Exact Mass: 530.2190044
Exact Mass Matches: 530.2190044
Found 239 metabolites which its exact mass value is equals to given mass value 530.2190044
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Strictosidine
D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids Annotation level-3 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.677 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.675 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.666
Gomisin D
Gomisin D is a natural product found in Schisandra chinensis with data available. Gomisin D, a lignan compound isolated from Fructus Schisandra, is a potential antidiabetic and anti-Alzheimer’s agent. Gomisin D inhibits UDP-Glucuronosyltransferases activity and scavenges ABTS(+) radicals. Gomisin D is used as a quality marker of Shengmai San and shenqi Jiangtang Granule[1]. Gomisin D, a lignan compound isolated from Fructus Schisandra, is a potential antidiabetic and anti-Alzheimer’s agent. Gomisin D inhibits UDP-Glucuronosyltransferases activity and scavenges ABTS(+) radicals. Gomisin D is used as a quality marker of Shengmai San and shenqi Jiangtang Granule[1].
7-Acetoxy-6-hydroxylimonin
7-Acetoxy-6-hydroxylimonin is found in herbs and spices. 7-Acetoxy-6-hydroxylimonin is a constituent of Ruta graveolens (rue). Constituent of Ruta graveolens (rue). 7-Acetoxy-6-hydroxylimonin is found in herbs and spices.
Gomisin D
PA(2:0/PGJ2)
PA(2:0/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/PGJ2), in particular, consists of one chain of one acetyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGJ2/2:0)
PA(PGJ2/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/2:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
strictosidine
Strictosidine is a member of the class of compounds known as terpene glycosides. Terpene glycosides are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. Strictosidine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Strictosidine can be found in a number of food items such as okra, japanese persimmon, hedge mustard, and pepper (spice), which makes strictosidine a potential biomarker for the consumption of these food products. Strictosidine is formed by the Pictet‚ÄìSpengler reaction condensation of tryptamine with secologanin by the enzyme strictosidine synthase. Thousands of strictosidine derivatives are sometimes referred to by the broad phrase of monoterpene indole alkaloids. Strictosidine is the base molecule for numerous pharmaceutically valuable metabolites including quinine, camptothecin, ajmalicine, serpentine, vinblastine and vincristine . Strictosidine is a member of the class of compounds known as terpene glycosides. Terpene glycosides are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. Strictosidine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Strictosidine can be found in a number of food items such as okra, japanese persimmon, hedge mustard, and pepper (spice), which makes strictosidine a potential biomarker for the consumption of these food products. Strictosidine is formed by the Pictet–Spengler reaction condensation of tryptamine with secologanin by the enzyme strictosidine synthase. Thousands of strictosidine derivatives are sometimes referred to by the broad phrase of monoterpene indole alkaloids. Strictosidine is the base molecule for numerous pharmaceutically valuable metabolites including quinine, camptothecin, ajmalicine, serpentine, vinblastine and vincristine .
Gomisin
Gomisin D is a natural product found in Schisandra chinensis with data available. Gomisin D, a lignan compound isolated from Fructus Schisandra, is a potential antidiabetic and anti-Alzheimer’s agent. Gomisin D inhibits UDP-Glucuronosyltransferases activity and scavenges ABTS(+) radicals. Gomisin D is used as a quality marker of Shengmai San and shenqi Jiangtang Granule[1]. Gomisin D, a lignan compound isolated from Fructus Schisandra, is a potential antidiabetic and anti-Alzheimer’s agent. Gomisin D inhibits UDP-Glucuronosyltransferases activity and scavenges ABTS(+) radicals. Gomisin D is used as a quality marker of Shengmai San and shenqi Jiangtang Granule[1].
(2R,3R),(2S,3S)-2,3-divanillyl-1,4-butandiol tetraacetate|Secoisolarcinoltetraacetat|Tetra-Ac-Secoisolariciresinol
Taiwanschirin D
An organic heterotetracyclic compound isolated from the stems of Kadsura matsudai.
{6-O-[(4-oxo-4H-pyran-3-yloxy)-O-beta?D-glucopyranosyl]}-4-hydroxy-3,5-bis(3-methyl-2-butenyl)benzoate
(alphaE,1S,6R,7S,8aS)-6-ethenyl-1,2,2,3,6,7,8,8a-octahydro-alpha-(methoxymethylene)-2-oxospiro[3H-indole-3,1(5H)-indolizine]-7-acetic acid beta-D-glucopyranosyl ester|22-O-beta-D-glucopyranosyl isocorynoxeinic acid|22-O-demetyl-22-O-beta-D-glucopyranosylisocorynoxeine
Ala Phe Met Tyr
Ala Phe Tyr Met
Ala Met Phe Tyr
Ala Met Tyr Phe
Ala Tyr Phe Met
Ala Tyr Met Phe
Cys Phe Val Tyr
Cys Phe Tyr Val
Cys Val Phe Tyr
Cys Val Tyr Phe
Cys Tyr Phe Val
Cys Tyr Val Phe
Asp His Pro Tyr
Asp His Tyr Pro
Asp Asn Pro Trp
Asp Asn Trp Pro
Asp Pro His Tyr
Asp Pro Asn Trp
Asp Pro Trp Asn
Asp Pro Tyr His
Asp Trp Asn Pro
Asp Trp Pro Asn
Asp Tyr His Pro
Asp Tyr Pro His
Phe Ala Met Tyr
Phe Ala Tyr Met
Phe Cys Val Tyr
Phe Cys Tyr Val
Phe Phe Met Ser
Phe Phe Ser Met
Phe His Asn Asn
Phe Met Ala Tyr
Phe Met Phe Ser
Phe Met Ser Phe
Phe Met Tyr Ala
Phe Asn His Asn
Phe Asn Asn His
Phe Ser Phe Met
Phe Ser Met Phe
Phe Val Cys Tyr
Phe Val Tyr Cys
Phe Tyr Ala Met
Phe Tyr Cys Val
Phe Tyr Met Ala
Phe Tyr Val Cys
His Asp Pro Tyr
His Asp Tyr Pro
His Phe Asn Asn
His Asn Phe Asn
His Asn Asn Phe
His Pro Asp Tyr
His Pro Tyr Asp
His Tyr Asp Pro
His Tyr Pro Asp
Met Ala Phe Tyr
Met Ala Tyr Phe
Met Phe Ala Tyr
Met Phe Phe Ser
Met Phe Ser Phe
Met Phe Tyr Ala
Met Ser Phe Phe
Met Tyr Ala Phe
Met Tyr Phe Ala
Asn Asp Pro Trp
Asn Asp Trp Pro
Asn Phe His Asn
Asn Phe Asn His
Asn His Phe Asn
Asn His Asn Phe
Asn Asn Phe His
Asn Asn His Phe
Asn Pro Asp Trp
Asn Pro Trp Asp
Asn Trp Asp Pro
Asn Trp Pro Asp
Pro Asp His Tyr
Pro Asp Asn Trp
Pro Asp Trp Asn
Pro Asp Tyr His
Pro His Asp Tyr
Pro His Tyr Asp
Pro Asn Asp Trp
Pro Asn Trp Asp
Pro Trp Asp Asn
Pro Trp Asn Asp
Pro Tyr Asp His
Pro Tyr His Asp
Ser Phe Phe Met
Ser Phe Met Phe
Ser Met Phe Phe
Val Cys Phe Tyr
Val Cys Tyr Phe
Val Phe Cys Tyr
Val Phe Tyr Cys
Val Tyr Cys Phe
Val Tyr Phe Cys
Trp Asp Asn Pro
Trp Asp Pro Asn
Trp Asn Asp Pro
Trp Asn Pro Asp
Trp Pro Asp Asn
Trp Pro Asn Asp
Tyr Ala Phe Met
Tyr Ala Met Phe
Tyr Cys Phe Val
Tyr Cys Val Phe
Tyr Asp His Pro
Tyr Asp Pro His
Tyr Phe Ala Met
Tyr Phe Cys Val
Tyr Phe Met Ala
Tyr Phe Val Cys
Tyr His Asp Pro
Tyr His Pro Asp
Tyr Met Ala Phe
Tyr Met Phe Ala
Tyr Pro Asp His
Tyr Pro His Asp
Tyr Val Cys Phe
Tyr Val Phe Cys
7-Acetoxy-6-hydroxylimonin
tributyl-[5-(1,3-dioxolan-2-yl)-4-hexylthiophen-2-yl]stannane
AC480 (BMS-599626)
C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C163952 - EGFR-targeting Agent C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor
[(2R)-2-hexanoyloxy-3-[hydroxy-[(2S,3S,5R,6S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] hexanoate
methyl (2S,3R,4S)-3-ethenyl-4-[[(1S)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl]methyl]-2-[(2R,3S,4R,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4-dihydro-2H-pyran-5-carboxylate
Ananolignan G
A lignan with a dibenzocyclooctadiene skeleton isolated from Kadsura ananosma.
Klymollin B
An eunicellin diterpenoid isolated from the soft coral Klyxum molle. It is the C-7 epimer of Klymollin A.
1-(3-Carboxypropyl)-9-(dimethylamino)-2,2,4,11,11-pentamethyl-2,11-dihydronaphtho[2,3-g]quinolinium perchlorate
C28H35ClN2O6 (530.2183520000001)
N-[6-amino-2,4-dioxo-1-(phenylmethyl)-5-pyrimidinyl]-N-ethyl-2-[4-[3-(trifluoromethyl)phenyl]-1-piperazinyl]acetamide
N-[[(4R,5R)-8-(1-cyclohexenyl)-2-[(2S)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-4-fluoro-N-methylbenzamide
N-[[(4R,5S)-8-(1-cyclohexenyl)-2-[(2R)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-4-fluoro-N-methylbenzamide
N-[[(4R,5R)-8-(1-cyclohexenyl)-2-[(2R)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-4-fluoro-N-methylbenzamide
N-[[(4S,5S)-8-(1-cyclohexenyl)-2-[(2S)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-4-fluoro-N-methylbenzamide
N-[[(4R,5S)-8-(1-cyclohexenyl)-2-[(2S)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-4-fluoro-N-methylbenzamide
N-[[(4S,5R)-8-(1-cyclohexenyl)-2-[(2S)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-4-fluoro-N-methylbenzamide
[2-Hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] hexanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] heptanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] nonanoate
[1-Butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] octanoate
[1-Acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate
methyl 3-ethenyl-4-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-ylmethyl)-2-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4-dihydro-2H-pyran-5-carboxylate
11'-(furan-3-yl)-6',8'-dihydroxy-2,2,2',6',10'-pentamethyl-6,13'-dioxo-12',15'-dioxaspiro[pyran-3,5'-tetracyclo[8.5.0.0¹,¹⁴.0²,⁷]pentadecan]-3'-yl acetate
(2r)-3-[4-(acetyloxy)-3-methoxyphenyl]-2-[2-(acetyloxy)-5-[3-(acetyloxy)propyl]-3-methoxyphenyl]propyl acetate
(4r,5z,7s,8r,9s)-4-(2-methoxy-2-oxoacetyl)-5-(2-methoxy-2-oxoethylidene)-7,8-dimethyl-2,13,15-trioxatetracyclo[8.6.1.0⁴,¹⁷.0¹²,¹⁶]heptadeca-1(17),10,12(16)-trien-9-yl hexanoate
(1s,2r,6r,7r,10r,11s,16s,18s,19r,20r)-6-(furan-3-yl)-19,20-dihydroxy-7,17,17-trimethyl-4,14-dioxo-5,13,21-trioxahexacyclo[17.2.1.0¹,¹⁰.0²,⁷.0¹¹,¹⁶.0¹¹,²⁰]docosan-18-yl acetate
(8r,9s,10r,11r)-8-(acetyloxy)-3,4,5,19-tetramethoxy-9,10-dimethyl-15,17-dioxatetracyclo[10.7.0.0²,⁷.0¹⁴,¹⁸]nonadeca-1(19),2(7),3,5,12,14(18)-hexaen-11-yl propanoate
methyl (6s)-5-ethenyl-4-[(1s)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl]-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate
1-(3-{2,2-dimethyl-3,5'-dioxo-1,9a-dihydrospiro[imidazo[1,2-a]indole-9,2'-oxolan]-4'-yl}-4-oxoquinazolin-2-yl)-2-methylpropyl acetate
C29H30N4O6 (530.2165239999999)
(1r,2r,6s,7r,9s)-4,13-bis[(2e,4e)-1,6-dihydroxyhexa-2,4-dien-1-ylidene]-6,7,12-trihydroxy-2,6,9,11-tetramethyl-8-oxatricyclo[7.4.0.0²,⁷]tridec-11-ene-3,10-dione
5-ethenyl-4-({2-methyl-1h,3h,4h,9h-pyrido[3,4-b]indol-1-yl}methyl)-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid
6-(furan-3-yl)-19,20-dihydroxy-7,17,17-trimethyl-4,14-dioxo-5,13,21-trioxahexacyclo[17.2.1.0¹,¹⁰.0²,⁷.0¹¹,¹⁶.0¹¹,²⁰]docosan-18-yl acetate
(1r,2r,5s,6s,9s,11r,12s,13s,14r,17r,21s,22s)-6-(furan-3-yl)-13-hydroxy-1,5,12,17-tetramethyl-8,19-dioxo-7,10,15,18-tetraoxahexacyclo[12.7.1.0²,¹².0⁵,¹¹.0⁹,¹¹.0¹⁷,²²]docosan-21-yl acetate
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-{6'-ethenyl-2-hydroxy-3',5',6',7',8',8'a-hexahydro-2'h-spiro[indole-3,1'-indolizin]-7'-yl}-3-methoxyprop-2-enoate
(1s,2r,4s,7r,8s,11r,12r,18r,20s)-7-[(2r)-2-hydroxy-5-oxo-2h-furan-3-yl]-1,8,12,17,17-pentamethyl-5,15-dioxo-3,6,16-trioxapentacyclo[9.9.0.0²,⁴.0²,⁸.0¹²,¹⁸]icos-13-en-20-yl acetate
methyl (2z)-2-[(2s,3s,4s,12bs)-3-ethenyl-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl]-3-hydroxyprop-2-enoate
(1r)-1-{3-[(4'r,9s,9as)-2,2-dimethyl-3,5'-dioxo-1,9a-dihydrospiro[imidazo[1,2-a]indole-9,2'-oxolan]-4'-yl]-4-oxoquinazolin-2-yl}-2-methylpropyl acetate
C29H30N4O6 (530.2165239999999)