrrole chemical compound that is closely related to two other compounds: urobilinogen (also known as D-urobilinogen) and stercobilinogen (also known as L-urobilinogen). Specifically, urobilinogen can be reduced to form mesobilirubinogen, and mesobilirubinogen can be further reduced to form stercobilinogen. Confusingly, all three of these compounds are frequently collectively referred to as "urobilinogens". Urobilinogen is the parent compound of both stercobilin (the pigment that is responsible for the brown colour of feces) and urobilin (the pigment that is responsible for the yellow colour of urine). Urobilinogen is formed through the microbial degradation of its parent compound bilirubin. Urobilinogen is actually generated through the degradation of heme, the red pigment in hemoglobin and red blood cells (RBCs). RBCs have a life span of about 120 days. When the RBCs have reached the end of their useful lifespan, the cells are engulfed by macrophages and their constituents recycled or disposed of. Heme is broken down when the heme ring is opened by the enzyme known as heme oxygenase, which is found in the endoplasmic reticulum of the macrophages. The oxidation process produces the linear tetrapyrrole known as biliverdin along with ferric iron (Fe3+), and carbon monoxide (CO). In the next reaction, a second methylene group (located between rings III and IV of the porphyrin ring) is reduced by the enzyme known as biliverdin reductase, producing bilirubin. Bilirubin is significantly less extensively conjugated than biliverdin. This reduction causes a change in the colour of the biliverdin molecule from blue-green (vert or verd for green) to yellow-red, which is the colour of bilirubin (ruby or rubi for red). In plasma, virtually all the bilirubin is tightly bound to plasma proteins, largely albumin, because it is only sparingly soluble in aqueous solutions at physiological pH. In the sinusoids, unconjugated bilirubin dissociates from albumin, enters the liver cells across the cell membrane through non-ionic diffusion to the smooth endoplasmatic reticulum. In hepatocytes, bilirubin-UDP-glucuronyltransferase (bilirubin-UGT) adds 2 additional glucuronic acid molecules to bilirubin to produce the more water-soluble version of the molecule known as bilirubin diglucuronide. The bilirubin diglucuronide is transferred rapidly across the canalicular membrane into the bile canaliculi where it is then excreted as bile into the large intestine. The bilirubin is further degraded (reduced) by microbes present in the large intestine to form a colourless product known as urobilinogen. Urobilinogen that remains in the colon can either be reduced to stercobilinogen and finally oxidized to stercobilin, or it can be directly reduced to stercobilin. Some of the urobilinogen produced by the gut bacteria is reabsorbed and re-enters the enterohepatic circulation. This reabsorbed urobilinogen is oxidized and converted to urobilin. The urobilin is processed through the kidneys and then excreted in the urine, which causes the yellowish colour in urine. Urobilinogen is an uribiniloid, the product of bilirubin reduction in multiple sequential reactions. Urobilinogens are colorless chromogens that may in turn be oxidized to respective yellow oxidation products, urobilins. Under normal conditions only small amounts of bilirubin can be found in stools of adults while urobilinoids are predominant bile pigments (50-250 mg/day). Only negligible amounts of fecal urobilinoids are present in the intestinal lumen of infants during the first months of their life, due to undeveloped intestinal microflora capable of reducing bilirubin. This presumably contributes importantly to the pathogenesis of neonatal jaundice. In adults, the urobilinoid production is highly efficient. At times, it is re-excreted in the urine, where it may be later oxidized to urobilin. (PMID: 16504607) [HMDB]
Debromoaplysiatoxin
A member of the class of aplysiatoxins that has the structure of the parent aplysiatoxin, but is lacking the bromo substituent on the benzene ring at the position para to the phenolic hydroxy group. It is a cyanotoxin produced by several species of freshwater and marine cyanobacteria, as well as algae and molluscs. D009676 - Noxae > D011042 - Poisons > D008235 - Lyngbya Toxins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens
3-(N-n-Octadecylcarbamoyloxy)-2-methoxypropyl-2-thiazolinium ethyl phosphate
D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors
FP-biotin
Neritaloside
Neritaloside is a natural product found in Mandevilla pentlandiana and Nerium oleander with data available.
15alpha-hydroxyfoetidinol-3-O-beta-xyloside|cimicifugoside H-6
26-Sulfate-(3beta,5alpha,6beta,15alpha,16beta,24R,25R)-Stigmastane-3,5,6,15,16,25,26-heptol
2-[3-(6-acetyloxy-2-hydroxy-6-methyl-3-oxoheptan-2-yl)-6-(carboxymethyl)-2-hydroxy-3a,5a,9b-trimethyl-5-oxo-2,3,4,6,9,9a-hexahydro-1H-cyclopenta[a]naphthalen-7-yl]-2-methylpropanoic acid
2-[3-(6-acetyloxy-2-hydroxy-6-methyl-3-oxoheptan-2-yl)-6-(carboxymethyl)-2-hydroxy-3a,5a,9b-trimethyl-5-oxo-2,3,4,6,9,9a-hexahydro-1H-cyclopenta[a]naphthalen-7-yl]-2-methylpropanoic acid [IIN-based: Match]
UROBILINOGEN
A member of the class of bilanes that is a colourless product formed in the intestine by the reduction of bilirubin.
17-Debromoaplysiatoxin
D009676 - Noxae > D011042 - Poisons > D008235 - Lyngbya Toxins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens