Exact Mass: 516.26

Exact Mass Matches: 516.26

Found 500 metabolites which its exact mass value is equals to given mass value 516.26, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Ajugalactone

(2S,3R,5R,9R,10R,13R,14R,17S)-17-[(1R)-1-[(2R)-4-ethyl-6-keto-5-methyl-2,3-dihydropyran-2-yl]-1-hydroxy-ethyl]-2,3,14-trihydroxy-10,13-dimethyl-1,2,3,4,5,9,11,15,16,17-decahydrocyclopenta[a]phenanthrene-6,12-quinone

C29H40O8 (516.2723)


   

Eriojaposide B

3,5,5-trimethyl-4-[(1E)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]but-1-en-1-yl]cyclohex-2-en-1-one

C25H40O11 (516.257)


Eriojaposide B is found in fruits. Eriojaposide B is a constituent of Eriobotrya japonica (loquat). Constituent of Eriobotrya japonica (loquat). Eriojaposide B is found in fruits. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Udenafil

3-(1-Methyl-7-oxo-3-propyl-4,7-dihydro-1H-pyrazolo(4,3-D)pyrimidin-5-yl)-N-(2-(1-methyl-2-pyrrolidinyl)ethyl)-4-propoxybenzenesulfonamide

C25H36N6O4S (516.2519)


Udenafil is a new phosphodiesterase type 5 (PDE5) inhibitor used to treat erectile dysfunction (ED). It has been approved in South Korea and will be marketed under the brand name Zydena. It is not yet approved for use in the U.S., E.U., or Canada. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors > D058986 - Phosphodiesterase 5 Inhibitors C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor > C2127 - cGMP Phosphodiesterase Inhibitor

   

Lucidenic acid E2

4-[16-(acetyloxy)-5-hydroxy-2,6,6,11,15-pentamethyl-9,12,17-trioxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-1(10)-en-14-yl]pentanoic acid

C29H40O8 (516.2723)


Lucidenic acid E2 is found in mushrooms. Lucidenic acid E2 is a constituent of Ganoderma lucidum (reishi). Constituent of Ganoderma lucidum (reishi). Lucidenic acid E2 is found in mushrooms.

   

Cavipetin E isomer 1

(2E)-4-{[(2E,6E,10E,14E)-16-{[(2E)-3-carboxyprop-2-enoyl]oxy}-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]oxy}-3-methyl-4-oxobut-2-enoic acid

C29H40O8 (516.2723)


Cavipetin E isomer 1 is an isomer of Cavipetin E. Cavipetin E is found in mushrooms. Cavipetin E is a constituent of the edible mushroom (Boletinus cavipes). Cavipetin E belongs to the family of Diterpenes. These are terpene compounds formed by four isoprene units.

   

Cavipetin E isomer 2

(2E)-4-{[(2E,6E,10E,14E)-16-{[(2E)-3-carboxyprop-2-enoyl]oxy}-2,6,10,14-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]oxy}-3-methyl-4-oxobut-2-enoic acid

C29H40O8 (516.2723)


Cavipetin E isomer 2 is an isomer of Cavipetin E. Cavipetin E is found in mushrooms. Cavipetin E is a constituent of the edible mushroom (Boletinus cavipes). Cavipetin E belongs to the family of Diterpenes. These are terpene compounds formed by four isoprene units.

   

Mayzent

1-({4-[1-({[4-cyclohexyl-3-(trifluoromethyl)phenyl]methoxy}imino)ethyl]-2-ethylphenyl}methyl)azetidine-3-carboxylic acid

C29H35F3N2O3 (516.26)


   

PA(2:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:3(5Z,8Z,11Z)-O(14R,15S)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)-O(14R,15S)/2:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:3(5Z,8Z,14Z)-O(11S,12R)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,14Z)-O(11S,12R)/2:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2R)-3-(acetyloxy)-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,11Z,14Z)-O(8,9)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:3(5Z,11Z,14Z)-O(8,9)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,11Z,14Z)-O(8,9)/2:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2R)-3-(acetyloxy)-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-O(5,6)/2:0)

[(2R)-2-(acetyloxy)-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:3(8Z,11Z,14Z)-O(5,6)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-O(5,6)/2:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/2:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2R)-3-(acetyloxy)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/2:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/2:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/2:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/2:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/2:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/2:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/2:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2R)-3-(acetyloxy)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/2:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2R)-3-(acetyloxy)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(2:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H41O9P (516.2488)


PA(20:4(5Z,7E,11Z,14Z)-OH(9)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,7E,11Z,14Z)-OH(9)/2:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

LucidenicacidE

(4R)-4-[(3S,5R,10S,12S,13R,14R,17R)-12-acetyloxy-3-hydroxy-4,4,10,13,14-pentamethyl-7,11,15-trioxo-1,2,3,5,6,12,16,17-octahydrocyclopenta[a]phenanthren-17-yl]pentanoic acid

C29H40O8 (516.2723)


Lucidenic acid E2 is a triterpenoid. Lucidenic acid E is a natural product found in Ganoderma lucidum with data available.

   

Micrandilactone B

(+)-Micrandilactone B

C29H40O8 (516.2723)


   

Elaeodendroside B

Elaeodendroside B

C29H40O8 (516.2723)


A steroid lactone isolated from Elaeodendron tangenala and Elaeodendron glaucum and exhibits antiproliferative activity against A2780 human ovarian cancer cells.

   

12-O-Methyl jaborosotetrol

12-O-Methyl jaborosotetrol

C29H40O8 (516.2723)


   

Lucidenic acid E

4-[16-(acetyloxy)-5-hydroxy-2,6,6,11,15-pentamethyl-9,12,17-trioxotetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-14-yl]pentanoic acid

C29H40O8 (516.2723)


   

12-O-Tiglylphorbol-13-isobutyrate

[1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-13-(2-methylpropanoyloxy)-5-oxo-14-tetracyclo[8.5.0.02,6.011,13]pentadeca-3,8-dienyl] (E)-2-methylbut-2-enoate

C29H40O8 (516.2723)


[1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-13-(2-methylpropanoyloxy)-5-oxo-14-tetracyclo[8.5.0.02,6.011,13]pentadeca-3,8-dienyl] (E)-2-methylbut-2-enoate is a phorbol ester.

   

deoxymorellin

deoxymorellin

C32H36O6 (516.2512)


   

Phorbol-12-tiglate-13-butyrate

Phorbol-12-tiglate-13-butyrate

C29H40O8 (516.2723)


   

Physalacton

Physalacton

C29H40O8 (516.2723)


   

(6S,7E,9R)-6,9-dihydroxy-4,7-megastigmadien-3-one 9-O-[alpha-L-arabinopyranosyl-(1 -> 6)-beta-D-glucopyranoside]

(6S,7E,9R)-6,9-dihydroxy-4,7-megastigmadien-3-one 9-O-[alpha-L-arabinopyranosyl-(1 -> 6)-beta-D-glucopyranoside]

C25H40O11 (516.257)


   

pseudopterosin X

pseudopterosin X

C29H40O8 (516.2723)


   

wuweizdilactone D|wuweizidilactone D

wuweizdilactone D|wuweizidilactone D

C29H40O8 (516.2723)


   

propindilactone O

propindilactone O

C29H40O8 (516.2723)


   

Calcicolin A-

Calcicolin A-

C29H40O8 (516.2723)


   

(20R,22R,23S)-6beta,12beta,17beta,22-tetrahydroxy-5alpha-methoxy-1-oxo-12,23-cycloergosta-2,24-dien-26,23-olide|jaborosalactone 12|jaborosalactone 14

(20R,22R,23S)-6beta,12beta,17beta,22-tetrahydroxy-5alpha-methoxy-1-oxo-12,23-cycloergosta-2,24-dien-26,23-olide|jaborosalactone 12|jaborosalactone 14

C29H40O8 (516.2723)


   

ardisiaquinone K

ardisiaquinone K

C29H40O8 (516.2723)


   

(17S,20R,22R)-18,20-epoxy-5alpha,6beta,15alpha-trihydroxy-18alpha-methoxy-1-oxowitha-2,24-dien-26,22-olide|physaminimin D

(17S,20R,22R)-18,20-epoxy-5alpha,6beta,15alpha-trihydroxy-18alpha-methoxy-1-oxowitha-2,24-dien-26,22-olide|physaminimin D

C29H40O8 (516.2723)


   

ardisiaquinone M

ardisiaquinone M

C29H40O8 (516.2723)


   

aspergillide A|aspergillipeptide A

aspergillide A|aspergillipeptide A

C26H36N4O7 (516.2584)


   

N5-Methylstreptothricin F

N5-Methylstreptothricin F

C20H36N8O8 (516.2656)


   

Petuniolide G

Petuniolide G

C29H40O8 (516.2723)


   

pseudopterosin W

pseudopterosin W

C29H40O8 (516.2723)


   

3-dehydrogomophoside|3-didehydrogomphoside

3-dehydrogomophoside|3-didehydrogomphoside

C29H40O8 (516.2723)


   

Asp Gln Val Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-4-carbamoylbutanamido]-3-methylbutanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Pro Asp Ala Lys Ser

Pro Asp Ala Lys Ser

C21H36N6O9 (516.2544)


   

Glu Ala Ala Ala Arg

Glu Ala Ala Ala Arg

C20H36N8O8 (516.2656)


   

Ile Arg Asn Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Val Asp Gln Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-carboxypropanamido]-4-carbamoylbutanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Asn Ile Arg Asp

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-methylpentanamido]-5-carbamimidamidopentanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Gln Asn Leu Glu

Gln Asn Leu Glu

C21H36N6O9 (516.2544)


   

C29H40O8_2-Butenoic acid, 2-methyl-, 1a,1b,4,4a,5,7a,7b,8,9,9a-decahydro-4a,7b-dihydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-9a-(2-methyl-1-oxopropoxy)-5-oxo-1H-cyclopropa[3,4]benz[1,2-e]azulen-9-yl ester, (2E)

NCGC00380718-01_C29H40O8_2-Butenoic acid, 2-methyl-, 1a,1b,4,4a,5,7a,7b,8,9,9a-decahydro-4a,7b-dihydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-9a-(2-methyl-1-oxopropoxy)-5-oxo-1H-cyclopropa[3,4]benz[1,2-e]azulen-9-yl ester, (2E)-

C29H40O8 (516.2723)


   

1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-13-[(2-methylpropanoyl)oxy]-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl (2E)-2-methylbut-2-enoate

1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-13-[(2-methylpropanoyl)oxy]-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl (2E)-2-methylbut-2-enoate

C29H40O8 (516.2723)


   

1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-13-[(2-methylpropanoyl)oxy]-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl (2E)-2-methylbut-2-enoate_major

1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-13-[(2-methylpropanoyl)oxy]-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl (2E)-2-methylbut-2-enoate_major

C29H40O8 (516.2723)


   

1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-13-[(2-methylpropanoyl)oxy]-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl (2E)-2-methylbut-2-enoate_43.9\\%

1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-13-[(2-methylpropanoyl)oxy]-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl (2E)-2-methylbut-2-enoate_43.9\\%

C29H40O8 (516.2723)


   

1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-13-[(2-methylpropanoyl)oxy]-5-oxotetracyclo[8.5.0.0²,?.0¹¹,¹³]pentadeca-3,8-dien-14-yl (2E)-2-methylbut-2-enoate

1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-13-[(2-methylpropanoyl)oxy]-5-oxotetracyclo[8.5.0.0²,?.0¹¹,¹³]pentadeca-3,8-dien-14-yl (2E)-2-methylbut-2-enoate

C29H40O8 (516.2723)


   

Ala Ile Gln Trp

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-aminopropanamido]-3-methylpentanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Ala Ile Trp Gln

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-aminopropanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanoic acid

C25H36N6O6 (516.2696)


   

Ala Leu Gln Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-4-methylpentanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Ala Leu Trp Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanoic acid

C25H36N6O6 (516.2696)


   

Ala Gln Ile Trp

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-4-carbamoylbutanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Ala Gln Leu Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-4-carbamoylbutanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Ala Gln Trp Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Ala Gln Trp Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Ala Trp Ile Gln

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-4-carbamoylbutanoic acid

C25H36N6O6 (516.2696)


   

Ala Trp Leu Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-4-carbamoylbutanoic acid

C25H36N6O6 (516.2696)


   

Ala Trp Gln Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]-3-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Ala Trp Gln Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]-4-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Asp Ile Asn Arg

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-carboxypropanamido]-3-methylpentanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Asp Ile Arg Asn

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-carboxypropanamido]-3-methylpentanamido]-5-carbamimidamidopentanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Asp Leu Asn Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-4-methylpentanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Asp Leu Arg Asn

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-4-methylpentanamido]-5-carbamimidamidopentanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Asp Asn Ile Arg

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-3-carbamoylpropanamido]-3-methylpentanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Asp Asn Leu Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-3-carbamoylpropanamido]-4-methylpentanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Asp Asn Arg Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]-3-methylpentanoic acid

C20H36N8O8 (516.2656)


   

Asp Asn Arg Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]-4-methylpentanoic acid

C20H36N8O8 (516.2656)


   

Asp Gln Arg Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-4-carbamoylbutanamido]-5-carbamimidamidopentanamido]-3-methylbutanoic acid

C20H36N8O8 (516.2656)


   

Asp Arg Ile Asn

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-5-carbamimidamidopentanamido]-3-methylpentanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Asp Arg Leu Asn

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-5-carbamimidamidopentanamido]-4-methylpentanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Asp Arg Asn Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]-3-methylpentanoic acid

C20H36N8O8 (516.2656)


   

Asp Arg Asn Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]-4-methylpentanoic acid

C20H36N8O8 (516.2656)


   

Asp Arg Gln Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-5-carbamimidamidopentanamido]-4-carbamoylbutanamido]-3-methylbutanoic acid

C20H36N8O8 (516.2656)


   

Asp Arg Val Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-5-carbamimidamidopentanamido]-3-methylbutanamido]-4-carbamoylbutanoic acid

C20H36N8O8 (516.2656)


   

Asp Val Gln Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-3-methylbutanamido]-4-carbamoylbutanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Asp Val Arg Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-3-methylbutanamido]-5-carbamimidamidopentanamido]-4-carbamoylbutanoic acid

C20H36N8O8 (516.2656)


   

Glu Ile Gln Gln

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-4-carboxybutanamido]-3-methylpentanamido]-4-carbamoylbutanamido]-4-carbamoylbutanoic acid

C21H36N6O9 (516.2544)


   

Glu Leu Gln Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carboxybutanamido]-4-methylpentanamido]-4-carbamoylbutanamido]-4-carbamoylbutanoic acid

C21H36N6O9 (516.2544)


   

Glu Asn Arg Val

(4S)-4-amino-4-{[(1S)-1-{[(1S)-4-carbamimidamido-1-{[(1S)-1-carboxy-2-methylpropyl]carbamoyl}butyl]carbamoyl}-2-carbamoylethyl]carbamoyl}butanoic acid

C20H36N8O8 (516.2656)


   

Glu Asn Val Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carboxybutanamido]-3-carbamoylpropanamido]-3-methylbutanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Glu Gln Ile Gln

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-4-carboxybutanamido]-4-carbamoylbutanamido]-3-methylpentanamido]-4-carbamoylbutanoic acid

C21H36N6O9 (516.2544)


   

Glu Gln Leu Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carboxybutanamido]-4-carbamoylbutanamido]-4-methylpentanamido]-4-carbamoylbutanoic acid

C21H36N6O9 (516.2544)


   

Glu Gln Gln Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carboxybutanamido]-4-carbamoylbutanamido]-4-carbamoylbutanamido]-3-methylpentanoic acid

C21H36N6O9 (516.2544)


   

Glu Gln Gln Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carboxybutanamido]-4-carbamoylbutanamido]-4-carbamoylbutanamido]-4-methylpentanoic acid

C21H36N6O9 (516.2544)


   

Glu Arg Asn Val

(4S)-4-amino-4-{[(1S)-4-carbamimidamido-1-{[(1S)-2-carbamoyl-1-{[(1S)-1-carboxy-2-methylpropyl]carbamoyl}ethyl]carbamoyl}butyl]carbamoyl}butanoic acid

C20H36N8O8 (516.2656)


   

Glu Arg Val Asn

(4S)-4-amino-4-{[(1S)-4-carbamimidamido-1-{[(1S)-1-{[(1S)-2-carbamoyl-1-carboxyethyl]carbamoyl}-2-methylpropyl]carbamoyl}butyl]carbamoyl}butanoic acid

C20H36N8O8 (516.2656)


   

Glu Val Asn Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carboxybutanamido]-3-methylbutanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Glu Val Arg Asn

(4S)-4-amino-4-{[(1S)-1-{[(1S)-4-carbamimidamido-1-{[(1S)-2-carbamoyl-1-carboxyethyl]carbamoyl}butyl]carbamoyl}-2-methylpropyl]carbamoyl}butanoic acid

C20H36N8O8 (516.2656)


   

Phe His Ile Thr

(2S,3R)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-3-methylpentanamido]-3-hydroxybutanoic acid

C25H36N6O6 (516.2696)


   

Phe His Leu Thr

(2S,3R)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanamido]-3-hydroxybutanoic acid

C25H36N6O6 (516.2696)


   

Phe His Thr Ile

(2S,3S)-2-[(2S,3R)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-3-hydroxybutanamido]-3-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Phe His Thr Leu

(2S)-2-[(2S,3R)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-3-hydroxybutanamido]-4-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Phe Ile His Thr

(2S,3R)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-hydroxybutanoic acid

C25H36N6O6 (516.2696)


   

Phe Ile Thr His

(2S)-2-[(2S,3R)-2-[(2S,3S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-methylpentanamido]-3-hydroxybutanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Phe Leu His Thr

(2S,3R)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-4-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-hydroxybutanoic acid

C25H36N6O6 (516.2696)


   

Phe Leu Thr His

(2S)-2-[(2S,3R)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-4-methylpentanamido]-3-hydroxybutanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Phe Thr His Ile

(2S,3S)-2-[(2S)-2-[(2S,3R)-2-[(2S)-2-amino-3-phenylpropanamido]-3-hydroxybutanamido]-3-(1H-imidazol-4-yl)propanamido]-3-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Phe Thr His Leu

(2S)-2-[(2S)-2-[(2S,3R)-2-[(2S)-2-amino-3-phenylpropanamido]-3-hydroxybutanamido]-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Phe Thr Ile His

(2S)-2-[(2S,3S)-2-[(2S,3R)-2-[(2S)-2-amino-3-phenylpropanamido]-3-hydroxybutanamido]-3-methylpentanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Phe Thr Leu His

(2S)-2-[(2S)-2-[(2S,3R)-2-[(2S)-2-amino-3-phenylpropanamido]-3-hydroxybutanamido]-4-methylpentanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

His Phe Ile Thr

(2S,3R)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-3-methylpentanamido]-3-hydroxybutanoic acid

C25H36N6O6 (516.2696)


   

His Phe Leu Thr

(2S,3R)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-4-methylpentanamido]-3-hydroxybutanoic acid

C25H36N6O6 (516.2696)


   

His Phe Thr Ile

(2S,3S)-2-[(2S,3R)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-3-hydroxybutanamido]-3-methylpentanoic acid

C25H36N6O6 (516.2696)


   

His Phe Thr Leu

(2S)-2-[(2S,3R)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-3-hydroxybutanamido]-4-methylpentanoic acid

C25H36N6O6 (516.2696)


   

His Ile Phe Thr

(2S,3R)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-methylpentanamido]-3-phenylpropanamido]-3-hydroxybutanoic acid

C25H36N6O6 (516.2696)


   

His Ile Thr Phe

(2S)-2-[(2S,3R)-2-[(2S,3S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-methylpentanamido]-3-hydroxybutanamido]-3-phenylpropanoic acid

C25H36N6O6 (516.2696)


   

His Leu Phe Thr

(2S,3R)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanamido]-3-phenylpropanamido]-3-hydroxybutanoic acid

C25H36N6O6 (516.2696)


   

His Leu Thr Phe

(2S)-2-[(2S,3R)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanamido]-3-hydroxybutanamido]-3-phenylpropanoic acid

C25H36N6O6 (516.2696)


   

His Thr Phe Ile

(2S,3S)-2-[(2S)-2-[(2S,3R)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-hydroxybutanamido]-3-phenylpropanamido]-3-methylpentanoic acid

C25H36N6O6 (516.2696)


   

His Thr Phe Leu

(2S)-2-[(2S)-2-[(2S,3R)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-hydroxybutanamido]-3-phenylpropanamido]-4-methylpentanoic acid

C25H36N6O6 (516.2696)


   

His Thr Ile Phe

(2S)-2-[(2S,3S)-2-[(2S,3R)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-hydroxybutanamido]-3-methylpentanamido]-3-phenylpropanoic acid

C25H36N6O6 (516.2696)


   

His Thr Leu Phe

(2S)-2-[(2S)-2-[(2S,3R)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-hydroxybutanamido]-4-methylpentanamido]-3-phenylpropanoic acid

C25H36N6O6 (516.2696)


   

His Val Val Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-methylbutanamido]-3-methylbutanamido]-3-(4-hydroxyphenyl)propanoic acid

C25H36N6O6 (516.2696)


   

His Val Tyr Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-methylbutanamido]-3-(4-hydroxyphenyl)propanamido]-3-methylbutanoic acid

C25H36N6O6 (516.2696)


   

His Tyr Val Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-methylbutanamido]-3-methylbutanoic acid

C25H36N6O6 (516.2696)


   

Ile Ala Gln Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]propanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Ile Ala Trp Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]propanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanoic acid

C25H36N6O6 (516.2696)


   

Ile Asp Asn Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-carboxypropanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Ile Asp Arg Asn

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-carboxypropanamido]-5-carbamimidamidopentanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Ile Glu Gln Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-4-carboxybutanamido]-4-carbamoylbutanamido]-4-carbamoylbutanoic acid

C21H36N6O9 (516.2544)


   

Ile Phe His Thr

(2S,3R)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-3-hydroxybutanoic acid

C25H36N6O6 (516.2696)


   

Ile Phe Thr His

(2S)-2-[(2S,3R)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-phenylpropanamido]-3-hydroxybutanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Ile His Phe Thr

(2S,3R)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-3-hydroxybutanoic acid

C25H36N6O6 (516.2696)


   

Ile His Thr Phe

(2S)-2-[(2S,3R)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-hydroxybutanamido]-3-phenylpropanoic acid

C25H36N6O6 (516.2696)


   

Ile Asn Asp Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-carbamoylpropanamido]-3-carboxypropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Ile Asn Arg Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Ile Gln Ala Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-4-carbamoylbutanamido]propanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Ile Gln Glu Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-4-carbamoylbutanamido]-4-carboxybutanamido]-4-carbamoylbutanoic acid

C21H36N6O9 (516.2544)


   

Ile Gln Gln Glu

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-4-carbamoylbutanamido]-4-carbamoylbutanamido]pentanedioic acid

C21H36N6O9 (516.2544)


   

Ile Gln Trp Ala

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]propanoic acid

C25H36N6O6 (516.2696)


   

Ile Arg Asp Asn

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-5-carbamimidamidopentanamido]-3-carboxypropanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Ile Thr Phe His

(2S)-2-[(2S)-2-[(2S,3R)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-hydroxybutanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Ile Thr His Phe

(2S)-2-[(2S)-2-[(2S,3R)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-hydroxybutanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanoic acid

C25H36N6O6 (516.2696)


   

Ile Trp Ala Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]propanamido]-4-carbamoylbutanoic acid

C25H36N6O6 (516.2696)


   

Ile Trp Gln Ala

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]propanoic acid

C25H36N6O6 (516.2696)


   

Lys Asn Gln Gln

(2S)-4-carbamoyl-2-[(2S)-4-carbamoyl-2-[(2S)-3-carbamoyl-2-[(2S)-2,6-diaminohexanamido]propanamido]butanamido]butanoic acid

C20H36N8O8 (516.2656)


   

Lys Pro Ser Trp

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2,6-diaminohexanoyl]pyrrolidin-2-yl]formamido}-3-hydroxypropanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Lys Pro Trp Ser

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2,6-diaminohexanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanamido]-3-hydroxypropanoic acid

C25H36N6O6 (516.2696)


   

Lys Gln Asn Gln

(2S)-4-carbamoyl-2-[(2S)-3-carbamoyl-2-[(2S)-4-carbamoyl-2-[(2S)-2,6-diaminohexanamido]butanamido]propanamido]butanoic acid

C20H36N8O8 (516.2656)


   

Lys Gln Gln Asn

(2S)-3-carbamoyl-2-[(2S)-4-carbamoyl-2-[(2S)-4-carbamoyl-2-[(2S)-2,6-diaminohexanamido]butanamido]butanamido]propanoic acid

C20H36N8O8 (516.2656)


   

Lys Ser Pro Trp

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2,6-diaminohexanamido]-3-hydroxypropanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Lys Ser Trp Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2,6-diaminohexanamido]-3-hydroxypropanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidine-2-carboxylic acid

C25H36N6O6 (516.2696)


   

Lys Trp Pro Ser

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2,6-diaminohexanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-hydroxypropanoic acid

C25H36N6O6 (516.2696)


   

Lys Trp Ser Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2,6-diaminohexanamido]-3-(1H-indol-3-yl)propanamido]-3-hydroxypropanoyl]pyrrolidine-2-carboxylic acid

C25H36N6O6 (516.2696)


   

Leu Ala Gln Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]propanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Leu Ala Trp Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]propanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanoic acid

C25H36N6O6 (516.2696)


   

Leu Asp Asn Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-carboxypropanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Leu Asp Arg Asn

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-carboxypropanamido]-5-carbamimidamidopentanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Leu Glu Gln Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-4-carboxybutanamido]-4-carbamoylbutanamido]-4-carbamoylbutanoic acid

C21H36N6O9 (516.2544)


   

Leu Phe His Thr

(2S,3R)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-3-hydroxybutanoic acid

C25H36N6O6 (516.2696)


   

Leu Phe Thr His

(2S)-2-[(2S,3R)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-phenylpropanamido]-3-hydroxybutanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Leu His Phe Thr

(2S,3R)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-3-hydroxybutanoic acid

C25H36N6O6 (516.2696)


   

Leu His Thr Phe

(2S)-2-[(2S,3R)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-hydroxybutanamido]-3-phenylpropanoic acid

C25H36N6O6 (516.2696)


   

Leu Asn Asp Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-carbamoylpropanamido]-3-carboxypropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Leu Asn Arg Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Leu Gln Ala Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-4-carbamoylbutanamido]propanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Leu Gln Glu Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-4-carbamoylbutanamido]-4-carboxybutanamido]-4-carbamoylbutanoic acid

C21H36N6O9 (516.2544)


   

Leu Gln Gln Glu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-4-carbamoylbutanamido]-4-carbamoylbutanamido]pentanedioic acid

C21H36N6O9 (516.2544)


   

Leu Gln Trp Ala

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]propanoic acid

C25H36N6O6 (516.2696)


   

Leu Arg Asp Asn

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-5-carbamimidamidopentanamido]-3-carboxypropanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Leu Arg Asn Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Leu Thr Phe His

(2S)-2-[(2S)-2-[(2S,3R)-2-[(2S)-2-amino-4-methylpentanamido]-3-hydroxybutanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Leu Thr His Phe

(2S)-2-[(2S)-2-[(2S,3R)-2-[(2S)-2-amino-4-methylpentanamido]-3-hydroxybutanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanoic acid

C25H36N6O6 (516.2696)


   

Leu Trp Ala Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]propanamido]-4-carbamoylbutanoic acid

C25H36N6O6 (516.2696)


   

Leu Trp Gln Ala

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]propanoic acid

C25H36N6O6 (516.2696)


   

Met Asn Pro Arg

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-4-(methylsulfanyl)butanamido]-3-carbamoylpropanoyl]pyrrolidin-2-yl]formamido}-5-carbamimidamidopentanoic acid

C20H36N8O6S (516.2478)


   

Met Asn Arg Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-(methylsulfanyl)butanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanoyl]pyrrolidine-2-carboxylic acid

C20H36N8O6S (516.2478)


   

Met Pro Asn Arg

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-4-(methylsulfanyl)butanoyl]pyrrolidin-2-yl]formamido}-3-carbamoylpropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O6S (516.2478)


   

Met Pro Arg Asn

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-4-(methylsulfanyl)butanoyl]pyrrolidin-2-yl]formamido}-5-carbamimidamidopentanamido]-3-carbamoylpropanoic acid

C20H36N8O6S (516.2478)


   

Met Arg Asn Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-(methylsulfanyl)butanamido]-5-carbamimidamidopentanamido]-3-carbamoylpropanoyl]pyrrolidine-2-carboxylic acid

C20H36N8O6S (516.2478)


   

Met Arg Pro Asn

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-4-(methylsulfanyl)butanamido]-5-carbamimidamidopentanoyl]pyrrolidin-2-yl]formamido}-3-carbamoylpropanoic acid

C20H36N8O6S (516.2478)


   

Asn Asp Ile Arg

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-carboxypropanamido]-3-methylpentanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Asn Asp Leu Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-carboxypropanamido]-4-methylpentanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Asn Asp Arg Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-carboxypropanamido]-5-carbamimidamidopentanamido]-3-methylpentanoic acid

C20H36N8O8 (516.2656)


   

Asn Asp Arg Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-carboxypropanamido]-5-carbamimidamidopentanamido]-4-methylpentanoic acid

C20H36N8O8 (516.2656)


   

Asn Glu Arg Val

(4S)-4-[(2S)-2-amino-3-carbamoylpropanamido]-4-{[(1S)-4-carbamimidamido-1-{[(1S)-1-carboxy-2-methylpropyl]carbamoyl}butyl]carbamoyl}butanoic acid

C20H36N8O8 (516.2656)


   

Asn Glu Val Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-4-carboxybutanamido]-3-methylbutanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Asn Ile Asp Arg

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-methylpentanamido]-3-carboxypropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Asn Lys Gln Gln

(2S)-2-[(2S)-2-[(2S)-6-amino-2-[(2S)-2-amino-3-carbamoylpropanamido]hexanamido]-4-carbamoylbutanamido]-4-carbamoylbutanoic acid

C20H36N8O8 (516.2656)


   

Asn Leu Asp Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-4-methylpentanamido]-3-carboxypropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Asn Leu Arg Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-4-methylpentanamido]-5-carbamimidamidopentanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Asn Met Pro Arg

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-4-(methylsulfanyl)butanoyl]pyrrolidin-2-yl]formamido}-5-carbamimidamidopentanoic acid

C20H36N8O6S (516.2478)


   

Asn Met Arg Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-4-(methylsulfanyl)butanamido]-5-carbamimidamidopentanoyl]pyrrolidine-2-carboxylic acid

C20H36N8O6S (516.2478)


   

Asn Pro Met Arg

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-carbamoylpropanoyl]pyrrolidin-2-yl]formamido}-4-(methylsulfanyl)butanamido]-5-carbamimidamidopentanoic acid

C20H36N8O6S (516.2478)


   

Asn Pro Arg Met

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-carbamoylpropanoyl]pyrrolidin-2-yl]formamido}-5-carbamimidamidopentanamido]-4-(methylsulfanyl)butanoic acid

C20H36N8O6S (516.2478)


   

Asn Gln Lys Gln

(2S)-2-[(2S)-6-amino-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-4-carbamoylbutanamido]hexanamido]-4-carbamoylbutanoic acid

C20H36N8O8 (516.2656)


   

Asn Gln Gln Lys

(2S)-6-amino-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-4-carbamoylbutanamido]-4-carbamoylbutanamido]hexanoic acid

C20H36N8O8 (516.2656)


   

Asn Arg Asp Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]-3-carboxypropanamido]-3-methylpentanoic acid

C20H36N8O8 (516.2656)


   

Asn Arg Asp Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]-3-carboxypropanamido]-4-methylpentanoic acid

C20H36N8O8 (516.2656)


   

Asn Arg Glu Val

(4S)-4-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]-4-{[(1S)-1-carboxy-2-methylpropyl]carbamoyl}butanoic acid

C20H36N8O8 (516.2656)


   

Asn Arg Ile Asp

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]-3-methylpentanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Asn Arg Leu Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]-4-methylpentanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Asn Arg Met Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]-4-(methylsulfanyl)butanoyl]pyrrolidine-2-carboxylic acid

C20H36N8O6S (516.2478)


   

Asn Arg Pro Met

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-5-carbamimidamidopentanoyl]pyrrolidin-2-yl]formamido}-4-(methylsulfanyl)butanoic acid

C20H36N8O6S (516.2478)


   

Asn Arg Val Glu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]-3-methylbutanamido]pentanedioic acid

C20H36N8O8 (516.2656)


   

Asn Val Glu Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-methylbutanamido]-4-carboxybutanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Asn Val Arg Glu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-methylbutanamido]-5-carbamimidamidopentanamido]pentanedioic acid

C20H36N8O8 (516.2656)


   

Asn Val Val Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-methylbutanamido]-3-methylbutanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Asn Val Trp Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-methylbutanamido]-3-(1H-indol-3-yl)propanamido]-3-methylbutanoic acid

C25H36N6O6 (516.2696)


   

Asn Trp Val Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-methylbutanamido]-3-methylbutanoic acid

C25H36N6O6 (516.2696)


   

Pro Lys Ser Trp

(2S)-2-[(2S)-2-[(2S)-6-amino-2-[(2S)-pyrrolidin-2-ylformamido]hexanamido]-3-hydroxypropanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Pro Lys Trp Ser

(2S)-2-[(2S)-2-[(2S)-6-amino-2-[(2S)-pyrrolidin-2-ylformamido]hexanamido]-3-(1H-indol-3-yl)propanamido]-3-hydroxypropanoic acid

C25H36N6O6 (516.2696)


   

Pro Met Asn Arg

(2S)-5-carbamimidamido-2-[(2S)-3-carbamoyl-2-[(2S)-4-(methylsulfanyl)-2-[(2S)-pyrrolidin-2-ylformamido]butanamido]propanamido]pentanoic acid

C20H36N8O6S (516.2478)


   

Pro Met Arg Asn

(2S)-2-[(2S)-5-carbamimidamido-2-[(2S)-4-(methylsulfanyl)-2-[(2S)-pyrrolidin-2-ylformamido]butanamido]pentanamido]-3-carbamoylpropanoic acid

C20H36N8O6S (516.2478)


   

Pro Asn Met Arg

(2S)-5-carbamimidamido-2-[(2S)-2-[(2S)-3-carbamoyl-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]-4-(methylsulfanyl)butanamido]pentanoic acid

C20H36N8O6S (516.2478)


   

Pro Asn Arg Met

(2S)-2-[(2S)-5-carbamimidamido-2-[(2S)-3-carbamoyl-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]pentanamido]-4-(methylsulfanyl)butanoic acid

C20H36N8O6S (516.2478)


   

Pro Arg Met Asn

(2S)-2-[(2S)-2-[(2S)-5-carbamimidamido-2-[(2S)-pyrrolidin-2-ylformamido]pentanamido]-4-(methylsulfanyl)butanamido]-3-carbamoylpropanoic acid

C20H36N8O6S (516.2478)


   

Pro Arg Asn Met

(2S)-2-[(2S)-2-[(2S)-5-carbamimidamido-2-[(2S)-pyrrolidin-2-ylformamido]pentanamido]-3-carbamoylpropanamido]-4-(methylsulfanyl)butanoic acid

C20H36N8O6S (516.2478)


   

Pro Ser Lys Trp

(2S)-2-[(2S)-6-amino-2-[(2S)-3-hydroxy-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]hexanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Pro Ser Trp Lys

(2S)-6-amino-2-[(2S)-2-[(2S)-3-hydroxy-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]-3-(1H-indol-3-yl)propanamido]hexanoic acid

C25H36N6O6 (516.2696)


   

Pro Trp Lys Ser

(2S)-2-[(2S)-6-amino-2-[(2S)-3-(1H-indol-3-yl)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]hexanamido]-3-hydroxypropanoic acid

C25H36N6O6 (516.2696)


   

Pro Trp Ser Lys

(2S)-6-amino-2-[(2S)-3-hydroxy-2-[(2S)-3-(1H-indol-3-yl)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]propanamido]hexanoic acid

C25H36N6O6 (516.2696)


   

Gln Ala Ile Trp

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]propanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Gln Ala Leu Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]propanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Gln Ala Trp Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]propanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Gln Ala Trp Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]propanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Gln Asp Arg Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-carboxypropanamido]-5-carbamimidamidopentanamido]-3-methylbutanoic acid

C20H36N8O8 (516.2656)


   

Gln Asp Val Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-carboxypropanamido]-3-methylbutanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Gln Glu Ile Gln

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-carboxybutanamido]-3-methylpentanamido]-4-carbamoylbutanoic acid

C21H36N6O9 (516.2544)


   

Gln Glu Leu Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-carboxybutanamido]-4-methylpentanamido]-4-carbamoylbutanoic acid

C21H36N6O9 (516.2544)


   

Gln Glu Gln Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-carboxybutanamido]-4-carbamoylbutanamido]-3-methylpentanoic acid

C21H36N6O9 (516.2544)


   

Gln Glu Gln Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-carboxybutanamido]-4-carbamoylbutanamido]-4-methylpentanoic acid

C21H36N6O9 (516.2544)


   

Gln Ile Ala Trp

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-methylpentanamido]propanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Gln Ile Glu Gln

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-methylpentanamido]-4-carboxybutanamido]-4-carbamoylbutanoic acid

C21H36N6O9 (516.2544)


   

Gln Ile Gln Glu

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-methylpentanamido]-4-carbamoylbutanamido]pentanedioic acid

C21H36N6O9 (516.2544)


   

Gln Ile Trp Ala

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]propanoic acid

C25H36N6O6 (516.2696)


   

Gln Lys Asn Gln

(2S)-2-[(2S)-2-[(2S)-6-amino-2-[(2S)-2-amino-4-carbamoylbutanamido]hexanamido]-3-carbamoylpropanamido]-4-carbamoylbutanoic acid

C20H36N8O8 (516.2656)


   

Gln Lys Gln Asn

(2S)-2-[(2S)-2-[(2S)-6-amino-2-[(2S)-2-amino-4-carbamoylbutanamido]hexanamido]-4-carbamoylbutanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Gln Leu Ala Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-methylpentanamido]propanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Gln Leu Glu Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-methylpentanamido]-4-carboxybutanamido]-4-carbamoylbutanoic acid

C21H36N6O9 (516.2544)


   

Gln Leu Gln Glu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-methylpentanamido]-4-carbamoylbutanamido]pentanedioic acid

C21H36N6O9 (516.2544)


   

Gln Leu Trp Ala

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]propanoic acid

C25H36N6O6 (516.2696)


   

Gln Asn Lys Gln

(2S)-2-[(2S)-6-amino-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-carbamoylpropanamido]hexanamido]-4-carbamoylbutanoic acid

C20H36N8O8 (516.2656)


   

Gln Asn Gln Lys

(2S)-6-amino-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-carbamoylpropanamido]-4-carbamoylbutanamido]hexanoic acid

C20H36N8O8 (516.2656)


   

Gln Gln Glu Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-carbamoylbutanamido]-4-carboxybutanamido]-3-methylpentanoic acid

C21H36N6O9 (516.2544)


   

Gln Gln Glu Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-carbamoylbutanamido]-4-carboxybutanamido]-4-methylpentanoic acid

C21H36N6O9 (516.2544)


   

Gln Gln Ile Glu

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-carbamoylbutanamido]-3-methylpentanamido]pentanedioic acid

C21H36N6O9 (516.2544)


   

Gln Gln Lys Asn

(2S)-2-[(2S)-6-amino-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-carbamoylbutanamido]hexanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Gln Gln Leu Glu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-carbamoylbutanamido]-4-methylpentanamido]pentanedioic acid

C21H36N6O9 (516.2544)


   

Gln Gln Asn Lys

(2S)-6-amino-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-4-carbamoylbutanamido]-3-carbamoylpropanamido]hexanoic acid

C20H36N8O8 (516.2656)


   

Gln Arg Asp Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-5-carbamimidamidopentanamido]-3-carboxypropanamido]-3-methylbutanoic acid

C20H36N8O8 (516.2656)


   

Gln Arg Val Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-5-carbamimidamidopentanamido]-3-methylbutanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Gln Val Asp Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-methylbutanamido]-3-carboxypropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Gln Val Arg Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-methylbutanamido]-5-carbamimidamidopentanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Gln Trp Ala Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]propanamido]-3-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Gln Trp Ala Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]propanamido]-4-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Gln Trp Ile Ala

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]propanoic acid

C25H36N6O6 (516.2696)


   

Gln Trp Leu Ala

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]propanoic acid

C25H36N6O6 (516.2696)


   

Arg Asp Ile Asn

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carboxypropanamido]-3-methylpentanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Arg Asp Leu Asn

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carboxypropanamido]-4-methylpentanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Arg Asp Asn Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carboxypropanamido]-3-carbamoylpropanamido]-3-methylpentanoic acid

C20H36N8O8 (516.2656)


   

Arg Asp Asn Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carboxypropanamido]-3-carbamoylpropanamido]-4-methylpentanoic acid

C20H36N8O8 (516.2656)


   

Arg Asp Gln Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carboxypropanamido]-4-carbamoylbutanamido]-3-methylbutanoic acid

C20H36N8O8 (516.2656)


   

Arg Asp Val Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carboxypropanamido]-3-methylbutanamido]-4-carbamoylbutanoic acid

C20H36N8O8 (516.2656)


   

Arg Glu Asn Val

(4S)-4-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-{[(1S)-2-carbamoyl-1-{[(1S)-1-carboxy-2-methylpropyl]carbamoyl}ethyl]carbamoyl}butanoic acid

C20H36N8O8 (516.2656)


   

Arg Glu Val Asn

(4S)-4-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-{[(1S)-1-{[(1S)-2-carbamoyl-1-carboxyethyl]carbamoyl}-2-methylpropyl]carbamoyl}butanoic acid

C20H36N8O8 (516.2656)


   

Arg Ile Asp Asn

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-methylpentanamido]-3-carboxypropanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Arg Ile Asn Asp

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-methylpentanamido]-3-carbamoylpropanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Arg Leu Asp Asn

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-methylpentanamido]-3-carboxypropanamido]-3-carbamoylpropanoic acid

C20H36N8O8 (516.2656)


   

Arg Leu Asn Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-methylpentanamido]-3-carbamoylpropanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Arg Met Asn Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-(methylsulfanyl)butanamido]-3-carbamoylpropanoyl]pyrrolidine-2-carboxylic acid

C20H36N8O6S (516.2478)


   

Arg Met Pro Asn

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-(methylsulfanyl)butanoyl]pyrrolidin-2-yl]formamido}-3-carbamoylpropanoic acid

C20H36N8O6S (516.2478)


   

Arg Asn Asp Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]-3-carboxypropanamido]-3-methylpentanoic acid

C20H36N8O8 (516.2656)


   

Arg Asn Asp Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]-3-carboxypropanamido]-4-methylpentanoic acid

C20H36N8O8 (516.2656)


   

Arg Asn Glu Val

(4S)-4-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]-4-{[(1S)-1-carboxy-2-methylpropyl]carbamoyl}butanoic acid

C20H36N8O8 (516.2656)


   

Arg Asn Ile Asp

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]-3-methylpentanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Arg Asn Leu Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]-4-methylpentanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Arg Asn Met Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]-4-(methylsulfanyl)butanoyl]pyrrolidine-2-carboxylic acid

C20H36N8O6S (516.2478)


   

Arg Asn Pro Met

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carbamoylpropanoyl]pyrrolidin-2-yl]formamido}-4-(methylsulfanyl)butanoic acid

C20H36N8O6S (516.2478)


   

Arg Asn Val Glu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]-3-methylbutanamido]pentanedioic acid

C20H36N8O8 (516.2656)


   

Arg Pro Met Asn

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-5-carbamimidamidopentanoyl]pyrrolidin-2-yl]formamido}-4-(methylsulfanyl)butanamido]-3-carbamoylpropanoic acid

C20H36N8O6S (516.2478)


   

Arg Pro Asn Met

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-5-carbamimidamidopentanoyl]pyrrolidin-2-yl]formamido}-3-carbamoylpropanamido]-4-(methylsulfanyl)butanoic acid

C20H36N8O6S (516.2478)


   

Arg Gln Asp Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-carbamoylbutanamido]-3-carboxypropanamido]-3-methylbutanoic acid

C20H36N8O8 (516.2656)


   

Arg Gln Val Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-4-carbamoylbutanamido]-3-methylbutanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Arg Val Asp Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-methylbutanamido]-3-carboxypropanamido]-4-carbamoylbutanoic acid

C20H36N8O8 (516.2656)


   

Arg Val Glu Asn

(4S)-4-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-methylbutanamido]-4-{[(1S)-2-carbamoyl-1-carboxyethyl]carbamoyl}butanoic acid

C20H36N8O8 (516.2656)


   

Arg Val Asn Glu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-methylbutanamido]-3-carbamoylpropanamido]pentanedioic acid

C20H36N8O8 (516.2656)


   

Arg Val Gln Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-methylbutanamido]-4-carbamoylbutanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Ser Lys Pro Trp

(2S)-2-{[(2S)-1-[(2S)-6-amino-2-[(2S)-2-amino-3-hydroxypropanamido]hexanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Ser Lys Trp Pro

(2S)-1-[(2S)-2-[(2S)-6-amino-2-[(2S)-2-amino-3-hydroxypropanamido]hexanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidine-2-carboxylic acid

C25H36N6O6 (516.2696)


   

Ser Pro Lys Trp

(2S)-2-[(2S)-6-amino-2-{[(2S)-1-[(2S)-2-amino-3-hydroxypropanoyl]pyrrolidin-2-yl]formamido}hexanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Ser Pro Trp Lys

(2S)-6-amino-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-hydroxypropanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanamido]hexanoic acid

C25H36N6O6 (516.2696)


   

Ser Trp Lys Pro

(2S)-1-[(2S)-6-amino-2-[(2S)-2-[(2S)-2-amino-3-hydroxypropanamido]-3-(1H-indol-3-yl)propanamido]hexanoyl]pyrrolidine-2-carboxylic acid

C25H36N6O6 (516.2696)


   

Ser Trp Pro Lys

(2S)-6-amino-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-hydroxypropanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}hexanoic acid

C25H36N6O6 (516.2696)


   

Thr Phe His Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-3-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Thr Phe His Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Thr Phe Ile His

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-phenylpropanamido]-3-methylpentanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Thr Phe Leu His

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-phenylpropanamido]-4-methylpentanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Thr His Phe Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-3-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Thr His Phe Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanamido]-4-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Thr His Ile Phe

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-(1H-imidazol-4-yl)propanamido]-3-methylpentanamido]-3-phenylpropanoic acid

C25H36N6O6 (516.2696)


   

Thr His Leu Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanamido]-3-phenylpropanoic acid

C25H36N6O6 (516.2696)


   

Thr Ile Phe His

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-methylpentanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Thr Ile His Phe

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-3-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanoic acid

C25H36N6O6 (516.2696)


   

Thr Leu Phe His

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-4-methylpentanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Thr Leu His Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3R)-2-amino-3-hydroxybutanamido]-4-methylpentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-phenylpropanoic acid

C25H36N6O6 (516.2696)


   

Val Asp Arg Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-carboxypropanamido]-5-carbamimidamidopentanamido]-4-carbamoylbutanoic acid

C20H36N8O8 (516.2656)


   

Val Glu Asn Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-4-carboxybutanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Val Glu Arg Asn

(4S)-4-[(2S)-2-amino-3-methylbutanamido]-4-{[(1S)-4-carbamimidamido-1-{[(1S)-2-carbamoyl-1-carboxyethyl]carbamoyl}butyl]carbamoyl}butanoic acid

C20H36N8O8 (516.2656)


   

Val His Val Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-(1H-imidazol-4-yl)propanamido]-3-methylbutanamido]-3-(4-hydroxyphenyl)propanoic acid

C25H36N6O6 (516.2696)


   

Val His Tyr Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(4-hydroxyphenyl)propanamido]-3-methylbutanoic acid

C25H36N6O6 (516.2696)


   

Val Asn Glu Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-carbamoylpropanamido]-4-carboxybutanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Val Asn Arg Glu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]pentanedioic acid

C20H36N8O8 (516.2656)


   

Val Asn Val Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-carbamoylpropanamido]-3-methylbutanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Val Asn Trp Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-carbamoylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-methylbutanoic acid

C25H36N6O6 (516.2696)


   

Val Gln Asp Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-4-carbamoylbutanamido]-3-carboxypropanamido]-5-carbamimidamidopentanoic acid

C20H36N8O8 (516.2656)


   

Val Gln Arg Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-4-carbamoylbutanamido]-5-carbamimidamidopentanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Val Arg Asp Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-5-carbamimidamidopentanamido]-3-carboxypropanamido]-4-carbamoylbutanoic acid

C20H36N8O8 (516.2656)


   

Val Arg Glu Asn

(4S)-4-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-5-carbamimidamidopentanamido]-4-{[(1S)-2-carbamoyl-1-carboxyethyl]carbamoyl}butanoic acid

C20H36N8O8 (516.2656)


   

Val Arg Asn Glu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]pentanedioic acid

C20H36N8O8 (516.2656)


   

Val Arg Gln Asp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-5-carbamimidamidopentanamido]-4-carbamoylbutanamido]butanedioic acid

C20H36N8O8 (516.2656)


   

Val Val His Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-methylbutanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(4-hydroxyphenyl)propanoic acid

C25H36N6O6 (516.2696)


   

Val Val Asn Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-methylbutanamido]-3-carbamoylpropanamido]-3-(1H-indol-3-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Val Val Trp Asn

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-methylbutanamido]-3-(1H-indol-3-yl)propanamido]-3-carbamoylpropanoic acid

C25H36N6O6 (516.2696)


   

Val Val Tyr His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-methylbutanamido]-3-(4-hydroxyphenyl)propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Val Trp Asn Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-(1H-indol-3-yl)propanamido]-3-carbamoylpropanamido]-3-methylbutanoic acid

C25H36N6O6 (516.2696)


   

Val Trp Val Asn

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-(1H-indol-3-yl)propanamido]-3-methylbutanamido]-3-carbamoylpropanoic acid

C25H36N6O6 (516.2696)


   

Val Tyr His Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-(4-hydroxyphenyl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-methylbutanoic acid

C25H36N6O6 (516.2696)


   

Val Tyr Val His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-(4-hydroxyphenyl)propanamido]-3-methylbutanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

Trp Ala Ile Gln

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]propanamido]-3-methylpentanamido]-4-carbamoylbutanoic acid

C25H36N6O6 (516.2696)


   

Trp Ala Leu Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]propanamido]-4-methylpentanamido]-4-carbamoylbutanoic acid

C25H36N6O6 (516.2696)


   

Trp Ala Gln Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]propanamido]-4-carbamoylbutanamido]-3-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Trp Ala Gln Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]propanamido]-4-carbamoylbutanamido]-4-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Trp Ile Ala Gln

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]propanamido]-4-carbamoylbutanoic acid

C25H36N6O6 (516.2696)


   

Trp Ile Gln Ala

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-4-carbamoylbutanamido]propanoic acid

C25H36N6O6 (516.2696)


   

Trp Lys Pro Ser

(2S)-2-{[(2S)-1-[(2S)-6-amino-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]hexanoyl]pyrrolidin-2-yl]formamido}-3-hydroxypropanoic acid

C25H36N6O6 (516.2696)


   

Trp Lys Ser Pro

(2S)-1-[(2S)-2-[(2S)-6-amino-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]hexanamido]-3-hydroxypropanoyl]pyrrolidine-2-carboxylic acid

C25H36N6O6 (516.2696)


   

Trp Leu Ala Gln

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]propanamido]-4-carbamoylbutanoic acid

C25H36N6O6 (516.2696)


   

Trp Leu Gln Ala

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-4-carbamoylbutanamido]propanoic acid

C25H36N6O6 (516.2696)


   

Trp Asn Val Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-carbamoylpropanamido]-3-methylbutanamido]-3-methylbutanoic acid

C25H36N6O6 (516.2696)


   

Trp Pro Lys Ser

(2S)-2-[(2S)-6-amino-2-{[(2S)-1-[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}hexanamido]-3-hydroxypropanoic acid

C25H36N6O6 (516.2696)


   

Trp Pro Ser Lys

(2S)-6-amino-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-hydroxypropanamido]hexanoic acid

C25H36N6O6 (516.2696)


   

Trp Gln Ala Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]propanamido]-3-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Trp Gln Ala Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]propanamido]-4-methylpentanoic acid

C25H36N6O6 (516.2696)


   

Trp Gln Ile Ala

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]-3-methylpentanamido]propanoic acid

C25H36N6O6 (516.2696)


   

Trp Gln Leu Ala

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-carbamoylbutanamido]-4-methylpentanamido]propanoic acid

C25H36N6O6 (516.2696)


   

Trp Ser Lys Pro

(2S)-1-[(2S)-6-amino-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-hydroxypropanamido]hexanoyl]pyrrolidine-2-carboxylic acid

C25H36N6O6 (516.2696)


   

Trp Ser Pro Lys

(2S)-6-amino-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-hydroxypropanoyl]pyrrolidin-2-yl]formamido}hexanoic acid

C25H36N6O6 (516.2696)


   

Trp Val Asn Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-methylbutanamido]-3-carbamoylpropanamido]-3-methylbutanoic acid

C25H36N6O6 (516.2696)


   

Trp Val Val Asn

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-methylbutanamido]-3-methylbutanamido]-3-carbamoylpropanoic acid

C25H36N6O6 (516.2696)


   

Tyr His Val Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-methylbutanamido]-3-methylbutanoic acid

C25H36N6O6 (516.2696)


   

Tyr Val His Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-methylbutanamido]-3-(1H-imidazol-4-yl)propanamido]-3-methylbutanoic acid

C25H36N6O6 (516.2696)


   

Tyr Val Val His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-methylbutanamido]-3-methylbutanamido]-3-(1H-imidazol-4-yl)propanoic acid

C25H36N6O6 (516.2696)


   

PDAKS

Pro-Asp-Ala-Lys-Ser

C21H36N6O9 (516.2544)


   

EAAAR

Glu Ala Ala Ala Arg

C20H36N8O8 (516.2656)


   

Idebenone Metabolite (β-D-Glucopyranosiduronic acid, 4-hydroxy-3-(10-hydroxydecyl)-5,6-dimethoxy-

Idebenone Metabolite (β-D-Glucopyranosiduronic acid, 4-hydroxy-3-(10-hydroxydecyl)-5,6-dimethoxy-

C25H40O11 (516.257)


   

Udenafil

3-{1-methyl-7-oxo-3-propyl-1H,4H,7H-pyrazolo[4,3-d]pyrimidin-5-yl}-N-[2-(1-methylpyrrolidin-2-yl)ethyl]-4-propoxybenzene-1-sulfonamide

C25H36N6O4S (516.2519)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors > D058986 - Phosphodiesterase 5 Inhibitors C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor > C2127 - cGMP Phosphodiesterase Inhibitor

   

Eriojaposide B

3,5,5-trimethyl-4-[(1E)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]but-1-en-1-yl]cyclohex-2-en-1-one

C25H40O11 (516.257)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

N,N-Bis(3-methylphenyl)-N,N-diphenyl-4,4-biphenyldiamine

N,N-Bis(3-methylphenyl)-N,N-diphenyl-4,4-biphenyldiamine

C38H32N2 (516.2565)


   

N,N-Diphenyl-N,N-di(p-tolyl)benzidine

N,N-Diphenyl-N,N-di(p-tolyl)benzidine

C38H32N2 (516.2565)


   

3,3-(1,4-Phenylenedi-2,1-ethenediyl)bis(9-ethyl-9H-carbazole)

3,3-(1,4-Phenylenedi-2,1-ethenediyl)bis(9-ethyl-9H-carbazole)

C38H32N2 (516.2565)


   

BATES REAGENT MU-OXO-BIS[TRIS(DIMETHYLAMINO)PHOSPHONIUM]BIS(TETRAFLUOROBORATE)

BATES REAGENT MU-OXO-BIS[TRIS(DIMETHYLAMINO)PHOSPHONIUM]BIS(TETRAFLUOROBORATE)

C12H36B2F8N6OP2 (516.2484)


   

MCOPPB trihydrochloride

MCOPPB trihydrochloride

C26H43Cl3N4 (516.2553)


MCOPPB trihydrochloride is a nociceptin receptor agonist with pKi of 10.07; weaker activity at other opioid receptors. IC50 value: 10.07 (pKi) Target: nociceptin receptor MCOPPB trihydrochloride is a trihydrochloride form of MCOPPB that is a new nonpeptide nociceptin/orphanin FQ peptide (NOP)-receptor agonist with a pKi of 10.07 ± 0.01 for the human NOP receptor.

   

N,N-Bis(3-methylphenyl)-N,N-bis(phenyl)benzidine

N,N-Bis(3-methylphenyl)-N,N-bis(phenyl)benzidine

C38H32N2 (516.2565)


   

Siponimod

Siponimod

C29H35F3N2O3 (516.26)


L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D000081243 - Sphingosine 1 Phosphate Receptor Modulators C308 - Immunotherapeutic Agent

   

alpha-[butylamino]methyl-p-hydroxybenzyl alcohol

alpha-[butylamino]methyl-p-hydroxybenzyl alcohol

C24H40N2O8S (516.2505)


   

PA(2:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PA(2:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C25H41O9P (516.2488)


   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/2:0)

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PA(2:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C25H41O9P (516.2488)


   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/2:0)

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PA(2:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C25H41O9P (516.2488)


   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/2:0)

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PA(2:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C25H41O9P (516.2488)


   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/2:0)

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:3(5Z,11Z,14Z)-O(8,9))

PA(2:0/20:3(5Z,11Z,14Z)-O(8,9))

C25H41O9P (516.2488)


   

PA(20:3(5Z,11Z,14Z)-O(8,9)/2:0)

PA(20:3(5Z,11Z,14Z)-O(8,9)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:3(8Z,11Z,14Z)-O(5,6))

PA(2:0/20:3(8Z,11Z,14Z)-O(5,6))

C25H41O9P (516.2488)


   

PA(20:3(8Z,11Z,14Z)-O(5,6)/2:0)

PA(20:3(8Z,11Z,14Z)-O(5,6)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C25H41O9P (516.2488)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/2:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C25H41O9P (516.2488)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/2:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C25H41O9P (516.2488)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/2:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C25H41O9P (516.2488)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/2:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PA(2:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C25H41O9P (516.2488)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/2:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PA(2:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C25H41O9P (516.2488)


   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/2:0)

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PA(2:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C25H41O9P (516.2488)


   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/2:0)

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/2:0)

C25H41O9P (516.2488)


   

PA(2:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PA(2:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C25H41O9P (516.2488)


   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/2:0)

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/2:0)

C25H41O9P (516.2488)


   

Illicidione C

Illicidione C

C29H40O8 (516.2723)


A natural product found in Illicium oligandrum.

   

Gusanlungionoside A

Gusanlungionoside A

C25H40O11 (516.257)


A natural product found in Arcangelisia gusanlung.

   

Gusanlungionoside B

Gusanlungionoside B

C25H40O11 (516.257)


A natural product found in Arcangelisia gusanlung.

   

alpha-((Butylamino)methyl)-p-hydroxybenzyl alcohol sulfate

alpha-((Butylamino)methyl)-p-hydroxybenzyl alcohol sulfate

C24H40N2O8S (516.2505)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist

   

rel-16-Angeloyloxy-13alpha-isobutanoyloxy-4beta,9alpha,7beta-trihydroxytiglia-1,5-dien-3-one

rel-16-Angeloyloxy-13alpha-isobutanoyloxy-4beta,9alpha,7beta-trihydroxytiglia-1,5-dien-3-one

C29H40O8 (516.2723)


A natural product found in Euphorbia grandicornis.

   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-[[[(10S,11S)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

3-[[[(10S,11S)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

C31H36N2O5 (516.2624)


   

(10S,11R)-10-[[1,3-benzodioxol-5-ylmethyl(methyl)amino]methyl]-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-14-one

(10S,11R)-10-[[1,3-benzodioxol-5-ylmethyl(methyl)amino]methyl]-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-14-one

C31H36N2O5 (516.2624)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-[[[(10S,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

3-[[[(10S,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

C31H36N2O5 (516.2624)


   

(10R,11S)-10-[[1,3-benzodioxol-5-ylmethyl(methyl)amino]methyl]-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-14-one

(10R,11S)-10-[[1,3-benzodioxol-5-ylmethyl(methyl)amino]methyl]-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-14-one

C31H36N2O5 (516.2624)


   

3-[[[(10R,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

3-[[[(10R,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

C31H36N2O5 (516.2624)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8S,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

(10S,11S)-10-[[1,3-benzodioxol-5-ylmethyl(methyl)amino]methyl]-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-14-one

(10S,11S)-10-[[1,3-benzodioxol-5-ylmethyl(methyl)amino]methyl]-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-14-one

C31H36N2O5 (516.2624)


   

4-[[[(10S,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

4-[[[(10S,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

C31H36N2O5 (516.2624)


   

4-[[[(10S,11R)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

4-[[[(10S,11R)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

C31H36N2O5 (516.2624)


   

(4-methylphenyl) N-[[(10R,11S)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

(4-methylphenyl) N-[[(10R,11S)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

C31H36N2O5 (516.2624)


   

(4-methylphenyl) N-[[(10R,11R)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

(4-methylphenyl) N-[[(10R,11R)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

C31H36N2O5 (516.2624)


   

(4-methylphenyl) N-[[(10R,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

(4-methylphenyl) N-[[(10R,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

C31H36N2O5 (516.2624)


   

(10R,11S)-10-[[1,3-benzodioxol-5-ylmethyl(methyl)amino]methyl]-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-14-one

(10R,11S)-10-[[1,3-benzodioxol-5-ylmethyl(methyl)amino]methyl]-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-14-one

C31H36N2O5 (516.2624)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

3-(2,3-dihydro-1,4-benzodioxin-6-yl)-1-[[(8R,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-1-methylurea

C25H36N6O6 (516.2696)


   

3-[[[(10S,11R)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

3-[[[(10S,11R)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

C31H36N2O5 (516.2624)


   

4-[[[(10R,11S)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

4-[[[(10R,11S)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

C31H36N2O5 (516.2624)


   

4-[[[(10S,11R)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

4-[[[(10S,11R)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

C31H36N2O5 (516.2624)


   

(4-methylphenyl) N-[[(10S,11S)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

(4-methylphenyl) N-[[(10S,11S)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

C31H36N2O5 (516.2624)


   

(4-methylphenyl) N-[[(10S,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

(4-methylphenyl) N-[[(10S,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

C31H36N2O5 (516.2624)


   

(4-methylphenyl) N-[[(10S,11R)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

(4-methylphenyl) N-[[(10S,11R)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

C31H36N2O5 (516.2624)


   

3-[[[(10R,11R)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

3-[[[(10R,11R)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

C31H36N2O5 (516.2624)


   

4-[[[(10R,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

4-[[[(10R,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

C31H36N2O5 (516.2624)


   

(4-methylphenyl) N-[[(10R,11R)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

(4-methylphenyl) N-[[(10R,11R)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylcarbamate

C31H36N2O5 (516.2624)


   

4-[[[(10R,11R)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

4-[[[(10R,11R)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl-methylamino]methyl]benzoic acid

C31H36N2O5 (516.2624)


   

N,N-bis(2,3-dihydroxybenzoyl)-N-hexanoyltren

N,N-bis(2,3-dihydroxybenzoyl)-N-hexanoyltren

C26H36N4O7 (516.2584)


   

Cavipetin E isomer 1

Cavipetin E isomer 1

C29H40O8 (516.2723)


   

Cavipetin E isomer 2

Cavipetin E isomer 2

C29H40O8 (516.2723)


   
   

PA 14:1/8:3;O

PA 14:1/8:3;O

C25H41O9P (516.2488)


   

PA 18:3/4:1;O

PA 18:3/4:1;O

C25H41O9P (516.2488)


   
   
   
   

ST 19:0;O5;GlcA

ST 19:0;O5;GlcA

C25H40O11 (516.257)


   

ST 23:4;O2;GlcA

ST 23:4;O2;GlcA

C29H40O8 (516.2723)


   

ST 19:1;O6;Hex

ST 19:1;O6;Hex

C25H40O11 (516.257)


   

ST 23:5;O3;Hex

ST 23:5;O3;Hex

C29H40O8 (516.2723)


   
   

(1s,3r,7r,10s,13r,14r,16s,18r,19r)-1-hydroxy-18-[(1s,2s)-1-hydroxy-1-[(2s)-4-methyl-5-oxo-2h-furan-2-yl]propan-2-yl]-9,9,19-trimethyl-4,8,15-trioxahexacyclo[11.8.0.0³,⁷.0³,¹⁰.0¹⁴,¹⁶.0¹⁴,¹⁹]henicosan-5-one

(1s,3r,7r,10s,13r,14r,16s,18r,19r)-1-hydroxy-18-[(1s,2s)-1-hydroxy-1-[(2s)-4-methyl-5-oxo-2h-furan-2-yl]propan-2-yl]-9,9,19-trimethyl-4,8,15-trioxahexacyclo[11.8.0.0³,⁷.0³,¹⁰.0¹⁴,¹⁶.0¹⁴,¹⁹]henicosan-5-one

C29H40O8 (516.2723)


   

4-[(3r,5s,9r,10s,12r,14r,15s,18r,19r,22s,23r)-10,22-dihydroxy-9-methoxy-14,18-dimethyl-4,6,11-trioxahexacyclo[12.11.0.0³,¹².0⁵,¹⁰.0¹⁵,²³.0¹⁸,²²]pentacos-1-en-19-yl]-5h-furan-2-one

4-[(3r,5s,9r,10s,12r,14r,15s,18r,19r,22s,23r)-10,22-dihydroxy-9-methoxy-14,18-dimethyl-4,6,11-trioxahexacyclo[12.11.0.0³,¹².0⁵,¹⁰.0¹⁵,²³.0¹⁸,²²]pentacos-1-en-19-yl]-5h-furan-2-one

C29H40O8 (516.2723)


   

15-[1-(4,5-dimethyl-6-oxo-2,3-dihydropyran-2-yl)-1-hydroxyethyl]-6,15-dihydroxy-5-methoxy-2,16-dimethyl-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadec-11-en-3-one

15-[1-(4,5-dimethyl-6-oxo-2,3-dihydropyran-2-yl)-1-hydroxyethyl]-6,15-dihydroxy-5-methoxy-2,16-dimethyl-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadec-11-en-3-one

C29H40O8 (516.2723)


   

14,16-dihydroxy-24-methyl-2-oxo-1-oxacyclotetracosa-3,5,9,11,17,19-hexaen-8-yl 1-methyl butanedioate

14,16-dihydroxy-24-methyl-2-oxo-1-oxacyclotetracosa-3,5,9,11,17,19-hexaen-8-yl 1-methyl butanedioate

C29H40O8 (516.2723)


   

15-(3,4-dimethyl-5-oxo-2h-furan-2-yl)-4,5,17-trihydroxy-13-methoxy-10,16,20-trimethyl-14-oxapentacyclo[11.6.1.0²,¹¹.0⁵,¹⁰.0¹⁷,²⁰]icos-7-en-9-one

15-(3,4-dimethyl-5-oxo-2h-furan-2-yl)-4,5,17-trihydroxy-13-methoxy-10,16,20-trimethyl-14-oxapentacyclo[11.6.1.0²,¹¹.0⁵,¹⁰.0¹⁷,²⁰]icos-7-en-9-one

C29H40O8 (516.2723)


   

(1'r,2r,2'r,4'r,5'r,8's,9's,10's,12's,14's)-2'-hydroxy-4'-methyl-5'-[(1s)-1-[(1s,3r,5r)-1,5,6,6-tetramethyl-2,7,8-trioxabicyclo[3.2.1]octan-3-yl]ethyl]-11'-oxaspiro[oxolane-2,13'-pentacyclo[7.6.0.0¹,¹⁴.0⁴,⁸.0¹⁰,¹²]pentadecane]-3',5-dione

(1'r,2r,2'r,4'r,5'r,8's,9's,10's,12's,14's)-2'-hydroxy-4'-methyl-5'-[(1s)-1-[(1s,3r,5r)-1,5,6,6-tetramethyl-2,7,8-trioxabicyclo[3.2.1]octan-3-yl]ethyl]-11'-oxaspiro[oxolane-2,13'-pentacyclo[7.6.0.0¹,¹⁴.0⁴,⁸.0¹⁰,¹²]pentadecane]-3',5-dione

C29H40O8 (516.2723)


   

(1s,2s,4r,5r,10r,11s,13s,15r,16r,17r,20s)-15-[(2s)-3,4-dimethyl-5-oxo-2h-furan-2-yl]-4,5,17-trihydroxy-13-methoxy-10,16,20-trimethyl-14-oxapentacyclo[11.6.1.0²,¹¹.0⁵,¹⁰.0¹⁷,²⁰]icos-7-en-9-one

(1s,2s,4r,5r,10r,11s,13s,15r,16r,17r,20s)-15-[(2s)-3,4-dimethyl-5-oxo-2h-furan-2-yl]-4,5,17-trihydroxy-13-methoxy-10,16,20-trimethyl-14-oxapentacyclo[11.6.1.0²,¹¹.0⁵,¹⁰.0¹⁷,²⁰]icos-7-en-9-one

C29H40O8 (516.2723)


   

(1s,3s,6s,8s)-1,6,8,9-tetrahydroxy-1,3,8-trimethyl-2,4-dioxo-6,7-dihydro-5h-phenanthren-3-yl (2e,4s)-2,4-dimethyldec-2-enoate

(1s,3s,6s,8s)-1,6,8,9-tetrahydroxy-1,3,8-trimethyl-2,4-dioxo-6,7-dihydro-5h-phenanthren-3-yl (2e,4s)-2,4-dimethyldec-2-enoate

C29H40O8 (516.2723)


   

(3s)-5-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-(hydroxymethyl)-6-{[(2r)-4-[(1s)-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl]butan-2-yl]oxy}oxan-4-yl]oxy}-3-hydroxy-3-methyl-5-oxopentanoic acid

(3s)-5-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-(hydroxymethyl)-6-{[(2r)-4-[(1s)-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl]butan-2-yl]oxy}oxan-4-yl]oxy}-3-hydroxy-3-methyl-5-oxopentanoic acid

C25H40O11 (516.257)


   

(2z)-3-(4-hydroxyphenyl)-n-[(2r,3s,6s,9r,13s)-4,7,10-trihydroxy-2,9,13-trimethyl-6-(2-methylpropyl)-14-oxo-1-oxa-5,8,11-triazacyclotetradeca-4,7,10-trien-3-yl]prop-2-enimidic acid

(2z)-3-(4-hydroxyphenyl)-n-[(2r,3s,6s,9r,13s)-4,7,10-trihydroxy-2,9,13-trimethyl-6-(2-methylpropyl)-14-oxo-1-oxa-5,8,11-triazacyclotetradeca-4,7,10-trien-3-yl]prop-2-enimidic acid

C26H36N4O7 (516.2584)


   

5-(acetyloxy)-3-hydroxy-2-{[1-hydroxy-3,6,9-trimethyl-4-(2-methylprop-1-en-1-yl)-5,6,6a,7,8,9-hexahydro-4h-phenalen-2-yl]oxy}oxan-4-yl acetate

5-(acetyloxy)-3-hydroxy-2-{[1-hydroxy-3,6,9-trimethyl-4-(2-methylprop-1-en-1-yl)-5,6,6a,7,8,9-hexahydro-4h-phenalen-2-yl]oxy}oxan-4-yl acetate

C29H40O8 (516.2723)


   

(1s,3ar,5ar,7r,8s,9ar,9br,11ar)-1-[(1r)-1-[(2s)-4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,11-dione

(1s,3ar,5ar,7r,8s,9ar,9br,11ar)-1-[(1r)-1-[(2s)-4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,11-dione

C29H40O8 (516.2723)


   

2a,4,5a,11-tetrahydroxy-10a-methoxy-3,3',4',6b,12c-pentamethyl-2,3,4,6,6a,10,11,12,12a,12b-decahydro-1h-spiro[cyclohexa[j]aceanthrylene-5,2'-furan]-5',7-dione

2a,4,5a,11-tetrahydroxy-10a-methoxy-3,3',4',6b,12c-pentamethyl-2,3,4,6,6a,10,11,12,12a,12b-decahydro-1h-spiro[cyclohexa[j]aceanthrylene-5,2'-furan]-5',7-dione

C29H40O8 (516.2723)


   

4-[(3s,5r,9s,10r,12r,14s,15r,18s,19s,22r,23r)-10,22-dihydroxy-9-methoxy-14,18-dimethyl-4,6,11-trioxahexacyclo[12.11.0.0³,¹².0⁵,¹⁰.0¹⁵,²³.0¹⁸,²²]pentacos-1-en-19-yl]-5h-furan-2-one

4-[(3s,5r,9s,10r,12r,14s,15r,18s,19s,22r,23r)-10,22-dihydroxy-9-methoxy-14,18-dimethyl-4,6,11-trioxahexacyclo[12.11.0.0³,¹².0⁵,¹⁰.0¹⁵,²³.0¹⁸,²²]pentacos-1-en-19-yl]-5h-furan-2-one

C29H40O8 (516.2723)


   

(3r,4r,5s,6r)-6-{[(4s,6s,6ar,9s)-1-hydroxy-3,6,9-trimethyl-4-(2-methylprop-1-en-1-yl)-5,6,6a,7,8,9-hexahydro-4h-phenalen-2-yl]oxy}-5-(acetyloxy)-4-hydroxyoxan-3-yl acetate

(3r,4r,5s,6r)-6-{[(4s,6s,6ar,9s)-1-hydroxy-3,6,9-trimethyl-4-(2-methylprop-1-en-1-yl)-5,6,6a,7,8,9-hexahydro-4h-phenalen-2-yl]oxy}-5-(acetyloxy)-4-hydroxyoxan-3-yl acetate

C29H40O8 (516.2723)


   

2-{[(5-hydroxy-3-methylpent-2-enoyl)oxy]methyl}-1,5-dimethyl-12-methylidene-8-oxatricyclo[7.2.1.0²,⁷]dodec-5-en-11-yl 6,7-dihydroxyocta-2,4-dienoate

2-{[(5-hydroxy-3-methylpent-2-enoyl)oxy]methyl}-1,5-dimethyl-12-methylidene-8-oxatricyclo[7.2.1.0²,⁷]dodec-5-en-11-yl 6,7-dihydroxyocta-2,4-dienoate

C29H40O8 (516.2723)


   

(1s,2r,6s,7s,9r,11r,12r,15s,16s)-15-[(1r)-1-[(2r)-4,5-dimethyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-12,15-dihydroxy-6-methoxy-2,16-dimethyl-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadec-4-en-3-one

(1s,2r,6s,7s,9r,11r,12r,15s,16s)-15-[(1r)-1-[(2r)-4,5-dimethyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-12,15-dihydroxy-6-methoxy-2,16-dimethyl-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadec-4-en-3-one

C29H40O8 (516.2723)


   

(3r,4s,5s,6r)-6-{[(4s,6s,6ar,9s)-1-hydroxy-3,6,9-trimethyl-4-(2-methylprop-1-en-1-yl)-5,6,6a,7,8,9-hexahydro-4h-phenalen-2-yl]oxy}-4-(acetyloxy)-5-hydroxyoxan-3-yl acetate

(3r,4s,5s,6r)-6-{[(4s,6s,6ar,9s)-1-hydroxy-3,6,9-trimethyl-4-(2-methylprop-1-en-1-yl)-5,6,6a,7,8,9-hexahydro-4h-phenalen-2-yl]oxy}-4-(acetyloxy)-5-hydroxyoxan-3-yl acetate

C29H40O8 (516.2723)


   

1-[1-(4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl)-1-hydroxyethyl]-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,11-dione

1-[1-(4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl)-1-hydroxyethyl]-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,11-dione

C29H40O8 (516.2723)


   

(2r,3r,4r,5s)-2-{[(4r,6s,6ar,9s)-1-hydroxy-3,6,9-trimethyl-4-(2-methylprop-1-en-1-yl)-5,6,6a,7,8,9-hexahydro-4h-phenalen-2-yl]oxy}-5-(acetyloxy)-3-hydroxyoxan-4-yl acetate

(2r,3r,4r,5s)-2-{[(4r,6s,6ar,9s)-1-hydroxy-3,6,9-trimethyl-4-(2-methylprop-1-en-1-yl)-5,6,6a,7,8,9-hexahydro-4h-phenalen-2-yl]oxy}-5-(acetyloxy)-3-hydroxyoxan-4-yl acetate

C29H40O8 (516.2723)


   

(1s,2r,5s,6s,7r,9r,15r,16s)-15-[(1s)-1-[(2r)-4,5-dimethyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-6,15-dihydroxy-5-methoxy-2,16-dimethyl-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadec-11-en-3-one

(1s,2r,5s,6s,7r,9r,15r,16s)-15-[(1s)-1-[(2r)-4,5-dimethyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-6,15-dihydroxy-5-methoxy-2,16-dimethyl-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadec-11-en-3-one

C29H40O8 (516.2723)


   

3-[(1r,2r,5s,6r,10r,13s,14s)-2-hydroxy-5,10,14-trimethyl-6-[(2s)-2-methyloxiran-2-yl]-3,8-dioxo-14-(3-oxopentyl)-15-oxatetracyclo[8.6.0.0¹,¹³.0⁴,⁹]hexadec-4(9)-en-5-yl]propanoic acid

3-[(1r,2r,5s,6r,10r,13s,14s)-2-hydroxy-5,10,14-trimethyl-6-[(2s)-2-methyloxiran-2-yl]-3,8-dioxo-14-(3-oxopentyl)-15-oxatetracyclo[8.6.0.0¹,¹³.0⁴,⁹]hexadec-4(9)-en-5-yl]propanoic acid

C29H40O8 (516.2723)


   

(4r)-3,5,5-trimethyl-4-[(1e,3r)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one

(4r)-3,5,5-trimethyl-4-[(1e,3r)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one

C25H40O11 (516.257)


   

(2r,4ar,4bs,5s,10ar,12ar)-5-hydroxy-2-(2-hydroxypropan-2-yl)-7-methoxy-4a,10a-dimethyl-8-[(2s,4e)-4-methyl-3-oxohex-4-en-2-yl]-2,3,4,4b,5,11,12,12a-octahydro-1,10-dioxatetraphene-6,9-dione

(2r,4ar,4bs,5s,10ar,12ar)-5-hydroxy-2-(2-hydroxypropan-2-yl)-7-methoxy-4a,10a-dimethyl-8-[(2s,4e)-4-methyl-3-oxohex-4-en-2-yl]-2,3,4,4b,5,11,12,12a-octahydro-1,10-dioxatetraphene-6,9-dione

C29H40O8 (516.2723)


   

(1s,2s,5s,6s,7r,9r,15s,16r)-15-[(1s)-1-[(2r)-4,5-dimethyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-6,15-dihydroxy-5-methoxy-2,16-dimethyl-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadec-11-en-3-one

(1s,2s,5s,6s,7r,9r,15s,16r)-15-[(1s)-1-[(2r)-4,5-dimethyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-6,15-dihydroxy-5-methoxy-2,16-dimethyl-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadec-11-en-3-one

C29H40O8 (516.2723)


   

(4s)-4-hydroxy-3,5,5-trimethyl-4-[(1e,3r)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(1r,2r,3s,4s)-2,3,4-trihydroxycyclohexyl]oxy}methyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one

(4s)-4-hydroxy-3,5,5-trimethyl-4-[(1e,3r)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(1r,2r,3s,4s)-2,3,4-trihydroxycyclohexyl]oxy}methyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one

C25H40O11 (516.257)


   

4-hydroxy-3,5,5-trimethyl-4-{3-[(3,4,5-trihydroxy-6-{[(2,3,4-trihydroxycyclohexyl)oxy]methyl}oxan-2-yl)oxy]but-1-en-1-yl}cyclohex-2-en-1-one

4-hydroxy-3,5,5-trimethyl-4-{3-[(3,4,5-trihydroxy-6-{[(2,3,4-trihydroxycyclohexyl)oxy]methyl}oxan-2-yl)oxy]but-1-en-1-yl}cyclohex-2-en-1-one

C25H40O11 (516.257)


   

3-[2-hydroxy-5,10,14-trimethyl-6-(2-methyloxiran-2-yl)-3,8-dioxo-14-(3-oxopentyl)-15-oxatetracyclo[8.6.0.0¹,¹³.0⁴,⁹]hexadec-4(9)-en-5-yl]propanoic acid

3-[2-hydroxy-5,10,14-trimethyl-6-(2-methyloxiran-2-yl)-3,8-dioxo-14-(3-oxopentyl)-15-oxatetracyclo[8.6.0.0¹,¹³.0⁴,⁹]hexadec-4(9)-en-5-yl]propanoic acid

C29H40O8 (516.2723)


   

3-(4-hydroxyphenyl)-n-[4,7,10-trihydroxy-2,9,13-trimethyl-6-(2-methylpropyl)-14-oxo-1-oxa-5,8,11-triazacyclotetradeca-4,7,10-trien-3-yl]prop-2-enimidic acid

3-(4-hydroxyphenyl)-n-[4,7,10-trihydroxy-2,9,13-trimethyl-6-(2-methylpropyl)-14-oxo-1-oxa-5,8,11-triazacyclotetradeca-4,7,10-trien-3-yl]prop-2-enimidic acid

C26H36N4O7 (516.2584)


   

(4r)-3,5,5-trimethyl-4-[(1e,3r)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one

(4r)-3,5,5-trimethyl-4-[(1e,3r)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one

C25H40O11 (516.257)


   

5-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{[4-(2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)butan-2-yl]oxy}oxan-4-yl]oxy}-3-hydroxy-3-methyl-5-oxopentanoic acid

5-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{[4-(2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)butan-2-yl]oxy}oxan-4-yl]oxy}-3-hydroxy-3-methyl-5-oxopentanoic acid

C25H40O11 (516.257)


   

12-hydroxy-8,21,21-trimethyl-5,19-bis(3-methylbut-2-en-1-yl)-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4(13),5,9,11,15-pentaene-14,18-dione

12-hydroxy-8,21,21-trimethyl-5,19-bis(3-methylbut-2-en-1-yl)-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4(13),5,9,11,15-pentaene-14,18-dione

C32H36O6 (516.2512)


   

(1s,2s,8s,17s,19r)-12-hydroxy-8,21,21-trimethyl-5,19-bis(3-methylbut-2-en-1-yl)-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4(13),5,9,11,15-pentaene-14,18-dione

(1s,2s,8s,17s,19r)-12-hydroxy-8,21,21-trimethyl-5,19-bis(3-methylbut-2-en-1-yl)-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4(13),5,9,11,15-pentaene-14,18-dione

C32H36O6 (516.2512)


   

(2e)-3-(4-hydroxyphenyl)-n-[(2r,3s,6s,9r,13s)-4,7,10-trihydroxy-2,9,13-trimethyl-6-(2-methylpropyl)-14-oxo-1-oxa-5,8,11-triazacyclotetradeca-4,7,10-trien-3-yl]prop-2-enimidic acid

(2e)-3-(4-hydroxyphenyl)-n-[(2r,3s,6s,9r,13s)-4,7,10-trihydroxy-2,9,13-trimethyl-6-(2-methylpropyl)-14-oxo-1-oxa-5,8,11-triazacyclotetradeca-4,7,10-trien-3-yl]prop-2-enimidic acid

C26H36N4O7 (516.2584)