Exact Mass: 564.3450708
Exact Mass Matches: 564.3450708
Found 420 metabolites which its exact mass value is equals to given mass value 564.3450708
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PA(8:0/18:0)
PA(8:0/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/18:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(10:0/i-16:0)
PA(10:0/i-16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/i-16:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of isohexadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(8:0/i-18:0)
PA(8:0/i-18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/i-18:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of isooctadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-13:0/a-13:0)
PA(a-13:0/a-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/a-13:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-13:0/i-13:0)
PA(a-13:0/i-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/i-13:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-12:0/i-14:0)
PA(i-12:0/i-14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/i-14:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isotetradecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-13:0/a-13:0)
PA(i-13:0/a-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/a-13:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-13:0/i-13:0)
PA(i-13:0/i-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/i-13:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-14:0/i-12:0)
PA(i-14:0/i-12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-14:0/i-12:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
Cholylarginine
Cholylarginine belongs to a class of molecules known as bile acid-amino acid conjugates. These are bile acid conjugates that consist of a primary bile acid such as cholic acid, doxycholic acid and chenodeoxycholic acid, conjugated to an amino acid. Cholylarginine consists of the bile acid cholic acid conjugated to the amino acid Arginine conjugated at the C24 acyl site.Bile acids play an important role in regulating various physiological systems, such as fat digestion, cholesterol metabolism, vitamin absorption, liver function, and enterohepatic circulation through their combined signaling, detergent, and antimicrobial mechanisms (PMID: 34127070). Bile acids also act as detergents in the gut and support the absorption of fats through the intestinal membrane. These same properties allow for the disruption of bacterial membranes, thereby allowing them to serve a bacteriocidal or bacteriostatic function. In humans (and other mammals) bile acids are normally conjugated with the amino acids glycine and taurine by the liver. This conjugation catalyzed by two liver enzymes, bile acid CoA ligase (BAL) and bile acid CoA: amino acid N-acyltransferase (BAT). Glycine and taurine bound BAs are also referred to as bile salts due to their decreased pKa and complete ionization resulting in these compounds being present as anions in vivo. Unlike glycine and taurine-conjugated bile acids, these recently discovered bile acids, such as Cholylarginine, are produced by the gut microbiota, making them secondary bile acids (PMID: 32103176) or microbially conjugated bile acids (MCBAs) (PMID: 34127070). Evidence suggests that these bile acid-amino acid conjugates are produced by microbes belonging to Clostridia species (PMID: 32103176). These unusual bile acid-amino acid conjugates are found in higher frequency in patients with inflammatory bowel disease (IBD), cystic fibrosis (CF) and in infants (PMID: 32103176). Cholylarginine appears to act as an agonist for the farnesoid X receptor (FXR) and it can also lead to reduced expression of bile acid synthesis genes (PMID: 32103176). It currently appears that microbially conjugated bile acids (MCBAs) or amino acid-bile acid conjugates are only conjugated to cholic acid, deoxycholic acid and chenodeoxycholic acid (PMID: 34127070). It has been estimated that if microbial conjugation of bile acids is very promiscuous and occurs for all potential oxidized, epimerized, and dehydroxylated states of each hydroxyl group present on cholic acid (C3, C7, C12) in addition to ring orientation, the total number of potential human bile acid conjugates could be over 2800 (PMID: 34127070).
Butyloxycarbonyl-leucyl-glycyl-arginine-4-nitroanilide
C25H40N8O7 (564.3019810000001)
N-T-Boc-leu-gly-arg P-nitroanilide
C25H40N8O7 (564.3019810000001)
Valnemulin
3alpha-Angeloyloxy-2-hydroxy-13-oxo-14,15-nor-ent-labda-7-en-2-O-beta-[fucopyranoside-4-O-acetate]
8-Hydroxymanzamine A
An alkaloid that is manzamine A with a hydroxy substituent at position 8. Isolated from Pachypellina and Acanthostrongylophora, it exhibits inhibitory activity against Glycogen Synthase Kinase-3 (EC 2.7.11.26).
(+)-8-hydroxymanzamine A|(-)-8-hydroxymanzamine A|6-hydroxymanzamine A|8-hydroxymanzamine|8-Hydroxymanzamine A
(25S)-2beta-(alpha-L-arabinopyranosyloxy)-5beta-spirostan-3alpha-ol, Yononin|(25S)-2beta--5beta-spirostan-3alpha-ol, Yononin
(1beta,3beta,5beta,25S)-3-hydroxyspirostan-1-yl beta-D-xylopyranoside|(1beta,3beta,5beta,25S)-spirostan-1,3-diol 1-(beta-D-xylopyranoside)|rhodeasapogenin 1-(beta-D-xylopyranoside)
(22S,25S)-16beta,22,26-trihydroxycholest-4-en-3-one-16-O-beta-D-xylopyranosie
2,12-bis-O-(beta-D-glucopyranosyl)-campherenane-2-endo,12-diol
6alpha-hydroxy-23-methoxy-16beta,23(R)-epoxy-24,25,26,27-tetranor-9,-19-cyclolanosta-3-O-beta-xyloside|bicusposide B
Muricatetrocin B|Muricatin B|O-[alpha-L-Rhamnopyranosyl(1鈥樏傗垎4)-alpha-L-rhamnopyranoside]-(S)-11-Hydroxyhexadecanoic acid
6alpha-O-beta-D-xylopyranosyl-(25R)-5alpha-spirostan-3beta-ol|6alpha-O-beta-xylopyranosyl-(25R)-5alpha-spirostan-3beta-ol|saponin Sc-3|SC-3
Arg Tyr Ala Arg
Tyr Val Arg Lys
Val Lys Tyr Arg
Tyr Gln Val Arg
C25H40N8O7 (564.3019810000001)
Arg Tyr Val Lys
Ala Arg Arg Tyr
Ala Arg Tyr Arg
Ala Tyr Arg Arg
Asp Phe Lys Arg
C25H40N8O7 (564.3019810000001)
Asp Phe Arg Lys
C25H40N8O7 (564.3019810000001)
Asp Lys Phe Arg
C25H40N8O7 (564.3019810000001)
Asp Lys Arg Phe
C25H40N8O7 (564.3019810000001)
Asp Arg Phe Lys
C25H40N8O7 (564.3019810000001)
Asp Arg Lys Phe
C25H40N8O7 (564.3019810000001)
Phe Asp Lys Arg
C25H40N8O7 (564.3019810000001)
Phe Asp Arg Lys
C25H40N8O7 (564.3019810000001)
Phe Lys Asp Arg
C25H40N8O7 (564.3019810000001)
Phe Lys Arg Asp
C25H40N8O7 (564.3019810000001)
Phe Arg Asp Lys
C25H40N8O7 (564.3019810000001)
Phe Arg Lys Asp
C25H40N8O7 (564.3019810000001)
Phe Arg Arg Ser
Phe Arg Ser Arg
Phe Ser Arg Arg
His Pro Arg Arg
His Arg Pro Arg
His Arg Arg Pro
Ile Asn Arg Tyr
C25H40N8O7 (564.3019810000001)
Ile Asn Tyr Arg
C25H40N8O7 (564.3019810000001)
Ile Arg Asn Tyr
C25H40N8O7 (564.3019810000001)
Ile Arg Tyr Asn
C25H40N8O7 (564.3019810000001)
Ile Tyr Asn Arg
C25H40N8O7 (564.3019810000001)
Ile Tyr Arg Asn
C25H40N8O7 (564.3019810000001)
Lys Asp Phe Arg
C25H40N8O7 (564.3019810000001)
Lys Asp Arg Phe
C25H40N8O7 (564.3019810000001)
Lys Phe Asp Arg
C25H40N8O7 (564.3019810000001)
Lys Phe Arg Asp
C25H40N8O7 (564.3019810000001)
Lys Arg Asp Phe
C25H40N8O7 (564.3019810000001)
Lys Arg Phe Asp
C25H40N8O7 (564.3019810000001)
Lys Arg Val Tyr
Lys Arg Tyr Val
Lys Val Arg Tyr
Lys Val Tyr Arg
Lys Tyr Arg Val
Lys Tyr Val Arg
Leu Asn Arg Tyr
C25H40N8O7 (564.3019810000001)
Leu Asn Tyr Arg
C25H40N8O7 (564.3019810000001)
Leu Arg Asn Tyr
C25H40N8O7 (564.3019810000001)
Leu Arg Tyr Asn
C25H40N8O7 (564.3019810000001)
Leu Tyr Asn Arg
C25H40N8O7 (564.3019810000001)
Leu Tyr Arg Asn
C25H40N8O7 (564.3019810000001)
Asn Ile Arg Tyr
C25H40N8O7 (564.3019810000001)
Asn Ile Tyr Arg
C25H40N8O7 (564.3019810000001)
Asn Leu Arg Tyr
C25H40N8O7 (564.3019810000001)
Asn Leu Tyr Arg
C25H40N8O7 (564.3019810000001)
Asn Arg Ile Tyr
C25H40N8O7 (564.3019810000001)
Asn Arg Leu Tyr
C25H40N8O7 (564.3019810000001)
Asn Arg Tyr Ile
C25H40N8O7 (564.3019810000001)
Asn Arg Tyr Leu
C25H40N8O7 (564.3019810000001)
Asn Tyr Ile Arg
C25H40N8O7 (564.3019810000001)
Asn Tyr Leu Arg
C25H40N8O7 (564.3019810000001)
Asn Tyr Arg Ile
C25H40N8O7 (564.3019810000001)
Asn Tyr Arg Leu
C25H40N8O7 (564.3019810000001)
Pro His Arg Arg
Pro Arg His Arg
Pro Arg Arg His
Gln Arg Val Tyr
C25H40N8O7 (564.3019810000001)
Gln Arg Tyr Val
C25H40N8O7 (564.3019810000001)
Gln Val Arg Tyr
C25H40N8O7 (564.3019810000001)
Gln Val Tyr Arg
C25H40N8O7 (564.3019810000001)
Gln Tyr Arg Val
C25H40N8O7 (564.3019810000001)
Gln Tyr Val Arg
C25H40N8O7 (564.3019810000001)
Arg Ala Arg Tyr
Arg Ala Tyr Arg
Arg Asp Phe Lys
C25H40N8O7 (564.3019810000001)
Arg Asp Lys Phe
C25H40N8O7 (564.3019810000001)
Arg Phe Asp Lys
C25H40N8O7 (564.3019810000001)
Arg Phe Lys Asp
C25H40N8O7 (564.3019810000001)
Arg Phe Arg Ser
Arg Phe Ser Arg
Arg His Pro Arg
Arg His Arg Pro
Arg Ile Asn Tyr
C25H40N8O7 (564.3019810000001)
Arg Ile Tyr Asn
C25H40N8O7 (564.3019810000001)
Arg Lys Asp Phe
C25H40N8O7 (564.3019810000001)
Arg Lys Phe Asp
C25H40N8O7 (564.3019810000001)
Arg Lys Val Tyr
Arg Lys Tyr Val
Arg Leu Asn Tyr
C25H40N8O7 (564.3019810000001)
Arg Leu Tyr Asn
C25H40N8O7 (564.3019810000001)
Arg Asn Ile Tyr
C25H40N8O7 (564.3019810000001)
Arg Asn Leu Tyr
C25H40N8O7 (564.3019810000001)
Arg Asn Tyr Ile
C25H40N8O7 (564.3019810000001)
Arg Asn Tyr Leu
C25H40N8O7 (564.3019810000001)
Arg Pro His Arg
Arg Pro Arg His
Arg Gln Val Tyr
C25H40N8O7 (564.3019810000001)
Arg Gln Tyr Val
C25H40N8O7 (564.3019810000001)
Arg Arg Ala Tyr
Arg Arg Phe Ser
Arg Arg His Pro
Arg Arg Pro His
Arg Arg Ser Phe
Arg Arg Tyr Ala
Arg Ser Phe Arg
Arg Ser Arg Phe
Arg Val Lys Tyr
Arg Val Gln Tyr
C25H40N8O7 (564.3019810000001)
Arg Val Tyr Lys
Arg Val Tyr Gln
C25H40N8O7 (564.3019810000001)
Arg Tyr Ile Asn
C25H40N8O7 (564.3019810000001)
Arg Tyr Lys Val
Arg Tyr Leu Asn
C25H40N8O7 (564.3019810000001)
Arg Tyr Asn Ile
C25H40N8O7 (564.3019810000001)
Arg Tyr Asn Leu
C25H40N8O7 (564.3019810000001)
Arg Tyr Gln Val
C25H40N8O7 (564.3019810000001)
Arg Tyr Arg Ala
Arg Tyr Val Gln
C25H40N8O7 (564.3019810000001)
Ser Phe Arg Arg
Ser Arg Phe Arg
Ser Arg Arg Phe
Val Lys Arg Tyr
Val Gln Arg Tyr
C25H40N8O7 (564.3019810000001)
Val Gln Tyr Arg
C25H40N8O7 (564.3019810000001)
Val Arg Lys Tyr
Val Arg Gln Tyr
C25H40N8O7 (564.3019810000001)
Val Arg Tyr Lys
Val Arg Tyr Gln
C25H40N8O7 (564.3019810000001)
Val Tyr Lys Arg
Val Tyr Gln Arg
C25H40N8O7 (564.3019810000001)
Val Tyr Arg Lys
Val Tyr Arg Gln
C25H40N8O7 (564.3019810000001)
Tyr Ala Arg Arg
Tyr Ile Asn Arg
C25H40N8O7 (564.3019810000001)
Tyr Ile Arg Asn
C25H40N8O7 (564.3019810000001)
Tyr Lys Arg Val
Tyr Lys Val Arg
Tyr Leu Asn Arg
C25H40N8O7 (564.3019810000001)
Tyr Leu Arg Asn
C25H40N8O7 (564.3019810000001)
Tyr Asn Ile Arg
C25H40N8O7 (564.3019810000001)
Tyr Asn Leu Arg
C25H40N8O7 (564.3019810000001)
Tyr Asn Arg Ile
C25H40N8O7 (564.3019810000001)
Tyr Asn Arg Leu
C25H40N8O7 (564.3019810000001)
Tyr Gln Arg Val
C25H40N8O7 (564.3019810000001)
Tyr Arg Ala Arg
Tyr Arg Ile Asn
C25H40N8O7 (564.3019810000001)
Tyr Arg Lys Val
Tyr Arg Leu Asn
C25H40N8O7 (564.3019810000001)
Tyr Arg Asn Ile
C25H40N8O7 (564.3019810000001)
Tyr Arg Asn Leu
C25H40N8O7 (564.3019810000001)
Tyr Arg Gln Val
C25H40N8O7 (564.3019810000001)
Tyr Arg Arg Ala
Tyr Arg Val Lys
Tyr Arg Val Gln
C25H40N8O7 (564.3019810000001)
Tyr Val Lys Arg
Tyr Val Gln Arg
C25H40N8O7 (564.3019810000001)
Tyr Val Arg Gln
C25H40N8O7 (564.3019810000001)
N-arachidoyl-O-phosphocholineserine
C28H57N2O7P (564.3903181999999)
17-(nonylphenoxy)-3,6,9,12,15-pentaoxaheptadecan-1-yl dihydrogen phosphate
Dansyl-DL-aspartic acid bis(cyclohexylammonium) salt
2,2-bis(hydroxymethyl)propane-1,3-diol,octadecanoic acid,prop-2-enoic acid
FMOC-(3S,4S)-4-AMINO-3-HYDROXY-5-METHYL-HEXANOIC ACID DCHA
(1r)-2-(Dodecanoyloxy)-1-[(Phosphonooxy)methyl]ethyl Tetradecanoate
[(2R)-2-decanoyloxy-3-phosphonooxypropyl] hexadecanoate
6-hydroxymanzamine A
An alkaloid that is manzamine A with a hydroxy substituent at position 6. Isolated from Haliclona and Acanthostrongylophora, it exhibits inhibitory activity against Glycogen Synthase Kinase-3 (EC 2.7.11.26).
N-[(2R,3S)-2-[[[(cyclohexylamino)-oxomethyl]-methylamino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[(2S,3R)-2-[[[(cyclohexylamino)-oxomethyl]-methylamino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[(2S,3S)-2-[[[(cyclohexylamino)-oxomethyl]-methylamino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[(2S,3R)-2-[[[(cyclohexylamino)-oxomethyl]-methylamino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[(2R,3R)-2-[[[(cyclohexylamino)-oxomethyl]-methylamino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[(2R,3S)-2-[[[(cyclohexylamino)-oxomethyl]-methylamino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[(2R,3R)-2-[[[(cyclohexylamino)-oxomethyl]-methylamino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
N-[(2S,3S)-2-[[[(cyclohexylamino)-oxomethyl]-methylamino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
2-[[(2R)-2-acetyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-acetyloxy-3-[(E)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-acetyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (13Z,16Z)-docosa-13,16-dienoate
(2S,3S)-3-Benzyloxy-1-(tert-butyldimethylsilyloxy)-4-(tert-butyldiphenylsilyloxy)-2-butanol
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-propanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
[1-[(2-acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
(1-Phosphonooxy-3-propanoyloxypropan-2-yl) tricosanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
(1-Pentanoyloxy-3-phosphonooxypropan-2-yl) henicosanoate
(1-Heptanoyloxy-3-phosphonooxypropan-2-yl) nonadecanoate
(1-Octanoyloxy-3-phosphonooxypropan-2-yl) octadecanoate
[1-acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
(1-Hexanoyloxy-3-phosphonooxypropan-2-yl) icosanoate
(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) heptadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
(1-Acetyloxy-3-phosphonooxypropan-2-yl) tetracosanoate
(1-Butanoyloxy-3-phosphonooxypropan-2-yl) docosanoate
(3-Phosphonooxy-2-tridecanoyloxypropyl) tridecanoate
(1-Decanoyloxy-3-phosphonooxypropan-2-yl) hexadecanoate
(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) pentadecanoate
(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) tetradecanoate
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] pentadecanoate
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] pentadecanoate
(2R,3R)-1-[tert-butyl(dimethyl)silyl]oxy-4-[tert-butyl(diphenyl)silyl]oxy-3-phenylmethoxybutan-2-ol
[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]propyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] hexadecanoate
[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]propyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
2-[[2-[(Z)-heptadec-9-enoyl]oxy-3-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[3-[3-acetyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-1-carboxypropyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
[3-[3-butanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-1-carboxypropyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
2-[[3-hexanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-acetyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-heptanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-pentanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-butanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hexanoyloxypropoxy]propyl]-trimethylazanium
C32H54NO7+ (564.3900074000001)
2-[carboxy-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-hydroxypropoxy]methoxy]ethyl-trimethylazanium
C32H54NO7+ (564.3900074000001)