Exact Mass: 57.9905292
Exact Mass Matches: 57.9905292
Found 22 metabolites which its exact mass value is equals to given mass value 57.9905292
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
magnesium hydroxide
C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents > D000863 - Antacids
Sodium chloride (NaCl)
Preservative, chilling medium, curing agent, flavour enhancer, firming agent, pH control agent, antimicrobial agent, separation/filtration aid, moisture control agent, texturizer, colourant aid, emulsifier, material handling aid, leavening agent and clarifying/flocculating agent B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CB - Salt solutions A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent S - Sensory organs > S01 - Ophthalmologicals Same as: D02056
Glyoxal
Glyoxal, also known as 1,2-ethanedione or oxalaldehyde, is a member of the class of compounds known as short-chain aldehydes. Short-chain aldehydes are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Glyoxal is soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Glyoxal can be found in garden tomato (variety), ginger, and sesame, which makes glyoxal a potential biomarker for the consumption of these food products. Glyoxal is an organic compound with the chemical formula OCHCHO. It is a yellow-colored Liquid that evaporates to give a green-colored gas. Glyoxal is the smallest dialdehyde (two aldehyde groups). Its structure is more complicated than typically represented because the molecule hydrates and oligomerizes. It is produced industrially as a precursor to many products .
Thiocyanate
A pseudohalide anion obtained by deprotonation of the thiol group of thiocyanic acid.
Potassium fluoride
D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides
Sodium chloride
B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CB - Salt solutions A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent S - Sensory organs > S01 - Ophthalmologicals Same as: D02056 FDA permitted colourant for foods and food contact paper or board [DFC]
Thiocyanate
Thiocyanate is analogous to the cyanate ion, [OCN]-, wherein oxygen is replaced by sulfur. [SCN]- is one of the pseudohalogens, due to the similarity of its reactions to that of halide ions. Thiocyanate was formerly known as rhodanide (from a Greek word for rose) because of the red color of its complexes with iron. Thiocyanates are typically colorless. Cyanide ions can react with cystine to yield thicocyanate. This reaction occurs to a slight extent even in neutral solution, but is more pronounced in alkaline solutions of cystine. In addition to this non-enzymatic route, cyanide produced in vivo can be converted in part to thiocyanate by sulfur transferase systems. The thiocyanate ion can be oxidized at acid pH by hydrogen peroxide to generate sulfate and cyanide. The reaction is catalyzed by hemoglobin acting as a peroxidase. Thiocyanate is analogous to the cyanate ion, [OCN]-, wherein oxygen is replaced by sulfur. [SCN]- is one of the pseudohalogens, due to the similarity of its reactions to that of halide ions. Thiocyanate was formerly known as rhodanide (from a Greek word for rose) because of the red color of its complexes with iron. Thiocyanates are typically colorless. Cyanide ions can react with cystine to yield thicocyanate. This reaction occurs to a slight extent even in neutral solution, but is more pronounced in alkaline solutions of cystine. In addition to this non-enzymatic route, cyanide produced in vivo can be converted in part to thiocyanate by sulfur transferase systems. The thiocyanate ion can be oxidized at acid pH by hydrogen peroxide to generate sulfate and cyanide. The reaction is catalyzed by hemoglobin acting as a peroxidase. A study shows that thiocyanate has a protective effect in lung in cystic fibrosis, and an anti-inflammatory effect in arterial endothelial cells, a neuronal cell line, and a pancreatic beta cell line (PMID: 19918082). Thiocyanate has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821).