Thiocyanate (BioDeep_00000395241)
Main id: BioDeep_00000859285
代谢物信息卡片
化学式: CNS- (57.975145999999995)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(#N)[S-]
InChI: InChI=1S/CHNS/c2-1-3/h3H/p-1
描述信息
A pseudohalide anion obtained by deprotonation of the thiol group of thiocyanic acid.
同义名列表
1 个代谢物同义名
数据库引用编号
7 个数据库交叉引用编号
- ChEBI: CHEBI:18022
- PubChem: 9322
- ChEMBL: CHEMBL127789
- CAS: 71048-69-6
- CAS: 302-04-5
- PMhub: MS000251271
- MetaboLights: MTBLC18022
分类词条
相关代谢途径
Reactome(8)
BioCyc(5)
PlantCyc(3)
代谢反应
308 个相关的代谢反应过程信息。
Reactome(98)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
3MPYR + MPST ⟶ PYR + Q8I5Y1
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
MTAD + Pi ⟶ Ade + MTRIBP
- Degradation of cysteine and homocysteine:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Degradation of cysteine and homocysteine:
3MPYR + MPST ⟶ PYR + Q8I5Y1
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
cAMP + epac-1 ⟶ RAPGEF3:cAMP complex
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Epac + cAMP ⟶ RAPGEF3:cAMP complex
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
H+ + O2.- ⟶ H2O2
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
BioCyc(33)
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- L-cysteine degradation III:
2-oxoglutarate + cys ⟶ 3-mercaptopyruvate + glt
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- L-cysteine degradation III:
2-oxoglutarate + cys ⟶ 3-mercaptopyruvate + glt
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiocyanate degradation II:
H2O + carbonyl sulfide ⟶ CO2 + hydrogen sulfide
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- thiocyanate degradation I:
H2O + thiocyanate ⟶ cyanate + hydrogen sulfide
- sulfur volatiles biosynthesis:
SAM + thiocyanate ⟶ SAH + methyl thiocyanate
- sulfur volatiles biosynthesis:
SAM + thiocyanate ⟶ SAH + methyl thiocyanate
WikiPathways(0)
Plant Reactome(6)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Inorganic nutrients metabolism:
Nitrite ⟶ H2O + ammonia
- Thiosulfate disproportionation III (rhodanese):
HCN + thiosulfate ⟶ H2SO3 + thiocyanate
INOH(0)
PlantCyc(146)
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- glucosinolate activation:
H2O + an aliphatic glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- glucosinolate activation:
H2O + a glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- glucosinolate activation:
an N-(sulfonatooxy)alkanimidothioic acid ⟶ H+ + an isothiocyanate + sulfate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- sulfur volatiles biosynthesis:
SAM + thiocyanate ⟶ SAH + methyl thiocyanate
- sulfur volatiles biosynthesis:
SAM + a thiol ⟶ H+ + SAH + a methyl thioether
- sulfur volatiles biosynthesis:
SAM + a thiol ⟶ H+ + SAH + a methyl thioether
- sulfur volatiles biosynthesis:
SAM + a thiol ⟶ H+ + SAH + a methyl thioether
- sulfur volatiles biosynthesis:
SAM + a thiol ⟶ H+ + SAH + a methyl thioether
- sulfur volatiles biosynthesis:
SAM + a thiol ⟶ H+ + SAH + a methyl thioether
- sulfur volatiles biosynthesis:
SAM + thiocyanate ⟶ SAH + methyl thiocyanate
- sulfur volatiles biosynthesis:
SAM + a thiol ⟶ H+ + SAH + a methyl thioether
- sulfur volatiles biosynthesis:
SAM + thiocyanate ⟶ SAH + methyl thiocyanate
- sulfur volatiles biosynthesis:
SAM + thiocyanate ⟶ SAH + methyl thiocyanate
COVID-19 Disease Map(0)
PathBank(25)
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Thiosulfate Disproportionation III:
Adenosine triphosphate + Thiosulfate + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Thiosulfate
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Thiosulfate Disproportionation III:
Adenosine triphosphate + Thiosulfate + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Thiosulfate
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yu-Xi Feng, Peng Tian, Cheng-Zhi Li, Xiao-Dong Hu, Yu-Juan Lin. Elucidating the intricacies of the H2S signaling pathway in gasotransmitters: Highlighting the regulation of plant thiocyanate detoxification pathways.
Ecotoxicology and environmental safety.
2024 May; 276(?):116307. doi:
10.1016/j.ecoenv.2024.116307
. [PMID: 38593497] - Haleh Hashemi Haeri, Nicola Schneegans, Daniela Eisenschmidt-Bönn, Wolfgang Brandt, Ute Wittstock, Dariush Hinderberger. Characterization of the active site in the thiocyanate-forming protein from Thlaspi arvense (TaTFP) using EPR spectroscopy.
Biological chemistry.
2024 Feb; 405(2):105-118. doi:
10.1515/hsz-2023-0187
. [PMID: 37586381] - Sivakumaran Karthikeyan, Gustavo J Vazquez-Zapien, Adriana Martinez-Cuazitl, Raul J Delgado-Macuil, Daniel E Rivera-Alatorre, Francisco Garibay-Gonzalez, Josemaria Delgado-Gonzalez, Daniel Valencia-Trujillo, Melissa Guerrero-Ruiz, Consuelo Atriano-Colorado, Alberto Lopez-Reyes, Dante J Lopez-Mezquita, Monica M Mata-Miranda. Two-trace two-dimensional correlation spectra (2T2D-COS) analysis using FTIR spectra to monitor the immune response by COVID-19.
Journal of molecular medicine (Berlin, Germany).
2024 01; 102(1):53-67. doi:
10.1007/s00109-023-02390-9
. [PMID: 37947852] - Yu-Xi Feng, Peng Tian, Yu-Juan Lin, Dan-Yang Cao, Cheng-Zhi Li, Abid Ullah. Gaseous signaling molecule H2S as a multitasking signal molecule in ROS metabolism of Oryza sativa under thiocyanate (SCN-) pollution.
Environmental pollution (Barking, Essex : 1987).
2024 Jan; 340(Pt 2):122816. doi:
10.1016/j.envpol.2023.122816
. [PMID: 37898431] - Liuwei Wang, Lizhen Zhang, Xuejiao An, Xiaoshuang Xiao, Shulin Zhang, Zihang Xu, Huaixiang Cai, Qinghua Zhang. Thiocyanate-degrading microflora alleviates thiocyanate stress on tomato seedlings by improving plant and rhizosphere microenvironment.
Environmental research.
2023 Jun; 232(?):116423. doi:
10.1016/j.envres.2023.116423
. [PMID: 37327842] - Xiaoshuang Xiao, Xuejiao An, Yuling Jiang, Liuwei Wang, Zelin Li, Fenju Lai, Qinghua Zhang. A newly developed consortium with a highly efficient thiocyanate degradation capacity: A comprehensive investigation of the degradation and detoxification potential.
Environmental pollution (Barking, Essex : 1987).
2023 Feb; 318(?):120878. doi:
10.1016/j.envpol.2022.120878
. [PMID: 36526057] - Mengsha Shi, Xu Zhu, Iokfai Cheang, Qingqing Zhu, Qixin Guo, Shengen Liao, Rongrong Gao, Xinli Li. Associations of thiocyanate, nitrate, and perchlorate exposure with dyslipidemia: a cross-sectional, population-based analysis.
Environmental science and pollution research international.
2023 Feb; 30(7):17214-17225. doi:
10.1007/s11356-022-23296-y
. [PMID: 36194328] - Aphinan Hongprasit, Yusuke Okamoto, Toshihiko Toida, Yasumitsu Ogra. Comparison of quantification of selenocyanate and thiocyanate in cultured mammalian cells between HPLC-fluorescence detector and HPLC-inductively coupled plasma mass spectrometer.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2021 Sep; 1181(?):122924. doi:
10.1016/j.jchromb.2021.122924
. [PMID: 34508979] - Laishram Hemchandra Singh, Amar K Chandra, Suchitra Devi Yumnam, Deotima Sarkar, R K Manglem, Th Dhabali, Shekhar Mookerjee, Indrajit Ray. Thiocyanate in excess develops goiter followed by auto immune thyroid diseases even after effective salt iodization in a rural community of north east India.
Ecotoxicology and environmental safety.
2021 Jan; 208(?):111711. doi:
10.1016/j.ecoenv.2020.111711
. [PMID: 33396042] - Xiulan He, Andrew G Ewing. Counteranions in the Stimulation Solution Alter the Dynamics of Exocytosis Consistent with the Hofmeister Series.
Journal of the American Chemical Society.
2020 07; 142(29):12591-12595. doi:
10.1021/jacs.0c05319
. [PMID: 32598145] - Omar K Siddiqi, Muzala Kapina, Ramya Kumar, Albertina Ngomah Moraes, Patrick Kabwe, Mazyanga L Mazaba, Lottie Hachaambwa, Namalambo Mwenda Ng'uni, Patrick C Chikoti, Maria Morel-Espinosa, Jeffery M Jarrett, Henry C Baggett, Elizabeth Chizema-Kawesha. Konzo outbreak in the Western Province of Zambia.
Neurology.
2020 04; 94(14):e1495-e1501. doi:
10.1212/wnl.0000000000009017
. [PMID: 32127386] - Yu-Juan Lin, Xiao-Zhang Yu, Yan-Hong Li, Li Yang. Inhibition of the mitochondrial respiratory components (Complex I and Complex III) as stimuli to induce oxidative damage in Oryza sativa L. under thiocyanate exposure.
Chemosphere.
2020 Mar; 243(?):125472. doi:
10.1016/j.chemosphere.2019.125472
. [PMID: 31995896] - Tingxin Yang, Yujing Zuo, Yu Zhang, Zhiming Gou, Xiaoni Wang, Weiying Lin. Novel fluorene-based fluorescent probe with excellent stability for selective detection of SCN- and its applications in paper-based sensing and bioimaging.
Journal of materials chemistry. B.
2019 07; 7(30):4649-4654. doi:
10.1039/c9tb00742c
. [PMID: 31364673] - Daniela Eisenschmidt-Bönn, Nicola Schneegans, Anita Backenköhler, Ute Wittstock, Wolfgang Brandt. Structural diversification during glucosinolate breakdown: mechanisms of thiocyanate, epithionitrile and simple nitrile formation.
The Plant journal : for cell and molecular biology.
2019 07; 99(2):329-343. doi:
10.1111/tpj.14327
. [PMID: 30900313] - Yu-Juan Lin, Xiao-Zhang Yu, Qing Zhang. Transcriptome analysis of Oryza sativa in responses to different concentrations of thiocyanate.
Environmental science and pollution research international.
2019 Apr; 26(12):11696-11709. doi:
10.1007/s11356-019-04544-0
. [PMID: 30806930] - Udayan Bhattacharya, Amar K Chandra. Socioeconomic status of the population - a prime determinant in evaluating iodine nutritional status even in a post salt iodization scenario.
Journal of pediatric endocrinology & metabolism : JPEM.
2019 Feb; 32(2):143-149. doi:
10.1515/jpem-2018-0344
. [PMID: 30710486] - Udayan Bhattacharya, Amar K Chandra. Assessment of Iodine Nutritional Status of School-Age Children in Kolkata District of West Bengal State in Post-Iodation Scenario.
Journal of tropical pediatrics.
2019 02; 65(1):55-62. doi:
10.1093/tropej/fmy011
. [PMID: 29660100] - Lei Zhang, Congrong Fang, Liping Liu, Xin Liu, Sai Fan, Jingguang Li, Yunfeng Zhao, Song Ni, Shaoyan Liu, Yongning Wu. A case-control study of urinary levels of iodine, perchlorate and thiocyanate and risk of papillary thyroid cancer.
Environment international.
2018 11; 120(?):388-393. doi:
10.1016/j.envint.2018.08.024
. [PMID: 30125856] - Joshua D Chandler, Hamed Horati, Douglas I Walker, Enea Pagliano, Rabindra Tirouvanziam, Mieke Veltman, Bob J Scholte, Hettie M Janssens, Young-Mi Go, Dean P Jones. Determination of thiocyanate in exhaled breath condensate.
Free radical biology & medicine.
2018 10; 126(?):334-340. doi:
10.1016/j.freeradbiomed.2018.08.012
. [PMID: 30144632] - Ananya Madiyal, Vidya Ajila, Subhas G Babu, Shruthi Hegde, Suchetha Kumari, Medhini Madi, Sonika Achalli, Priyadharshini Alva, Harshini Ullal. Status of thiocyanate levels in the serum and saliva of non-smokers, ex-smokers and smokers.
African health sciences.
2018 Sep; 18(3):727-736. doi:
10.4314/ahs.v18i3.31
. [PMID: 30603006] - Zelinda Engelbrecht, Reinout Meijboom, Marianne J Cronjé. The ability of silver(I) thiocyanate 4-methoxyphenyl phosphine to induce apoptotic cell death in esophageal cancer cells is correlated to mitochondrial perturbations.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2018 04; 31(2):189-202. doi:
10.1007/s10534-017-0051-9
. [PMID: 29430579] - Rebecca Dewhurst-Trigg, Toby Yeates, Jamie R Blackwell, Christopher Thompson, Adam Linoby, Paul T Morgan, Ida Clarke, Luke J Connolly, Lee J Wylie, Paul G Winyard, Andrew M Jones, Stephen J Bailey. Lowering of blood pressure after nitrate-rich vegetable consumption is abolished with the co-ingestion of thiocyanate-rich vegetables in healthy normotensive males.
Nitric oxide : biology and chemistry.
2018 04; 74(?):39-46. doi:
10.1016/j.niox.2018.01.009
. [PMID: 29360600] - L P Zhu, J P Wang, X M Ding, S P Bai, Q F Zeng, Z W Su, Y Xuan, K Y Zhang. The Deposition and Elimination of Glucosinolate Metabolites Derived from Rapeseed Meal in Eggs of Laying Hens.
Journal of agricultural and food chemistry.
2018 Feb; 66(6):1560-1568. doi:
10.1021/acs.jafc.7b05782
. [PMID: 29345135] - Nadezda Pankratova, Maria Cuartero, Laura A Jowett, Ethan N W Howe, Philip A Gale, Eric Bakker, Gastón A Crespo. Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids.
Biosensors & bioelectronics.
2018 Jan; 99(?):70-76. doi:
10.1016/j.bios.2017.07.001
. [PMID: 28738230] - Daniel Okitundu Luwa E-Andjafono, Marie-Therese Sombo Safi Ayanne, Guy Bumoko Makila-Mabe, Jean-Pierre Banea Mayambu, Dieudonné Mumba Ngoyi, Michael Boivin, Jean-Jacques Tamfum-Muyembe, Désiré Tshala-Katumbay. [Socioemotional disorders in children living in Konzo-affected areas, an epidemic paralytic disease associated with cyanide poisoning from food in sub-Saharan Africa].
The Pan African medical journal.
2018; 31(?):118. doi:
10.11604/pamj.2018.31.118.11640
. [PMID: 31037178] - Espérance Kashala-Abotnes, Marie-Thérèse Sombo, Daniel L Okitundu, Marcel Kunyu, Guy Bumoko Makila-Mabe, Thorkild Tylleskär, Alla Sikorskii, Jean-Pierre Banea, Dieudonné Mumba Ngoyi, Désiré Tshala-Katumbay, Michael J Boivin. Dietary cyanogen exposure and early child neurodevelopment: An observational study from the Democratic Republic of Congo.
PloS one.
2018; 13(4):e0193261. doi:
10.1371/journal.pone.0193261
. [PMID: 29664942] - Sun Y Lee, Alicia M McCarthy, Hindi Stohl, Sherrine Ibrahim, Christina Jeong, Lewis E Braverman, Wendy Ma, Xuemei He, Jorge H Mestman, Kristin E Schuller, Katherine A Jahreis, Elizabeth N Pearce, Angela M Leung. Urinary Iodine, Perchlorate, and Thiocyanate Concentrations in U.S. Lactating Women.
Thyroid : official journal of the American Thyroid Association.
2017 12; 27(12):1574-1581. doi:
10.1089/thy.2017.0158
. [PMID: 29130403] - Sarah S R Kim, Xuemei He, Lewis E Braverman, Radhika Narla, Pawan K Gupta, Angela M Leung. Letter to the Editor.
Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists.
2017 07; 23(7):885-886. doi:
10.4158/1934-2403-23.7.885
. [PMID: 28703651] - Sumayah F Rahman, Rose S Kantor, Robert Huddy, Brian C Thomas, Andries W van Zyl, Susan T L Harrison, Jillian F Banfield. Genome-resolved metagenomics of a bioremediation system for degradation of thiocyanate in mine water containing suspended solid tailings.
MicrobiologyOpen.
2017 06; 6(3):. doi:
10.1002/mbo3.446
. [PMID: 28215046] - K J Kambale, E R Ali, N H Sadiki, K P Kayembe, L G Mvumbi, D L Yandju, M J Boivin, G R Boss, D D Stadler, W E Lambert, M R Lasarev, L A Okitundu, D Mumba Ngoyi, J P Banea, D D Tshala-Katumbay. Lower sulfurtransferase detoxification rates of cyanide in konzo-A tropical spastic paralysis linked to cassava cyanogenic poisoning.
Neurotoxicology.
2017 03; 59(?):256-262. doi:
10.1016/j.neuro.2016.05.016
. [PMID: 27246648] - Julia E von Oettingen, Tesha D Brathwaite, Christopher Carpenter, Ric Bonnell, Xuemei He, Lewis E Braverman, Elizabeth N Pearce, Philippe Larco, Nancy Charles Larco, Eddy Jean-Baptiste, Rosalind S Brown. Population Survey of Iodine Deficiency and Environmental Disruptors of Thyroid Function in Young Children in Haiti.
The Journal of clinical endocrinology and metabolism.
2017 02; 102(2):644-651. doi:
10.1210/jc.2016-2630
. [PMID: 27768855] - Stephen J Bailey, Jamie R Blackwell, Lee J Wylie, Terezia Holland, Paul G Winyard, Andrew M Jones. Improvement in blood pressure after short-term inorganic nitrate supplementation is attenuated in cigarette smokers compared to non-smoking controls.
Nitric oxide : biology and chemistry.
2016 12; 61(?):29-37. doi:
10.1016/j.niox.2016.10.002
. [PMID: 27744007] - Jangwoen Lee, Sari B Mahon, David Mukai, Tanya Burney, Behdod S Katebian, Adriano Chan, Vikhyat S Bebarta, David Yoon, Gerry R Boss, Matthew Brenner. The Vitamin B12 Analog Cobinamide Is an Effective Antidote for Oral Cyanide Poisoning.
Journal of medical toxicology : official journal of the American College of Medical Toxicology.
2016 12; 12(4):370-379. doi:
10.1007/s13181-016-0566-4
. [PMID: 27631586] - He Huang, Shangmian Yie, Yuliang Liu, Chengdong Wang, Zhigang Cai, Wenping Zhang, Jingchao Lan, Xiangming Huang, Li Luo, Kailai Cai, Rong Hou, Zhihe Zhang. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca).
Scientific reports.
2016 10; 6(?):34700. doi:
10.1038/srep34700
. [PMID: 27703267] - Weiwei Zhang, Wenhe Wang, Zihe Liu, Yongchao Xie, Hao Wang, Yajuan Mu, Yao Huang, Yue Feng. Crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana provides insights into its product specificity.
Biochemical and biophysical research communications.
2016 09; 478(2):746-51. doi:
10.1016/j.bbrc.2016.08.019
. [PMID: 27498030] - Marie-Emilie Willemin, Annie Lumen. Development of a PBPK model of thiocyanate in rats with an extrapolation to humans: A computational study to quantify the mechanism of action of thiocyanate kinetics in thyroid.
Toxicology and applied pharmacology.
2016 09; 307(?):19-34. doi:
10.1016/j.taap.2016.07.011
. [PMID: 27445130] - Patrick J Sabourin, Christina L Kobs, Seth T Gibbs, Peter Hong, Claire M Matthews, Kristen M Patton, Carol L Sabourin, Edgar J Wakayama. Characterization of a Mouse Model of Oral Potassium Cyanide Intoxication.
International journal of toxicology.
2016 09; 35(5):584-603. doi:
10.1177/1091581816646973
. [PMID: 27170682] - Ram B Jain. Trends and variability in the levels of urinary thiocyanate, perchlorate, and nitrate by age, gender, race/ethnicity, smoking status, and exposure to environmental tobacco smoke over 2005-2012.
The Science of the total environment.
2016 Jul; 557-558(?):221-30. doi:
10.1016/j.scitotenv.2016.03.064
. [PMID: 26994809] - Sulekh Chandra, Sunita Hooda, Praveen Kumar Tomar, Amrita Malik, Ankit Kumar, Sakshi Malik, Seema Gautam. Synthesis and characterization of bis nitrato[4-hydroxyacetophenonesemicarbazone) nickel(II) complex as ionophore for thiocyanate-selective electrode.
Materials science & engineering. C, Materials for biological applications.
2016 May; 62(?):18-27. doi:
10.1016/j.msec.2015.12.065
. [PMID: 26952393] - Peter Felker, Ronald Bunch, Angela M Leung. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism.
Nutrition reviews.
2016 Apr; 74(4):248-58. doi:
10.1093/nutrit/nuv110
. [PMID: 26946249] - Ivy Shiue. Urinary heavy metals, phthalates, perchlorate, nitrate, thiocyanate, hydrocarbons, and polyfluorinated compounds are associated with adult hearing disturbance: USA NHANES, 2011–2012.
Environmental science and pollution research international.
2015 Dec; 22(24):20306-11. doi:
10.1007/s11356-015-5546-8
. [PMID: 26490897] - Rose S Kantor, A Wynand van Zyl, Robert P van Hille, Brian C Thomas, Susan T L Harrison, Jillian F Banfield. Bioreactor microbial ecosystems for thiocyanate and cyanide degradation unravelled with genome-resolved metagenomics.
Environmental microbiology.
2015 Dec; 17(12):4929-41. doi:
10.1111/1462-2920.12936
. [PMID: 26031303] - Qiujun Lu, Yalan Liu, Yuxin Hou, Haiyan Wang, Youyu Zhang, Shouzhuo Yao. Detection of thiocyanate through limiting growth of AuNPs with C-dots acting as reductant.
The Analyst.
2015 Nov; 140(22):7645-9. doi:
10.1039/c5an01605c
. [PMID: 26421502] - Nelson Udeme, Polycarp Okafor, Chinedum Eleazu. The Metabolic Effects of Consumption of Yellow Cassava (Manihot esculenta Crantz) on Some Biochemical Parameters in Experimental Rats.
International journal of toxicology.
2015 Nov; 34(6):559-64. doi:
10.1177/1091581815606085
. [PMID: 26467190] - Kristin A Evans, David Q Rich, Barry Weinberger, Anna M Vetrano, Liza Valentin-Blasini, Pamela Ohman Strickland, Benjamin C Blount. Association of prenatal perchlorate, thiocyanate, and nitrate exposure with neonatal size and gestational age.
Reproductive toxicology (Elmsford, N.Y.).
2015 Nov; 57(?):183-9. doi:
10.1016/j.reprotox.2015.07.069
. [PMID: 26169551] - Ivy Shiue. Urinary heavy metals, phthalates, phenols, thiocyanate, parabens, pesticides, polyaromatic hydrocarbons but not arsenic or polyfluorinated compounds are associated with adult oral health: USA NHANES, 2011-2012.
Environmental science and pollution research international.
2015 Oct; 22(20):15636-45. doi:
10.1007/s11356-015-4749-3
. [PMID: 26018285] - Frauke Gumz, Joern Krausze, Daniela Eisenschmidt, Anita Backenköhler, Leif Barleben, Wolfgang Brandt, Ute Wittstock. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.
Plant molecular biology.
2015 Sep; 89(1-2):67-81. doi:
10.1007/s11103-015-0351-9
. [PMID: 26260516] - Juyoung Lee, Hoonjeong Kwon. In vitro metabolic conversion of the organic breakdown products of glucosinolate to goitrogenic thiocyanate anion.
Journal of the science of food and agriculture.
2015 Aug; 95(11):2244-51. doi:
10.1002/jsfa.6943
. [PMID: 25271103] - P E Morgan, R P Laura, R A Maki, W F Reynolds, M J Davies. Thiocyanate supplementation decreases atherosclerotic plaque in mice expressing human myeloperoxidase.
Free radical research.
2015 Jun; 49(6):743-9. doi:
10.3109/10715762.2015.1019347
. [PMID: 25812586] - Amar K Chandra, Chiranjit Mondal, Sabyasachi Sinha, Arijit Chakraborty, Elizabeth N Pearce. Synergic actions of polyphenols and cyanogens of peanut seed coat (Arachis hypogaea) on cytological, biochemical and functional changes in thyroid.
Indian journal of experimental biology.
2015 Mar; 53(3):143-51. doi:
. [PMID: 25872244]
- G M-M Bumoko, N H Sadiki, A Rwatambuga, K P Kayembe, D L Okitundu, D Mumba Ngoyi, J-J T Muyembe, J-P Banea, M J Boivin, D Tshala-Katumbay. Lower serum levels of selenium, copper, and zinc are related to neuromotor impairments in children with konzo.
Journal of the neurological sciences.
2015 Feb; 349(1-2):149-53. doi:
10.1016/j.jns.2015.01.007
. [PMID: 25592410] - Noor Artika Hassan, Mazrura Sahani, Rozita Hod, Noral' Asyikin Yahya. A study on exposure to cyanide among a community living near a gold mine in Malaysia.
Journal of environmental health.
2015 Jan; 77(6):42-8. doi:
NULL
. [PMID: 25619035] - Anna Bilska-Wilkosz, Magdalena Dudek, Joanna Knutelska, Lidia Włodek. The effect of lipoic acid administration on the urinary excretion of thiocyanate in rats exposed to potassium cyanide.
Acta poloniae pharmaceutica.
2015 Jan; 72(1):49-52. doi:
NULL
. [PMID: 25850200] - Anna Krakowiak, Konrad Śliwkiewicz, Ewa Nowakowska-Swirta, Renata Winnicka, Piotr Politański. High-mobility group box 1 protein levels in serum of subjects after exposure to fire smoke--short communication.
Pneumonologia i alergologia polska.
2015; 83(3):203-7. doi:
10.5603/piap.2015.0032
. [PMID: 26050980] - Jeremy D King, Haijun Liu, Guannan He, Gregory S Orf, Robert E Blankenship. Chemical activation of the cyanobacterial orange carotenoid protein.
FEBS letters.
2014 Dec; 588(24):4561-5. doi:
10.1016/j.febslet.2014.10.024
. [PMID: 25448596] - Lei Wu, Zhuyuan Wang, Shenfei Zong, Yiping Cui. Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip.
Biosensors & bioelectronics.
2014 Dec; 62(?):13-8. doi:
10.1016/j.bios.2014.06.026
. [PMID: 24973537] - Mina Suh, Liz Abraham, J Gregory Hixon, Deborah M Proctor. The effects of perchlorate, nitrate, and thiocyanate on free thyroxine for potentially sensitive subpopulations of the 2001-2002 and 2007-2008 National Health and Nutrition Examination Surveys.
Journal of exposure science & environmental epidemiology.
2014 Nov; 24(6):579-87. doi:
10.1038/jes.2013.67
. [PMID: 24149973] - P E Nedoboy, P E Morgan, T J Mocatta, A M Richards, C C Winterbourn, M J Davies. High plasma thiocyanate levels are associated with enhanced myeloperoxidase-induced thiol oxidation and long-term survival in subjects following a first myocardial infarction.
Free radical research.
2014 Oct; 48(10):1256-66. doi:
10.3109/10715762.2014.947286
. [PMID: 25050609] - Alexey V Sokolov, Elena T Zakharova, Elena T Zakahrova, Valeria A Kostevich, Valeria R Samygina, Vadim B Vasilyev. Lactoferrin, myeloperoxidase, and ceruloplasmin: complementary gearwheels cranking physiological and pathological processes.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2014 Oct; 27(5):815-28. doi:
10.1007/s10534-014-9755-2
. [PMID: 24966132] - Xiaolei Qin, Tao Zhang, Zhiwei Gan, Hongwen Sun. Spatial distribution of perchlorate, iodide and thiocyanate in the aquatic environment of Tianjin, China: environmental source analysis.
Chemosphere.
2014 Sep; 111(?):201-8. doi:
10.1016/j.chemosphere.2014.03.082
. [PMID: 24997919] - Ola R Shehab, Ahmed M Mansour. New thiocyanate potentiometric sensors based on sulfadimidine metal complexes: experimental and theoretical studies.
Biosensors & bioelectronics.
2014 Jul; 57(?):77-84. doi:
10.1016/j.bios.2014.01.051
. [PMID: 24556161] - Hossein Chiniforoshan, Leila Tabrizi, Morteza Hadizade, Mohammad R Sabzalian, Alireza Najafi Chermahini, Mehdi Rezapour. Anti-inflammatory drugs interacting with Zn (II) metal ion based on thiocyanate and azide ligands: synthesis, spectroscopic studies, DFT calculations and antibacterial assays.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2014 Jul; 128(?):183-90. doi:
10.1016/j.saa.2014.02.135
. [PMID: 24667423] - Akifumi Eguchi, Tatsuya Kunisue, Qian Wu, Pham Thi Kim Trang, Pham Hung Viet, Kurunthachalam Kannan, Shinsuke Tanabe. Occurrence of perchlorate and thiocyanate in human serum from e-waste recycling and reference sites in Vietnam: association with thyroid hormone and iodide levels.
Archives of environmental contamination and toxicology.
2014 Jul; 67(1):29-41. doi:
10.1007/s00244-014-0021-y
. [PMID: 24718699] - Natthinee Charatcharoenwitthaya, Boonsong Ongphiphadhanakul, Elizabeth N Pearce, Charintip Somprasit, Athita Chanthasenanont, Xuemei He, Laor Chailurkit, Lewis E Braverman. The association between perchlorate and thiocyanate exposure and thyroid function in first-trimester pregnant Thai women.
The Journal of clinical endocrinology and metabolism.
2014 Jul; 99(7):2365-71. doi:
10.1210/jc.2013-3986
. [PMID: 24701986] - Martin D Rees, Sophie L Maiocchi, Anthony J Kettle, Shane R Thomas. Mechanism and regulation of peroxidase-catalyzed nitric oxide consumption in physiological fluids: critical protective actions of ascorbate and thiocyanate.
Free radical biology & medicine.
2014 Jul; 72(?):91-103. doi:
10.1016/j.freeradbiomed.2014.03.037
. [PMID: 24704973] - Byung-Gon Ryu, Jungmin Kim, Wasif Farooq, Jong-In Han, Ji-Won Yang, Woong Kim. Algal-bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions.
Bioresource technology.
2014 Jun; 162(?):70-9. doi:
10.1016/j.biortech.2014.03.084
. [PMID: 24747384] - Byung-Gon Ryu, Jungmin Kim, Gursong Yoo, Jun-Taek Lim, Woong Kim, Jong-In Han, Ji-Won Yang. Microalgae-mediated simultaneous treatment of toxic thiocyanate and production of biodiesel.
Bioresource technology.
2014 Apr; 158(?):166-73. doi:
10.1016/j.biortech.2014.01.128
. [PMID: 24603489] - Jean Pierre Banea, J Howard Bradbury, Chretienne Mandombi, Damien Nahimana, Ian C Denton, N'landa Kuwa, D Tshala Katumbay. Effectiveness of wetting method for control of konzo and reduction of cyanide poisoning by removal of cyanogens from cassava flour.
Food and nutrition bulletin.
2014 Mar; 35(1):28-32. doi:
10.1177/156482651403500104
. [PMID: 24791576] - Angela M Leung, Pamela M Katz, Xuemei He, Denice S Feig, Elizabeth N Pearce, Lewis E Braverman. Urinary perchlorate and thiocyanate concentrations in pregnant women from Toronto, Canada.
Thyroid : official journal of the American Thyroid Association.
2014 Jan; 24(1):175-6. doi:
10.1089/thy.2013.0228
. [PMID: 23802748] - Bumoko G Makila-Mabe, Kambale J Kikandau, Thérèse M Sombo, Daniel L Okitundu, Jean-Claude Mwanza, Michael J Boivin, Mumba D Ngoyi, Jean-Jacques T Muyembe, Jean-Pierre Banea, Gerard R Boss, Desiré Tshala-Katumbay. Serum 8,12-iso-iPF2α-VI isoprostane marker of oxidative damage and cognition deficits in children with konzo.
PloS one.
2014; 9(9):e107191. doi:
10.1371/journal.pone.0107191
. [PMID: 25222616] - Aysel Ozpinar, Fahrettin Kelestimur, Yildiran Songur, Ozge Can, Liza Valentin, Kathleen Caldwell, Ender Arikan, Ibrahim Unsal, Mustafa Serteser, Tamer Inal, Yigit Erdemgil, Abdurrahman Coskun, Nadi Bakirci, Ozlem Sezgin, Ben Blount. Iodine status in Turkish populations and exposure to iodide uptake inhibitors.
PloS one.
2014; 9(2):e88206. doi:
10.1371/journal.pone.0088206
. [PMID: 24505430] - Wen-Ching Ko, Chien-Liang Liu, Jie-Jen Lee, Tsang-Pai Liu, Po-Sheng Yang, Yi-Chiung Hsu, Shih-Ping Cheng. Negative association between serum parathyroid hormone levels and urinary perchlorate, nitrate, and thiocyanate concentrations in U.S. adults: the National Health and Nutrition Examination Survey 2005-2006.
PloS one.
2014; 9(12):e115245. doi:
10.1371/journal.pone.0115245
. [PMID: 25514572] - Raj K Bhandari, Erica Manandhar, Robert P Oda, Gary A Rockwood, Brian A Logue. Simultaneous high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analysis of cyanide and thiocyanate from swine plasma.
Analytical and bioanalytical chemistry.
2014 Jan; 406(3):727-34. doi:
10.1007/s00216-013-7536-3
. [PMID: 24327078] - Altamir Benedito de Sousa, Silvana Lima Górniak. Toxicokinetic aspects of thiocyanate after oral exposure to cyanide in female Wistar rats in different physiological states.
Drug and chemical toxicology.
2014 Jan; 37(1):63-8. doi:
10.3109/01480545.2013.806533
. [PMID: 23841473] - Poonam Singh, Pooja Rao, Rahul Bhattacharya. Dose and time-dependent effects of cyanide on thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine λ-lyase activities.
Journal of biochemical and molecular toxicology.
2013 Dec; 27(12):499-507. doi:
10.1002/jbt.21514
. [PMID: 23929717] - O S A Oluwole, A O Oludiran. Normative concentrations of urine thiocyanate in cassava eating communities in Nigeria.
International journal of food sciences and nutrition.
2013 Dec; 64(8):1036-41. doi:
10.3109/09637486.2013.825697
. [PMID: 23944969] - J P Banea, J Howard Bradbury, C Mandombi, D Nahimana, Ian C Denton, N Kuwa, D Tshala Katumbay. Control of konzo by detoxification of cassava flour in three villages in the Democratic Republic of Congo.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2013 Oct; 60(?):506-13. doi:
10.1016/j.fct.2013.08.012
. [PMID: 23941775] - Sylwia Narkowicz, Żaneta Polkowska, Mariusz Marć, Vasil Simeonov, Jacek Namieśnik. Determination of thiocyanate (biomarkers of ETS) and other inorganic ions in human nasal discharge samples using ion chromatography.
Ecotoxicology and environmental safety.
2013 Oct; 96(?):131-8. doi:
10.1016/j.ecoenv.2013.06.001
. [PMID: 23850246] - Brendan L Mitchell, Raj K Bhandari, Vikhyat S Bebarta, Gary A Rockwood, Gerry R Boss, Brian A Logue. Toxicokinetic profiles of α-ketoglutarate cyanohydrin, a cyanide detoxification product, following exposure to potassium cyanide.
Toxicology letters.
2013 Sep; 222(1):83-9. doi:
10.1016/j.toxlet.2013.07.008
. [PMID: 23867915] - Pooja Rao, Poonam Singh, Shiv Kumar Yadav, Niranjan L Gujar, Rahul Bhattacharya. Acute toxicity of some synthetic cyanogens in rats: time-dependent cyanide generation and cytochrome oxidase inhibition in soft tissues after sub-lethal oral intoxication.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2013 Sep; 59(?):595-609. doi:
10.1016/j.fct.2013.06.035
. [PMID: 23831730] - Ram B Jain. Impact of pregnancy and other factors on the levels of urinary perchlorate, thiocyanate, and nitrate among females aged 15-44 years: data from National Health and Nutrition Examination Survey: 2003-2008.
Chemosphere.
2013 May; 91(7):882-7. doi:
10.1016/j.chemosphere.2013.02.040
. [PMID: 23522032] - Gretchen M Bruce, Lisa M Corey, Jeffrey H Mandel, Richard C Pleus. Urinary nitrate, thiocyanate, and perchlorate and serum thyroid endpoints based on NHANES 2001 to 2002.
Journal of occupational and environmental medicine.
2013 Jan; 55(1):52-8. doi:
10.1097/jom.0b013e31826bb774
. [PMID: 23018524] - Mohammad Shakhawat Hossain, Wenxiu Ye, Mohammad Anowar Hossain, Eiji Okuma, Misugi Uraji, Yoshimasa Nakamura, Izumi C Mori, Yoshiyuki Murata. Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana.
Bioscience, biotechnology, and biochemistry.
2013; 77(5):977-83. doi:
10.1271/bbb.120928
. [PMID: 23649257] - Amar K Chandra, Laishram H Singh, Suvendu Ghosh, Elizabeth N Pearce. Role of bamboo-shoot in the pathogenesis of endemic goiter in manipur, north East India.
Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists.
2013 Jan; 19(1):36-45. doi:
10.4158/ep12162.or
. [PMID: 23186959] - Chakravarthy V Vinnakota, Naga S Peetha, Mitch G Perrizo, David G Ferris, Robert P Oda, Gary A Rockwood, Brian A Logue. Comparison of cyanide exposure markers in the biofluids of smokers and non-smokers.
Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.
2012 Nov; 17(7):625-33. doi:
10.3109/1354750x.2012.709880
. [PMID: 22889346] - Michael Holzer, Klaus Zangger, Dalia El-Gamal, Veronika Binder, Sanja Curcic, Viktoria Konya, Rufina Schuligoi, Akos Heinemann, Gunther Marsche. Myeloperoxidase-derived chlorinating species induce protein carbamylation through decomposition of thiocyanate and urea: novel pathways generating dysfunctional high-density lipoprotein.
Antioxidants & redox signaling.
2012 Oct; 17(8):1043-52. doi:
10.1089/ars.2011.4403
. [PMID: 22462773] - Elizabeth N Pearce, Maria Alexiou, Eftychia Koukkou, Lewis E Braverman, Xuemei He, Ioannis Ilias, Maria Alevizaki, Kostas B Markou. Perchlorate and thiocyanate exposure and thyroid function in first-trimester pregnant women from Greece.
Clinical endocrinology.
2012 Sep; 77(3):471-4. doi:
10.1111/j.1365-2265.2012.04407.x
. [PMID: 22486757] - Angela M Leung, Lewis E Braverman, Xuemei He, Kristin E Schuller, Alexandra Roussilhes, Katherine A Jahreis, Elizabeth N Pearce. Environmental perchlorate and thiocyanate exposures and infant serum thyroid function.
Thyroid : official journal of the American Thyroid Association.
2012 Sep; 22(9):938-43. doi:
10.1089/thy.2012.0058
. [PMID: 22827469] - Xiao-lian Qian, Hai-yan Song, Jian-ling Bai. [An analysis on the urinary thiocyanate of 149 health crowd in Nanjing].
Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases.
2012 Aug; 30(8):595-6. doi:
NULL
. [PMID: 22931880] - Antoni V Milewski, Ellen S Dierenfeld. Supplemental iodine as a key to reproduction in pandas?.
Integrative zoology.
2012 Jun; 7(2):175-82. doi:
10.1111/j.1749-4877.2012.00283.x
. [PMID: 22691201] - Abd El-Aziz M Hussein, Amr M Abbas, Gehan A El Wakil, Ayman Z Elsamanoudy, Azza Abd El Aziz. Effect of chronic excess iodine intake on thyroid function and oxidative stress in hypothyroid rats.
Canadian journal of physiology and pharmacology.
2012 May; 90(5):617-25. doi:
10.1139/y2012-046
. [PMID: 22550940] - Stephanie L Youso, Gary A Rockwood, Brian A Logue. The analysis of protein-bound thiocyanate in plasma of smokers and non-smokers as a marker of cyanide exposure.
Journal of analytical toxicology.
2012 May; 36(4):265-9. doi:
10.1093/jat/bks017
. [PMID: 22474215] - Nancy Mervish, Ben Blount, Liza Valentin-Blasini, Barbara Brenner, Maida P Galvez, Mary S Wolff, Susan L Teitelbaum. Temporal variability in urinary concentrations of perchlorate, nitrate, thiocyanate and iodide among children.
Journal of exposure science & environmental epidemiology.
2012 Mar; 22(2):212-8. doi:
10.1038/jes.2011.44
. [PMID: 22166811] - Min Gu Park, Ki Won Ko, Mi Mi Oh, Jae Hyun Bae, Je Jong Kim, Du Geon Moon. Effects of smoking on plasma testosterone level and erectile function in rats.
The journal of sexual medicine.
2012 Feb; 9(2):472-81. doi:
10.1111/j.1743-6109.2011.02555.x
. [PMID: 22145633] - Marcela C M Vaz, Teresa A P Rocha-Santos, Rui J M Rocha, Isabel Lopes, Ruth Pereira, Armando C Duarte, Peter J Rubec, Ricardo Calado. Excreted thiocyanate detects live reef fishes illegally collected using cyanide--a non-invasive and non-destructive testing approach.
PloS one.
2012; 7(4):e35355. doi:
10.1371/journal.pone.0035355
. [PMID: 22536375] - N Eskandarzade, M Aminlari, S Golami, M Tavana. Rhodanese activity in different tissues of the ostrich.
British poultry science.
2012; 53(2):270-3. doi:
10.1080/00071668.2012.682722
. [PMID: 22646793] - Philip E Morgan, David I Pattison, Jihan Talib, Fiona A Summers, Jason A Harmer, David S Celermajer, Clare L Hawkins, Michael J Davies. High plasma thiocyanate levels in smokers are a key determinant of thiol oxidation induced by myeloperoxidase.
Free radical biology & medicine.
2011 Nov; 51(9):1815-22. doi:
10.1016/j.freeradbiomed.2011.08.008
. [PMID: 21884783] - Angela M Leung, Andrew Lamar, Xuemei He, Lewis E Braverman, Elizabeth N Pearce. Iodine status and thyroid function of Boston-area vegetarians and vegans.
The Journal of clinical endocrinology and metabolism.
2011 Aug; 96(8):E1303-7. doi:
10.1210/jc.2011-0256
. [PMID: 21613354] - Daniel Lorentzen, Lakshmi Durairaj, Alejandro A Pezzulo, Yoko Nakano, Janice Launspach, David A Stoltz, Gideon Zamba, Paul B McCray, Joseph Zabner, Michael J Welsh, William M Nauseef, Botond Bánfi. Concentration of the antibacterial precursor thiocyanate in cystic fibrosis airway secretions.
Free radical biology & medicine.
2011 May; 50(9):1144-50. doi:
10.1016/j.freeradbiomed.2011.02.013
. [PMID: 21334431]