Exact Mass: 576.3815
Exact Mass Matches: 576.3815
Found 419 metabolites which its exact mass value is equals to given mass value 576.3815
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Collettiside I
Diosgenin 3-O-beta-D-glucoside is a sterol 3-beta-D-glucoside having diosgenin as the sterol component. It has a role as a metabolite. It is a sterol 3-beta-D-glucoside, a monosaccharide derivative, a hexacyclic triterpenoid and a spiroketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Disogluside is a natural product found in Allium rotundum, Allium narcissiflorum, and other organisms with data available. Capsicoside A3 is found in herbs and spices. Capsicoside A3 is a constituent of Capsicum annuum roots. C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2]. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2].
3-Hexaprenyl-4-hydroxy-5-methoxybenzoic acid
3-Hexaprenyl-4-hydroxy-5-methoxybenzoic acid is an intermediate in the biosynthesis of Ubiquinone. It is a substrate for Hexaprenyldihydroxybenzoate methyltransferase (mitochondrial). [HMDB] 3-Hexaprenyl-4-hydroxy-5-methoxybenzoic acid is an intermediate in the biosynthesis of Ubiquinone. It is a substrate for Hexaprenyldihydroxybenzoate methyltransferase (mitochondrial).
2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone
2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone is involved in the ubiquinone biosynthesis pathway. 2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone is created from 2-Hexaprenyl-3-methyl-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-]. 2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone is then converted to ubiquinone by hexaprenyldihydroxybenzoate methyltransferase [EC:2.1.1.114]. [HMDB] 2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone is involved in the ubiquinone biosynthesis pathway. 2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone is created from 2-Hexaprenyl-3-methyl-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-]. 2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone is then converted to ubiquinone by hexaprenyldihydroxybenzoate methyltransferase [EC:2.1.1.114].
Campesteryl ferulate
Campesteryl ferulate is found in cereals and cereal products. Campesteryl ferulate is a constituent of various cereal grains Constituent of various cereal grains
Etiopurpurin
PA(8:0/18:1(12Z)-O(9S,10R))
PA(8:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-O(9S,10R)/8:0)
PA(18:1(12Z)-O(9S,10R)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/8:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/18:1(9Z)-O(12,13))
PA(8:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(9Z)-O(12,13)/8:0)
PA(18:1(9Z)-O(12,13)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/8:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
24-Methylcholesterol ferulate
24-methylcholesterol ferulate is a member of the class of compounds known as steroid esters. Steroid esters are compounds containing a steroid moiety which bears a carboxylic acid ester group. 24-methylcholesterol ferulate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 24-methylcholesterol ferulate can be found in corn, which makes 24-methylcholesterol ferulate a potential biomarker for the consumption of this food product.
24-Methyllathosterol ferulate
24-methyllathosterol ferulate is a member of the class of compounds known as steroid esters. Steroid esters are compounds containing a steroid moiety which bears a carboxylic acid ester group. 24-methyllathosterol ferulate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 24-methyllathosterol ferulate can be found in corn, which makes 24-methyllathosterol ferulate a potential biomarker for the consumption of this food product.
24-Methylenecholestanol ferulate
24-methylenecholestanol ferulate is a member of the class of compounds known as steroid esters. Steroid esters are compounds containing a steroid moiety which bears a carboxylic acid ester group. 24-methylenecholestanol ferulate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 24-methylenecholestanol ferulate can be found in corn, which makes 24-methylenecholestanol ferulate a potential biomarker for the consumption of this food product.
3alpha-acetoxy-21S,25-dimethoxy-17alpha-20S-21,23R-epoxyapotirucall-14-ene-7alpha,24S-diol|chisopanin F
3alpha-acetoxy-21R-ethoxy-17alpha-20S-21,23R-epoxyapotirucall-14-ene-7alpha,24S,25-triol|chisopanin G
Methyl-2alpha-benzoyloxy-3beta-hydroxy-urs-12-en-28-oat
3alpha-hydroxy-28beta-methoxy-13alpha-ursan-28,12beta-epoxide 3-benzoate
3beta-hydroxy-27-benzoyloxylup-20(29)-en-28-oic acid
(24R)-ergost-5-en-11-oxo-3beta-ol-alpha-D-glucopyranoside|argyroside
4-O-acetyl-3-O-[beta-D-arabinopyranosyloxy]-cholest-5-ene-3beta,19-diol
methyl 3-beta-acetoxy-2alpha,11alpha,19alpha,28-tetrahydroxyurs-12-en-24-oate
3beta-O-(alpha-L-fucopyranosyl)-11-hydroxy-24-methylene-9,11-secocholest-5-en-9-one|sinularoside A
(25S)-3-oxo-5alpha-spirostan-6alpha-yl-O-beta-D-xylopyranoside
30-(4-hydroxybenzoyloxy)-11alpha-hydroxylupane-20(29)-en-3-one
24-methylenecholest-5-en-3beta,7beta,16beta-triol-3-O-alpha-L-fucoside|24-methylenecholest-5-ene-3beta,7beta,16beta-triol-3-O-alpha-L-fucopyranoside
cholest-8-ene-3beta,5alpha,6alpha,7alpha,10alpha-pentol 3,6,7-triacetate
(25S)-6alpha-hydroxy-5alpha-spirostan-3-one 6-O-(beta-D-quinovopyranoside)|solagenin 6-O-(beta-D-quinovopyranoside)
Phe Val Arg Arg
5-[5-(3,5-dihydroxydecanoyloxy)-3-hydroxydecanoyl]oxy-3-hydroxydecanoic acid
3-[5-(3,5-dihydroxydecanoyloxy)-3-hydroxydecanoyl]oxy-5-hydroxydecanoic acid
3-[5-(3,5-dihydroxydecanoyloxy)-3-hydroxydecanoyl]oxy-5-hydroxydecanoic acid [IIN-based on: CCMSLIB00000848124]
3-[5-(3,5-dihydroxydecanoyloxy)-3-hydroxydecanoyl]oxy-5-hydroxydecanoic acid [IIN-based: Match]
Phe Arg Arg Val
Phe Arg Val Arg
Arg Phe Arg Val
Arg Phe Val Arg
Arg Arg Phe Val
Arg Arg Val Phe
Arg Val Phe Arg
Arg Val Arg Phe
Val Phe Arg Arg
Val Arg Phe Arg
Val Arg Arg Phe
1-Hydroxyvitamin D3 3-D-glucopyranoside
D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols
Campesteryl ferulate
Superecdysone E
ST 27:2;O2;GlcA
Bisdehydro-beta-carotene-2-carboxylic acid
Aluminum,tris(2,2,6,6-tetramethyl-3,5-heptanedionato-kO3,kO5)-, (OC-6-11)-
N,N-dimethyl-4-[2-(1-octadecylpyridin-1-ium-2-yl)ethenyl]aniline,perchlorate
Collettiside I
Constituent of Trigonella foenum-graecum (fenugreek). Collettiside I is found in herbs and spices and fenugreek. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2]. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2].
3-Hydroxy-5-(3-hydroxy-5-(3,5-dihydroxydecanoyloxy)decanoyloxy)decanoic acid
(6R)-6-[(1R,3aS,4E,7aR)-4-{(2Z)-2-[(5S)-5-hydroxy-2-methylidenecyclohexylidene]ethylidene}-7a-methyloctahydro-1H-inden-1-yl]-2-methylheptan-2-yl beta-D-glucopyranosiduronic acid
[(2R)-1-octanoyloxy-3-phosphonooxypropan-2-yl] (Z)-11-(3-pentyloxiran-2-yl)undec-9-enoate
[(2R)-2-octanoyloxy-3-phosphonooxypropyl] (Z)-11-(3-pentyloxiran-2-yl)undec-9-enoate
[(3S,10R,13R,17R)-17-[(2R)-5,6-dimethylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
2-(Hydroxymethyl)-6-(5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-piperidin-1-ium]-16-yl)oxyoxane-3,4,5-triol
2-[[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
3-[5-(3,5-Dihydroxydecanoyloxy)-3-hydroxydecanoyl]oxy-5-hydroxydecanoic acid
2,3-dihydroxypropyl [2-hydroxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propyl] hydrogen phosphate
[(E)-2-acetamido-3-hydroxytricos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-(butanoylamino)-3-hydroxyhenicos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-(nonanoylamino)hexadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxynonyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-(hexadecanoylamino)-3-hydroxynon-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-(heptadecanoylamino)-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-(pentanoylamino)icos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-(hexanoylamino)-3-hydroxynonadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-(heptanoylamino)-3-hydroxyoctadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-(octanoylamino)heptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-(propanoylamino)docos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-(decanoylamino)-3-hydroxypentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-(undecanoylamino)tetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-(pentadecanoylamino)dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-(tridecanoylamino)dodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]dodecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-(dodecanoylamino)-3-hydroxytridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]undecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]decyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-(tetradecanoylamino)undec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tetradecanoate
[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] dodecanoate
[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate
[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] heptadecanoate
[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tridecanoate
[1-Acetyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate
[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate
[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate
[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] undecanoate
[2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate
(1-pentanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate
(1-hexanoyloxy-3-phosphonooxypropan-2-yl) (Z)-henicos-11-enoate
(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (Z)-octadec-9-enoate
(1-octanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate
(1-phosphonooxy-3-propanoyloxypropan-2-yl) (Z)-tetracos-13-enoate
(1-heptanoyloxy-3-phosphonooxypropan-2-yl) (Z)-icos-11-enoate
(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-tetradec-9-enoate
(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (Z)-hexadec-9-enoate
[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] tetradecanoate
(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-pentadec-9-enoate
(1-decanoyloxy-3-phosphonooxypropan-2-yl) (Z)-heptadec-9-enoate
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate
N-(decanoyl)-4E-pentadecasphingenine-1-phosphocholine
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (E)-hexadec-7-enoate
[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (E)-heptadec-9-enoate
[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (E)-tetradec-9-enoate
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (E)-hexadec-9-enoate
[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (E)-pentadec-9-enoate
[(E,2S,3R)-2-(decanoylamino)-3-hydroxypentadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (E)-pentadec-9-enoate
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (E)-hexadec-9-enoate
[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (E)-heptadec-9-enoate
[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] undecanoate
[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (E)-tetradec-9-enoate
[1-carboxy-3-[2-hydroxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (E)-hexadec-7-enoate
2-[[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] undecanoate
2-[[3-acetyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-butanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-pentanoyloxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-butanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-propanoyloxypropoxy]propyl]-trimethylazanium
2-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-acetyloxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
Trillin
Diosgenin 3-O-beta-D-glucoside is a sterol 3-beta-D-glucoside having diosgenin as the sterol component. It has a role as a metabolite. It is a sterol 3-beta-D-glucoside, a monosaccharide derivative, a hexacyclic triterpenoid and a spiroketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Disogluside is a natural product found in Allium rotundum, Allium narcissiflorum, and other organisms with data available. C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent A sterol 3-beta-D-glucoside having diosgenin as the sterol component. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2]. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2].
3-demethylubiquinone-6
A polyprenylbenzoquinone that is fumigatin which is substituted by an all-trans-hexaprenyl group at position 6.
C35-phosphodolichol
A dolichyl phosphate in which the dolichyl moiety contains six prenyl units
calcidiol 3-O-(beta-D-glucuronide)
A steroid glucosiduronic acid that is calcidiol in which the hydroxy hydrogen at position 3 has been replaced by a beta-D-glucuronyl residue.
1-dodecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate
1-tridecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate
1-(9Z-tetradecenoyl)-2-tridecanoyl-glycero-3-phosphate
1-(9Z-pentadecenoyl)-2-dodecanoyl-glycero-3-phosphate
calcidiol 25-O-(beta-D-glucuronide)
A steroid glucosiduronic acid that is calcidiol in which the hydroxy hydrogen at position 25 has been replaced by a beta-D-glucuronyl residue.