Exact Mass: 564.4389659999999
Exact Mass Matches: 564.4389659999999
Found 410 metabolites which its exact mass value is equals to given mass value 564.4389659999999
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Canthaxanthin
Canthaxanthin, also known as Cantaxanthin, Cantaxanthine, or Canthaxanthine is a keto-carotenoid, a pigment widely distributed in nature. Carotenoids belong to a larger class of phytochemicals known as terpenoids. Canthaxanin is also classified as a xanthophyll. Xanthophylls are yellow pigments and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. Both are carotenoids. Xanthophylls and carotenes are similar in structure, but xanthophylls contain oxygen atoms while carotenes are purely hydrocarbons, which do not contain oxygen. Their content of oxygen causes xanthophylls to be more polar (in molecular structure) than carotenes and causes their separation from carotenes in many types of chromatography. (Carotenes are usually more orange in color than xanthophylls. Canthaxanthin is naturally found in bacteria, algae and some fungi. Canthaxanthin is associated with E number E161g and is approved for use as a food coloring agent in different countries, including the United States and the EU. Canthaxanthin is used as poultry feed additive to yield red color in skin and yolks. The European Union permits the use of canthaxanthin in feedstuff at a maximum content of 25 mg/kg of final feedstuff while the United States allows the use of this pigment in broiler chicken and salmonid fish feeds. Canthoxanthin was first isolated in edible chanterelle mushroom (Cantharellus cinnabarinus), from which it derived its name. It has also been found in green algae, bacteria, archea (a halophilic archaeon called Haloferax alexandrines), fungi and bioaccumulates in tissues and egg yolk from wild birds and at low levels in crustaceans and fish such as carp, golden grey mullet, and seabream. Canthaxanthin is not found in wild Atlantic Salmon, but is a minor carotenoid in Pacific Salmon. Canthaxanthin is used in farm-raised trout to give a red/orange color to their flesh similar to wild trout. Canthaxanthin has been used as a food additive for egg yolk, in cosmetics and as a pigmenting agent for human skin applications. It has also been used as a feed additive in fish and crustacean farms. Canthaxanthin is a potent lipid-soluble antioxidant (PMID: 2505240). Canthaxanthin increases resistance to lipid peroxidation primarily by enhancing membrane alpha-tocopherol levels and secondarily by providing weak direct antioxidant activity. Canthaxanthin biosynthesis in bacteria and algae proceeds from beta-carotene via the action of an enzyme known as a beta-carotene ketolase, that is able to add a carbonyl group to carbon 4 and 4 of the beta carotene molecule. Food colouring. Constituent of the edible mushroom (Cantharellus cinnabarinus), sea trout, salmon and brine shrimp. It is used in broiler chicken feed to enhance the yellow colour of chicken skin D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Alloxanthin
Alloxanthin is found in channel catfish. Alloxanthin is a constituent of many shellfish including the giant scallop (Pecten maximus) and edible mussel (Mytilus edulis). Constituent of many shellfish including the giant scallop (Pecten maximus) and edible mussel (Mytilus edulis). Alloxanthin is found in channel catfish and mollusks.
Annotemoyin 1
Annotemoyin 2 is a constituent of the seeds of Annona atemoya (custard apple) Constituent of the seeds of Annona atemoya (custard apple).
cis-Solamin
Solamin is found in alcoholic beverages. Solamin is a constituent of Annona glabra (pond apple), Annona muricata (soursop) and Annona reticulata (custard apple) Constituent of Annona glabra (pond apple), Annona muricata (soursop) and Annona reticulata (custard apple). Solamin is found in alcoholic beverages and fruits.
Panatellin
Panatellin is found in fruits. Panatellin is a constituent of the roots of Annona muricata (soursop) Constituent of the roots of Annona muricata (soursop). Panatellin is found in fruits.
E,e-Carotene-3,3'-dione
Carotene-3,3-dione is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds and crustacea. Animals are unable to synthesise carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important. (PMID: 1416048, 15003396).
DG(14:0/18:2(9Z,12Z)/0:0)
DG(14:0/18:2(9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:0/18:2(9Z,12Z)/0:0), in particular, consists of one chain of myristic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the linoleic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(14:1(9Z)/18:1(11Z)/0:0)
DG(14:1(9Z)/18:1(11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/18:1(11Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the vaccenic acid moiety is derived from butter fat and animal fat. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(14:1(9Z)/18:1(11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/18:1(11Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the vaccenic acid moiety is derived from butter fat and animal fat. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(14:1(9Z)/18:1(9Z)/0:0)
DG(14:1(9Z)/18:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/18:1(9Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of oleic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(14:1(9Z)/18:1(9Z)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(14:1(9Z)/18:1(9Z)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(16:1(9Z)/16:1(9Z)/0:0)
DG(16:1(9Z)/16:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:1(9Z)/16:1(9Z)/0:0), in particular, consists of two chains of palmitoleic acid at the C-1 and C-2 positions. The palmitoleic acid moieties are derived from animal fats and vegetable oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(18:1(11Z)/14:1(9Z)/0:0)
DG(18:1(11Z)/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:1(11Z)/14:1(9Z)/0:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:1(11Z)/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:1(11Z)/14:1(9Z)/0:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(18:1(9Z)/14:1(9Z)/0:0)
DG(18:1(9Z)/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:1(9Z)/14:1(9Z)/0:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:1(9Z)/14:1(9Z)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:1(9Z)/14:1(9Z)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:2(9Z,12Z)/14:0/0:0)
DG(18:2(9Z,12Z)/14:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/14:0/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of myristic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the myristic acid moiety is derived from nutmeg and butter. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:2(9Z,12Z)/14:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/14:0/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of myristic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the myristic acid moiety is derived from nutmeg and butter. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
2-Octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol
2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol (DMQH2) is an intermediate in coenzyme Q biosynthesis. It is produced by gut microbes. In microbes, the starting compound, 4-hydroxybenzoate, undergoes a prenylation, a decarboxylation and three hydroxylations alternating with three methylation reactions, resulting in the formation of coenzyme Q. In the final step, DMQH2 is converted from 2-octaprenyl-6-methoxy-1,4-benzoquinol (DDMQH2) with the help of Methyltransferase. Coenzyme Q (ubiquinone or Q)1 is a redox active lipid containing a long polyprenyl tail attached to a fully substituted benzoquinone ring. The number (n) of isoprene units in the polyprenyl tail (Qn) is distinct in different organisms; humans produce Q10, Caenorhabditis elegans Q9, Escherichia coli Q8, and Saccharomyces cerevisiae Q6. [HMDB] 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol (DMQH2) is an intermediate in coenzyme Q biosynthesis. It is produced by gut microbes. In microbes, the starting compound, 4-hydroxybenzoate, undergoes a prenylation, a decarboxylation and three hydroxylations alternating with three methylation reactions, resulting in the formation of coenzyme Q. In the final step, DMQH2 is converted from 2-octaprenyl-6-methoxy-1,4-benzoquinol (DDMQH2) with the help of Methyltransferase. Coenzyme Q (ubiquinone or Q) is a redox active lipid containing a long polyprenyl tail attached to a fully substituted benzoquinone ring. The number (n) of isoprene units in the polyprenyl tail (Qn) is distinct in different organisms; humans produce Q10, Caenorhabditis elegans Q9, Escherichia coli Q8, and Saccharomyces cerevisiae Q6.
(6S,6'S)-epsilon,epsilon-Carotene-3,3'-dione
(6S,6S)-epsilon,epsilon-Carotene-3,3-dione is found in dolphin fish. (6S,6S)-epsilon,epsilon-Carotene-3,3-dione is isolated from marine fish-eggs and egg yolk. Isolated from marine fish-eggs and egg yolk. (6S,6S)-epsilon,epsilon-Carotene-3,3-dione is found in dolphin fish, eggs, and fishes.
DG(14:1n5/0:0/18:1n7)
DG(14:1n5/0:0/18:1n7) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(14:1n5/0:0/18:1n7), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of vaccenic acid at the C-3 position. The myristoleic acid moiety is derived from milk fats, while the vaccenic acid moiety is derived from butter fat and animal fat. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(14:1n5/0:0/18:1n9)
DG(14:1n5/0:0/18:1n9) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(14:1n5/0:0/18:1n9), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of oleic acid at the C-3 position. The myristoleic acid moiety is derived from milk fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(16:1n7/0:0/16:1n7)
DG(16:1n7/0:0/16:1n7) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1 C-2, or C-3 positions. DG(16:1n7/0:0/16:1n7), in particular, consists of two chains of palmitoleic acid at the C-1 and C-3 positions. The palmitoleic acid moieties are derived from animal fats and vegetable oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(10:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)
DG(10:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(10:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/10:0/0:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/10:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/10:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(10:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
DG(10:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/10:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/10:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(10:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)
DG(10:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(10:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/10:0/0:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/10:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/10:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(10:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
DG(10:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/10:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/10:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(10:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)
DG(10:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(10:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/10:0/0:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/10:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/10:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(10:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
DG(10:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/10:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/10:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(13:0/18:2(10E,12Z)+=O(9)/0:0)
DG(13:0/18:2(10E,12Z)+=O(9)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(13:0/18:2(10E,12Z)+=O(9)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:2(10E,12Z)+=O(9)/13:0/0:0)
DG(18:2(10E,12Z)+=O(9)/13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:2(10E,12Z)+=O(9)/13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(13:0/0:0/18:2(10E,12Z)+=O(9))
DG(13:0/0:0/18:2(10E,12Z)+=O(9)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:2(10E,12Z)+=O(9)/0:0/13:0)
DG(18:2(10E,12Z)+=O(9)/0:0/13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(13:0/18:2(9Z,11E)+=O(13)/0:0)
DG(13:0/18:2(9Z,11E)+=O(13)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(13:0/18:2(9Z,11E)+=O(13)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:2(9Z,11E)+=O(13)/13:0/0:0)
DG(18:2(9Z,11E)+=O(13)/13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:2(9Z,11E)+=O(13)/13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(13:0/0:0/18:2(9Z,11E)+=O(13))
DG(13:0/0:0/18:2(9Z,11E)+=O(13)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:2(9Z,11E)+=O(13)/0:0/13:0)
DG(18:2(9Z,11E)+=O(13)/0:0/13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(13:0/18:3(10,12,15)-OH(9)/0:0)
DG(13:0/18:3(10,12,15)-OH(9)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(13:0/18:3(10,12,15)-OH(9)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:3(10,12,15)-OH(9)/13:0/0:0)
DG(18:3(10,12,15)-OH(9)/13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(10,12,15)-OH(9)/13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(13:0/0:0/18:3(10,12,15)-OH(9))
DG(13:0/0:0/18:3(10,12,15)-OH(9)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:3(10,12,15)-OH(9)/0:0/13:0)
DG(18:3(10,12,15)-OH(9)/0:0/13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(13:0/18:3(9,11,15)-OH(13)/0:0)
DG(13:0/18:3(9,11,15)-OH(13)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(13:0/18:3(9,11,15)-OH(13)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:3(9,11,15)-OH(13)/13:0/0:0)
DG(18:3(9,11,15)-OH(13)/13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(9,11,15)-OH(13)/13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(13:0/0:0/18:3(9,11,15)-OH(13))
DG(13:0/0:0/18:3(9,11,15)-OH(13)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:3(9,11,15)-OH(13)/0:0/13:0)
DG(18:3(9,11,15)-OH(13)/0:0/13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-13:0/18:2(10E,12Z)+=O(9)/0:0)
DG(a-13:0/18:2(10E,12Z)+=O(9)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-13:0/18:2(10E,12Z)+=O(9)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:2(10E,12Z)+=O(9)/a-13:0/0:0)
DG(18:2(10E,12Z)+=O(9)/a-13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:2(10E,12Z)+=O(9)/a-13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-13:0/0:0/18:2(10E,12Z)+=O(9))
DG(a-13:0/0:0/18:2(10E,12Z)+=O(9)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:2(10E,12Z)+=O(9)/0:0/a-13:0)
DG(18:2(10E,12Z)+=O(9)/0:0/a-13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-13:0/18:2(9Z,11E)+=O(13)/0:0)
DG(a-13:0/18:2(9Z,11E)+=O(13)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-13:0/18:2(9Z,11E)+=O(13)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:2(9Z,11E)+=O(13)/a-13:0/0:0)
DG(18:2(9Z,11E)+=O(13)/a-13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:2(9Z,11E)+=O(13)/a-13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-13:0/0:0/18:2(9Z,11E)+=O(13))
DG(a-13:0/0:0/18:2(9Z,11E)+=O(13)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:2(9Z,11E)+=O(13)/0:0/a-13:0)
DG(18:2(9Z,11E)+=O(13)/0:0/a-13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-13:0/18:3(10,12,15)-OH(9)/0:0)
DG(a-13:0/18:3(10,12,15)-OH(9)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-13:0/18:3(10,12,15)-OH(9)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:3(10,12,15)-OH(9)/a-13:0/0:0)
DG(18:3(10,12,15)-OH(9)/a-13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(10,12,15)-OH(9)/a-13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-13:0/0:0/18:3(10,12,15)-OH(9))
DG(a-13:0/0:0/18:3(10,12,15)-OH(9)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:3(10,12,15)-OH(9)/0:0/a-13:0)
DG(18:3(10,12,15)-OH(9)/0:0/a-13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-13:0/18:3(9,11,15)-OH(13)/0:0)
DG(a-13:0/18:3(9,11,15)-OH(13)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-13:0/18:3(9,11,15)-OH(13)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:3(9,11,15)-OH(13)/a-13:0/0:0)
DG(18:3(9,11,15)-OH(13)/a-13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(9,11,15)-OH(13)/a-13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-13:0/0:0/18:3(9,11,15)-OH(13))
DG(a-13:0/0:0/18:3(9,11,15)-OH(13)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:3(9,11,15)-OH(13)/0:0/a-13:0)
DG(18:3(9,11,15)-OH(13)/0:0/a-13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-13:0/18:2(10E,12Z)+=O(9)/0:0)
DG(i-13:0/18:2(10E,12Z)+=O(9)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-13:0/18:2(10E,12Z)+=O(9)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:2(10E,12Z)+=O(9)/i-13:0/0:0)
DG(18:2(10E,12Z)+=O(9)/i-13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:2(10E,12Z)+=O(9)/i-13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-13:0/0:0/18:2(10E,12Z)+=O(9))
DG(i-13:0/0:0/18:2(10E,12Z)+=O(9)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:2(10E,12Z)+=O(9)/0:0/i-13:0)
DG(18:2(10E,12Z)+=O(9)/0:0/i-13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-13:0/18:2(9Z,11E)+=O(13)/0:0)
DG(i-13:0/18:2(9Z,11E)+=O(13)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-13:0/18:2(9Z,11E)+=O(13)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:2(9Z,11E)+=O(13)/i-13:0/0:0)
DG(18:2(9Z,11E)+=O(13)/i-13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:2(9Z,11E)+=O(13)/i-13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-13:0/0:0/18:2(9Z,11E)+=O(13))
DG(i-13:0/0:0/18:2(9Z,11E)+=O(13)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:2(9Z,11E)+=O(13)/0:0/i-13:0)
DG(18:2(9Z,11E)+=O(13)/0:0/i-13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-13:0/18:3(10,12,15)-OH(9)/0:0)
DG(i-13:0/18:3(10,12,15)-OH(9)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-13:0/18:3(10,12,15)-OH(9)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:3(10,12,15)-OH(9)/i-13:0/0:0)
DG(18:3(10,12,15)-OH(9)/i-13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(10,12,15)-OH(9)/i-13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-13:0/0:0/18:3(10,12,15)-OH(9))
DG(i-13:0/0:0/18:3(10,12,15)-OH(9)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:3(10,12,15)-OH(9)/0:0/i-13:0)
DG(18:3(10,12,15)-OH(9)/0:0/i-13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-13:0/18:3(9,11,15)-OH(13)/0:0)
DG(i-13:0/18:3(9,11,15)-OH(13)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-13:0/18:3(9,11,15)-OH(13)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:3(9,11,15)-OH(13)/i-13:0/0:0)
DG(18:3(9,11,15)-OH(13)/i-13:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(9,11,15)-OH(13)/i-13:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-13:0/0:0/18:3(9,11,15)-OH(13))
DG(i-13:0/0:0/18:3(9,11,15)-OH(13)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:3(9,11,15)-OH(13)/0:0/i-13:0)
DG(18:3(9,11,15)-OH(13)/0:0/i-13:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
2,6,10,14,19,23-hexamethyl-25-(2,6,6-trimethylcyclohexen-1-yl)pentacosa-2,4,6,8,10,12,14,16,18,20,22,24-dodecaenoic acid
3-Hydroxy-4-ketotorulene
This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.; Window width for selecting the precursor ion was 3 Da. Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.
Alloxanthin
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.
Alloxanthin/ Tetradehydrozeaxanthin / (Cynthiaxanthin)/ (Pectenoxanthin)
Annotemoyin 1
Panatellin
cis-Solamin
(6S,6'S)-epsilon,epsilon-Carotene-3,3'-dione
N-arachidoyl-O-phosphocholineserine
C28H57N2O7P (564.3903181999999)
canthaxanthin
A carotenone that consists of beta,beta-carotene bearing two oxo substituents at positions 4 and 4. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Torularhodin
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
1,3-DIPALMITOLEIN
A 1,3-diglyceride in which both acyl groups are specified as palmitoleoyl.
4,4-Dihydro-3,4,3,4-tetradehydro-beta,beta-carotene
[(2S)-1-hydroxy-3-tridecanoyloxypropan-2-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate
[(2S)-3-hydroxy-2-tridecanoyloxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate
[(2R)-2-hydroxy-3-tridecanoyloxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate
[(2S)-2-hydroxy-3-tridecanoyloxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate
[(2S)-1-hydroxy-3-tridecanoyloxypropan-2-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate
[(2S)-3-hydroxy-2-tridecanoyloxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate
[(2R)-2-hydroxy-3-tridecanoyloxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate
[(2S)-2-hydroxy-3-tridecanoyloxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate
1,2-di-[(9Z)-hexadecenoyl]glycerol
A 1,2-diglyceride in which the acyl groups at positions 1 and 2 are specified as (9Z)-hexadecenoyl.
2,3-Dipalmitoleoyl-sn-glycerol
A 2,3-diacyl-sn-glycerol in which both acyl groups are specified as palmitoleoyl.
2-[hydroxy-[(2R)-3-octadecoxy-2-prop-2-enoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-octadec-9-enoate
[3-Hydroxy-2-(propanoylamino)henicosyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
[2-(Hexanoylamino)-3-hydroxyoctadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
[2-(Butanoylamino)-3-hydroxyicosyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[3-Hydroxy-2-(nonanoylamino)pentadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
[3-Hydroxy-2-(pentadecanoylamino)nonyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
(2-Acetamido-3-hydroxydocosyl) 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
[3-Hydroxy-2-(octanoylamino)hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
[3-Hydroxy-2-(pentanoylamino)nonadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
[2-(Heptanoylamino)-3-hydroxyheptadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[2-(Decanoylamino)-3-hydroxytetradecyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
[2-(Dodecanoylamino)-3-hydroxydodecyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
[3-Hydroxy-2-(tridecanoylamino)undecyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
[3-Hydroxy-2-(tetradecanoylamino)decyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
[3-Hydroxy-2-(undecanoylamino)tridecyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
(2-octanoyloxy-3-octoxypropyl) (9Z,12Z)-hexadeca-9,12-dienoate
[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-octanoyloxypropyl] octanoate
[2-(Hexadecanoylamino)-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate
C29H61N2O6P (564.4267015999999)
(1-hydroxy-3-tetradecanoyloxypropan-2-yl) (9Z,12Z)-octadeca-9,12-dienoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropyl] hexadecanoate
(1-hydroxy-3-tridecanoyloxypropan-2-yl) (9Z,12Z)-nonadeca-9,12-dienoate
(1-hydroxy-3-pentadecanoyloxypropan-2-yl) (9Z,12Z)-heptadeca-9,12-dienoate
(1-hydroxy-3-undecanoyloxypropan-2-yl) (11Z,14Z)-henicosa-11,14-dienoate
(1-dodecanoyloxy-3-hydroxypropan-2-yl) (11Z,14Z)-icosa-11,14-dienoate
[1-hydroxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-heptadec-9-enoate
(1-decanoyloxy-3-hydroxypropan-2-yl) (13Z,16Z)-docosa-13,16-dienoate
[1-hydroxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-nonadec-9-enoate
(6S)-3-[(1E,3E,5E,7E,9E,11E,13E,15E,17E,19E,21E)-3,7,12,16,20,24-hexamethylpentacosa-1,3,5,7,9,11,13,15,17,19,21,23-dodecaenyl]-6-hydroxy-2,4,4-trimethylcyclohex-2-en-1-one
(1-hydroxy-3-octanoyloxypropan-2-yl) (13Z,16Z)-tetracosa-13,16-dienoate
(1-hexanoyloxy-3-hydroxypropan-2-yl) (15Z,18Z)-hexacosa-15,18-dienoate
N-(decanoyl)-tetradecasphinganine-1-phosphocholine
C29H61N2O6P (564.4267015999999)
[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropyl] (E)-hexadec-9-enoate
[(2S)-3-hydroxy-2-tetradecanoyloxypropyl] (9E,12E)-octadeca-9,12-dienoate
[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] hexadecanoate
[(2S)-3-hydroxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-octadec-11-enoate
[(2S)-1-hydroxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-octadec-11-enoate
[(2S)-2-dodecanoyloxy-3-hydroxypropyl] (11E,14E)-icosa-11,14-dienoate
[(2S)-2-decanoyloxy-3-hydroxypropyl] (13E,16E)-docosa-13,16-dienoate
[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]propyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
[1-carboxy-3-[2-hydroxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-hydroxy-3-pentadecanoyloxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate
[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]propyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
[(2S)-3-hydroxy-2-pentadecanoyloxypropyl] (9E,12E)-heptadeca-9,12-dienoate
[(2S)-1-dodecanoyloxy-3-hydroxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
[(2S)-1-hydroxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-heptadec-9-enoate
[(2S)-1-decanoyloxy-3-hydroxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate
[(2S)-1-hydroxy-3-tetradecanoyloxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate
[(2S)-3-hydroxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-heptadec-9-enoate
2-[hydroxy-[3-[(Z)-octadec-9-enoxy]-2-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[3-[3-acetyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-1-carboxypropyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
[3-[3-butanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-1-carboxypropyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
2-[[3-[(Z)-henicos-11-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-hexadec-9-enoxy]-2-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-heptanoyloxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hexanoyloxypropoxy]propyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
2-[carboxy-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-hydroxypropoxy]methoxy]ethyl-trimethylazanium
C32H54NO7+ (564.3900074000001)
2-[[3-[(Z)-docos-13-enoxy]-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-octoxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-butanoyloxy-3-[(Z)-heptadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-octanoyloxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-acetyloxy-3-[(Z)-nonadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-hexanoyloxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1,2-di-palmitoleoyl-2-sn-glycerol
A 1,2-diacyl-sn-glycerol in which the 1- and 2-acyl groups are specified as palmitoleoyl.
1-myristoyl-2-linoleoyl-sn-glycerol
A 1,2-diacyl-sn-glycerol that has myristoyl and linoleoyl as 1- and 2-acyl groups respectively.
1-(9Z-tetradecenoyl)-2-(9Z-octadecenoyl)-sn-glycerol
2,4,4-Trimethyl-3-[3,7,12,16-tetramethyl-18-(2,6,6-trimethyl-3-oxocyclohexen-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]cyclohex-2-en-1-one
diacylglycerol 32:2
A diglyceride in which the two acyl groups contain a total of 32 carbons and 2 double bonds.
TG(31:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
TG(32:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved