Exact Mass: 495.3824574

Exact Mass Matches: 495.3824574

Found 207 metabolites which its exact mass value is equals to given mass value 495.3824574, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Orlistat

(2S)-2-Formamido-4-methylpentanoic acid [(2S)-1-[(2S,3S)-3-hexyl-4-oxo-2-oxetanyl]tridecan-2-yl] ester

C29H53NO5 (495.3923528)


Orlistat is a drug designed to treat obesity. Its primary function is preventing the absorption of fats from the human diet, thereby reducing caloric intake. Orlistat works by inhibiting pancreatic lipase, an enzyme that breaks down triglycerides in the intestine. Without this enzyme, triglycerides from the diet are prevented from being hydrolyzed into absorbable free fatty acids and are excreted undigested. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AB - Peripherally acting antiobesity products C471 - Enzyme Inhibitor > C29715 - Gastrointestinal Lipase Inhibitor D057847 - Lipid Regulating Agents D019440 - Anti-Obesity Agents D004791 - Enzyme Inhibitors Orlistat (Tetrahydrolipstatin) is a well-known irreversible inhibitor of pancreatic and gastric lipases. Orlistat is also an inhibitor of fatty acid synthase (FASN), is used orally for long-term research of obesity[1].?Anti-atherosclerotic?effect[2].

   
   

LysoPC(16:0/0:0)

(2R)-2-Hydroxy-3-(hexadecanoyloxy)propyl 2-(trimethylazaniumyl)ethyl phosphoric acid

C24H50NO7P (495.33247200000005)


LysoPC(16:0) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(16:0), in particular, consists of one chain of palmitic acid at the C-1 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins. [HMDB] LysoPC(16:0) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(16:0), in particular, consists of one chain of palmitic acid at the C-1 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins.

   

LysoPC(0:0/16:0)

(2-{[(2R)-2-(hexadecanoyloxy)-3-hydroxypropyl phosphono]oxy}ethyl)trimethylazanium

C24H50NO7P (495.33247200000005)


LysoPC(0:0/16:0) is a lysophosphatidylcholine, which is a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2 as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. There is also a phospholipase A1, which is able to cleave the sn-1 ester bond. Lysophosphatidylcholine has pro-inflammatory properties in vitro and it is known to be a pathological component of oxidized lipoproteins (LDL) in plasma and of atherosclerotic lesions. Recently, it has been found to have some functions in cell signalling, and specific receptors (coupled to G proteins) have been identified. It activates the specific phospholipase C that releases diacylglycerols and inositol triphosphate with resultant increases in intracellular Ca2+ and activation of protein kinase C. It also activates the mitogen-activated protein kinase in certain cell types. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) or C-2 (sn-2) position. LysoPC(0:0/16:0), in particular, consists of one chain of palmitic acid at the C-2 position.

   

(13Z,16Z)-3-Hydroxydocosa-13,16-dienoylcarnitine

3-[(3-hydroxydocosa-13,16-dienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C29H53NO5 (495.3923528)


(13Z,16Z)-3-Hydroxydocosa-13,16-dienoylcarnitine is an acylcarnitine. More specifically, it is an (13Z,16Z)-3-hydroxydocosa-13,16-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (13Z,16Z)-3-Hydroxydocosa-13,16-dienoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (13Z,16Z)-3-Hydroxydocosa-13,16-dienoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(14Z)-Tricos-14-enoylcarnitine

3-(tricos-14-enoyloxy)-4-(trimethylazaniumyl)butanoate

C30H57NO4 (495.42873620000006)


(14Z)-Tricos-14-enoylcarnitine is an acylcarnitine. More specifically, it is an (14Z)-tricos-14-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (14Z)-Tricos-14-enoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (14Z)-Tricos-14-enoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(18Z)-Tricos-18-enoylcarnitine

3-(tricos-18-enoyloxy)-4-(trimethylazaniumyl)butanoate

C30H57NO4 (495.42873620000006)


(18Z)-Tricos-18-enoylcarnitine is an acylcarnitine. More specifically, it is an (18Z)-tricos-18-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (18Z)-Tricos-18-enoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (18Z)-Tricos-18-enoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(17Z)-Tricos-17-enoylcarnitine

3-(tricos-17-enoyloxy)-4-(trimethylazaniumyl)butanoate

C30H57NO4 (495.42873620000006)


(17Z)-Tricos-17-enoylcarnitine is an acylcarnitine. More specifically, it is an (17Z)-tricos-17-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (17Z)-Tricos-17-enoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (17Z)-Tricos-17-enoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(9Z)-Tricos-9-enoylcarnitine

3-(tricos-9-enoyloxy)-4-(trimethylazaniumyl)butanoate

C30H57NO4 (495.42873620000006)


(9Z)-Tricos-9-enoylcarnitine is an acylcarnitine. More specifically, it is an (9Z)-tricos-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (9Z)-Tricos-9-enoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (9Z)-Tricos-9-enoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Nervonoyl Glutamic acid

2-(tetracos-15-enamido)pentanedioic acid

C29H53NO5 (495.3923528)


N-nervonoyl glutamic acid, also known as N-nervonoyl glutamate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Nervonic acid amide of Glutamic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Nervonoyl Glutamic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Nervonoyl Glutamic acid is therefore classified as a very long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

1-Nonadecanoyl-glycero-3-phosphoethanolamine

[3-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] nonadecanoate

C24H50NO7P (495.33247200000005)


   

N(4)-Octadecyl-1-arabinofuranosylcytosine

1-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-(octadecylamino)-1,2-dihydropyrimidin-2-one

C27H49N3O5 (495.36720240000005)


   

1-Palmitoylphosphatidylcholine

(2-{[3-(hexadecanoyloxy)-2-hydroxypropyl phosphonato]oxy}ethyl)trimethylazanium

C24H50NO7P (495.33247200000005)


   

1-O-hexadecyl-2-C-methyl-3-phosphatidylcholine

1-O-hexadecyl-2-C-methyl-3-phosphatidylcholine

C25H54NO6P (495.36885540000003)


Acquisition and generation of the data is financially supported by the Max-Planck-Society

   

cyclo (-Gly-L-Orn-L-Ile-3-amino-10-methyldodecanoyl-)|rhodopeptin C2

cyclo (-Gly-L-Orn-L-Ile-3-amino-10-methyldodecanoyl-)|rhodopeptin C2

C26H49N5O4 (495.37843540000006)


   

lycoperine A

lycoperine A

C31H49N3O2 (495.3824574)


An alkaloid that consists of piperidine substituted by [1-acetyl-7-methyl-1,2,3,4,6,7,8,8a-octahydroquinolin-5-yl]methyl moieties at positions 2 and 6 respectively. Isolated from Lycopodium hamiltonii, it exhibits acetylcholinesterase inhibitory activity.

   

dysoxyhainanin A

dysoxyhainanin A

C31H45NO4 (495.33484100000004)


A pentacyclic triterpenoid with a rearranged oleanane skeleton isolated from the whole plants of Dysoxylum hainanense. It exhibits antibacterial activity against Gram-positive bacteria.

   

cyclo (-GlyL-Orn-L-Val-3-amino-12-methyltridecanoyl-)|rhodopeptin C3

cyclo (-GlyL-Orn-L-Val-3-amino-12-methyltridecanoyl-)|rhodopeptin C3

C26H49N5O4 (495.37843540000006)


   

1-O-Hexadecyl-2-O-methyl-rac-glycero-3-phosphocholine

1-O-Hexadecyl-2-O-methyl-rac-glycero-3-phosphocholine

C25H54NO6P (495.36885540000003)


   
   

Orlistat

N-formyl-L-leucine-(1S)-1-[[(2S,3S)-3-hexyl-4-oxo-2-oxetanyl]methyl]dodecyl ester

C29H53NO5 (495.3923528)


A carboxylic ester resulting from the formal condensation of the carboxy group of N-formyl-L-leucine with the hydroxy group of (3S,4S)-3-hexyl-4-[(2S)-2-hydroxytridecyl]oxetan-2-one. A pancreatic lipase inhibitor, it is used as an anti-obesity drug. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AB - Peripherally acting antiobesity products C471 - Enzyme Inhibitor > C29715 - Gastrointestinal Lipase Inhibitor D057847 - Lipid Regulating Agents D019440 - Anti-Obesity Agents D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 2362 CONFIDENCE standard compound; INTERNAL_ID 8541 Orlistat (Tetrahydrolipstatin) is a well-known irreversible inhibitor of pancreatic and gastric lipases. Orlistat is also an inhibitor of fatty acid synthase (FASN), is used orally for long-term research of obesity[1].?Anti-atherosclerotic?effect[2].

   

MLS002207022-01!ORLISTAT96829-58-2

MLS002207022-01!ORLISTAT96829-58-2

C29H53NO5 (495.3923528)


   

PC(16:0/0:0)

2-Hydroxy-3-(palmitoyloxy)propyl 2-(trimethylammonio)ethyl phosph ate

C24H50NO7P (495.33247200000005)


CONFIDENCE standard compound; INTERNAL_ID 121 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Lysophosphatidylcholines, egg

(2-{[3-(hexadecanoyloxy)-2-hydroxypropyl phosphonato]oxy}ethyl)trimethylazanium

C24H50NO7P (495.33247200000005)


   

LPC 16:0

3-Palmitoyl-rac-glycerol-1-phosphorylcholine

C24H50NO7P (495.33247200000005)


Annotation level-2

   
   

1-Palmitoyl-sn-glycero-3-phosphocholine

1-Palmitoyl-sn-glycero-3-phosphocholine

C24H50NO7P (495.33247200000005)


   

LysoPhosphatidylcholine_16_0

1-Palmitoyl-sn-glycero-3-phosphocholine

C24H50NO7P (495.33247200000005)


   

1-Palmitoyllysophosphatidylcholine

Choline, phosphate, 1-ester with 2-monopalmitin

C24H50NO7P (495.33247200000005)


   

Platelet-activating factor

3,5,9-Trioxa-4-phosphatricosan-1-aminium, 7-(acetyloxy)-4-hydroxy-N,N,N-trimethyl-, inner salt, 4-oxide, (R)-

C24H50NO7P (495.33247200000005)


   

PC(O-1:0/O-16:0)[U]

3,5,8-Trioxa-4-phosphatetracosan-1-aminium, 4-hydroxy-7-(methoxymethyl)-N,N,N-trimethyl-, inner salt, 4-oxide

C25H54NO6P (495.36885540000003)


   

PC(O-16:0/O-1:0)

3,5,9-Trioxa-4-phosphapentacosan-1-aminium, 4-hydroxy-7-methoxy-N,N,N-trimethyl-, inner salt, 4-oxide, (R)-

C25H54NO6P (495.36885540000003)


   

PC(O-16:0/O-1:0)[S]

3,5,9-Trioxa-4-phosphapentacosan-1-aminium, 4-hydroxy-7-methoxy-N,N,N-trimethyl-, inner salt, 4-oxide, (S)-

C25H54NO6P (495.36885540000003)


   

ET 16OME

3,5,9-Trioxa-4-phosphapentacosan-1-aminium, 4-hydroxy-7-methoxy-N,N,N-trimethyl-, inner salt, 4-oxide, (1)-

C25H54NO6P (495.36885540000003)


   

16:0 LYSO-PC

3,5,9-Trioxa-4-phosphapentacosan-1-aminium, 4,7-dihydroxy-N,N,N-trimethyl-10-oxo-, inner salt, 4-oxide

C24H50NO7P (495.33247200000005)


   

PC(16:0/0:0)[S]

Palmitin, 1-mono-, 3-(dihydrogen phosphate), monoester with choline hydroxide, inner salt, D-

C24H50NO7P (495.33247200000005)


   

PC(16:0/0:0)[U]

3,5,8-Trioxa-4-phosphatetracosan-1-aminium, 4-hydroxy-7-(hydroxymethyl)-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide

C24H50NO7P (495.33247200000005)


   

PC(0:0/16:0)

3,5,8-Trioxa-4-phosphatetracosan-1-aminium, 4-hydroxy-7-(hydroxymethyl)-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)-

C24H50NO7P (495.33247200000005)


   

Palmi

Choline, hydroxide, dihydrogen phosphate, inner salt, 3-ester with 1-monopalmitin, L-

C24H50NO7P (495.33247200000005)


   

PC(O-17:0/0:0)

3,5,9-Trioxa-4-phosphahexacosan-1-aminium, 4,7-dihydroxy-N,N,N-trimethyl-, inner salt, 4-oxide, (R)-

C25H54NO6P (495.36885540000003)


   

2-O-methyl PAF C-16

1-O-hexadecyl-2-O-methyl-sn-glyceryl-3-phosphorylcholine

C25H54NO6P (495.36885540000003)


   

LPC(16:0)

1-Palmitoyl-glycero-3-phosphocholine

C24H50NO7P (495.33247200000005)


   

PE(19:0/0:0)

1-nonadecanoyl-glycero-3-phosphoethanolamine

C24H50NO7P (495.33247200000005)


   

PE(O-20:0/0:0)

1-eicosyl-glycero-3-phosphoethanolamine

C25H54NO6P (495.36885540000003)


   

PC O-16:0

1-tetradecyl-2-acetyl-sn-glycero-3-phosphocholine

C24H50NO7P (495.33247200000005)


   

LPC O-17:0

1-(15-methyl-)hexadecyl-sn-glycero-3-phosphocholine

C25H54NO6P (495.36885540000003)


   

LPE 19:0

1-nonadecanoyl-glycero-3-phosphoethanolamine

C24H50NO7P (495.33247200000005)


   

LPE O-20:0

1-eicosyl-glycero-3-phosphoethanolamine

C25H54NO6P (495.36885540000003)


   

LPE O-19:1;O

1-(2-methoxy-6Z-octadecenyl)-sn-glycero-3-phosphoethanolamine

C24H50NO7P (495.33247200000005)


   

Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride

Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride

C26H58ClNO3Si (495.3874268)


   
   

[14C]-Orlistat

(S,S,R,R)-Orlistat

C29H53NO5 (495.3923528)


   

buta-1,3-diene,2-ethylhexyl prop-2-enoate,methyl 2-methylprop-2-enoate,prop-2-enenitrile,styrene

buta-1,3-diene,2-ethylhexyl prop-2-enoate,methyl 2-methylprop-2-enoate,prop-2-enenitrile,styrene

C31H45NO4 (495.33484100000004)


   

N-Formyl-L-leucine (3S,4R,6S)-3-Hexyl-3,4,5,6-tetrahydro-2-oxo-6-undecyl-2H-pyran-4-yl Ester

N-Formyl-L-leucine (3S,4R,6S)-3-Hexyl-3,4,5,6-tetrahydro-2-oxo-6-undecyl-2H-pyran-4-yl Ester

C29H53NO5 (495.3923528)


   

(3-Hexadecoxy-2-hydroxy-2-methylpropyl) 2-(trimethylazaniumyl)ethyl phosphate

(3-Hexadecoxy-2-hydroxy-2-methylpropyl) 2-(trimethylazaniumyl)ethyl phosphate

C25H54NO6P (495.36885540000003)


   

N-(2-hydroxydodecanoyl)-sphinga-4,8-dienine

N-(2-hydroxydodecanoyl)-sphinga-4,8-dienine

C30H57NO4 (495.42873620000006)


   

N-Nervonoyl Glutamic acid

N-Nervonoyl Glutamic acid

C29H53NO5 (495.3923528)


   
   
   
   
   

(13Z,16Z)-3-Hydroxydocosa-13,16-dienoylcarnitine

(13Z,16Z)-3-Hydroxydocosa-13,16-dienoylcarnitine

C29H53NO5 (495.3923528)


   

N-hexanoylphytosphingosine 1-phosphate

N-hexanoylphytosphingosine 1-phosphate

C24H50NO7P (495.33247200000005)


   

(16Z,19Z,22Z,25Z,28Z,31Z)-tetratriacontahexaenoate

(16Z,19Z,22Z,25Z,28Z,31Z)-tetratriacontahexaenoate

C34H55O2- (495.42018299999995)


A polyunsaturated fatty acid anion that is the conjugate base of (16Z,19Z,22Z,25Z,28Z,31Z)-tetratriacontahexaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(2-Octanoyloxy-3-octoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(2-Octanoyloxy-3-octoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C24H50NO7P (495.33247200000005)


   

[(2S)-2-hexadecanoyloxy-3-hydroxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-hexadecanoyloxy-3-hydroxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C24H50NO7P (495.33247200000005)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] propanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] propanoate

C24H50NO7P (495.33247200000005)


   

1-o-Heptadecyl-2-hydroxy-sn-glycero-3-phosphocholine

1-o-Heptadecyl-2-hydroxy-sn-glycero-3-phosphocholine

C25H54NO6P (495.36885540000003)


   
   
   
   
   
   
   
   
   
   
   

2-Aminoethyl (2-hydroxy-3-icosoxypropyl) hydrogen phosphate

2-Aminoethyl (2-hydroxy-3-icosoxypropyl) hydrogen phosphate

C25H54NO6P (495.36885540000003)


   

(3Z,6Z,9Z,12Z,15Z)-N-[(4E,8E,12E)-1,3-dihydroxytetradeca-4,8,12-trien-2-yl]octadeca-3,6,9,12,15-pentaenamide

(3Z,6Z,9Z,12Z,15Z)-N-[(4E,8E,12E)-1,3-dihydroxytetradeca-4,8,12-trien-2-yl]octadeca-3,6,9,12,15-pentaenamide

C32H49NO3 (495.3712244000001)


   

(2-Heptanoyloxy-3-nonoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(2-Heptanoyloxy-3-nonoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C24H50NO7P (495.33247200000005)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] octanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] octanoate

C24H50NO7P (495.33247200000005)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-nonoxypropan-2-yl] decanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-nonoxypropan-2-yl] decanoate

C24H50NO7P (495.33247200000005)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] hexanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] hexanoate

C24H50NO7P (495.33247200000005)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] nonanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] nonanoate

C24H50NO7P (495.33247200000005)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] heptanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] heptanoate

C24H50NO7P (495.33247200000005)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] undecanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] undecanoate

C24H50NO7P (495.33247200000005)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] acetate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] acetate

C24H50NO7P (495.33247200000005)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] butanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] butanoate

C24H50NO7P (495.33247200000005)


   

(3-Decoxy-2-hexanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(3-Decoxy-2-hexanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C24H50NO7P (495.33247200000005)


   

(2-Butanoyloxy-3-dodecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(2-Butanoyloxy-3-dodecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C24H50NO7P (495.33247200000005)


   

(2-Propanoyloxy-3-tridecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(2-Propanoyloxy-3-tridecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C24H50NO7P (495.33247200000005)


   

(2-Pentanoyloxy-3-undecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(2-Pentanoyloxy-3-undecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C24H50NO7P (495.33247200000005)


   

Cer 13:1;3O/16:2;(2OH)

Cer 13:1;3O/16:2;(2OH)

C29H53NO5 (495.3923528)


   
   
   
   

(2-Acetyloxy-3-tetradecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(2-Acetyloxy-3-tetradecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C24H50NO7P (495.33247200000005)


   

N-[(8E,12E)-1,3,4-trihydroxypentadeca-8,12-dien-2-yl]pentadecanamide

N-[(8E,12E)-1,3,4-trihydroxypentadeca-8,12-dien-2-yl]pentadecanamide

C30H57NO4 (495.42873620000006)


   

(Z)-N-[(E)-1,3,4-trihydroxyoctadec-8-en-2-yl]dodec-5-enamide

(Z)-N-[(E)-1,3,4-trihydroxyoctadec-8-en-2-yl]dodec-5-enamide

C30H57NO4 (495.42873620000006)


   

N-[(8E,12E)-1,3,4-trihydroxyheptadeca-8,12-dien-2-yl]tridecanamide

N-[(8E,12E)-1,3,4-trihydroxyheptadeca-8,12-dien-2-yl]tridecanamide

C30H57NO4 (495.42873620000006)


   

(Z)-N-[(E)-1,3,4-trihydroxytetradec-8-en-2-yl]hexadec-7-enamide

(Z)-N-[(E)-1,3,4-trihydroxytetradec-8-en-2-yl]hexadec-7-enamide

C30H57NO4 (495.42873620000006)


   

(Z)-N-[(E)-1,3,4-trihydroxypentadec-8-en-2-yl]pentadec-9-enamide

(Z)-N-[(E)-1,3,4-trihydroxypentadec-8-en-2-yl]pentadec-9-enamide

C30H57NO4 (495.42873620000006)


   

(Z)-N-[(E)-1,3,4-trihydroxyheptadec-8-en-2-yl]tridec-8-enamide

(Z)-N-[(E)-1,3,4-trihydroxyheptadec-8-en-2-yl]tridec-8-enamide

C30H57NO4 (495.42873620000006)


   

(4Z,7Z)-N-(1,3,4-trihydroxytetradecan-2-yl)hexadeca-4,7-dienamide

(4Z,7Z)-N-(1,3,4-trihydroxytetradecan-2-yl)hexadeca-4,7-dienamide

C30H57NO4 (495.42873620000006)


   

N-[(8E,12E)-1,3,4-trihydroxyhexadeca-8,12-dien-2-yl]tetradecanamide

N-[(8E,12E)-1,3,4-trihydroxyhexadeca-8,12-dien-2-yl]tetradecanamide

C30H57NO4 (495.42873620000006)


   

N-[(8E,12E)-1,3,4-trihydroxyoctadeca-8,12-dien-2-yl]dodecanamide

N-[(8E,12E)-1,3,4-trihydroxyoctadeca-8,12-dien-2-yl]dodecanamide

C30H57NO4 (495.42873620000006)


   

N-[(8E,12E)-1,3,4-trihydroxytetradeca-8,12-dien-2-yl]hexadecanamide

N-[(8E,12E)-1,3,4-trihydroxytetradeca-8,12-dien-2-yl]hexadecanamide

C30H57NO4 (495.42873620000006)


   

(Z)-N-[(E)-1,3,4-trihydroxyhexadec-8-en-2-yl]tetradec-9-enamide

(Z)-N-[(E)-1,3,4-trihydroxyhexadec-8-en-2-yl]tetradec-9-enamide

C30H57NO4 (495.42873620000006)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] pentanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] pentanoate

C24H50NO7P (495.33247200000005)


   
   
   
   
   
   
   

Cer 17:2;3O/12:1;(2OH)

Cer 17:2;3O/12:1;(2OH)

C29H53NO5 (495.3923528)


   
   
   

Cer 14:2;3O/15:1;(2OH)

Cer 14:2;3O/15:1;(2OH)

C29H53NO5 (495.3923528)


   
   
   
   
   
   

Cer 16:2;3O/13:1;(2OH)

Cer 16:2;3O/13:1;(2OH)

C29H53NO5 (495.3923528)


   

Cer 15:2;3O/14:1;(2OH)

Cer 15:2;3O/14:1;(2OH)

C29H53NO5 (495.3923528)


   
   
   
   
   
   
   
   
   

2-[Hydroxy-[3-hydroxy-2-(nonanoylamino)decoxy]phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-[3-hydroxy-2-(nonanoylamino)decoxy]phosphoryl]oxyethyl-trimethylazanium

C24H52N2O6P+ (495.3562802)


   

2-[Hydroxy-[3-hydroxy-2-(propanoylamino)hexadecoxy]phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-[3-hydroxy-2-(propanoylamino)hexadecoxy]phosphoryl]oxyethyl-trimethylazanium

C24H52N2O6P+ (495.3562802)


   

2-[(2-Acetamido-3-hydroxyheptadecoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Acetamido-3-hydroxyheptadecoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C24H52N2O6P+ (495.3562802)


   

2-[Hydroxy-[3-hydroxy-2-(octanoylamino)undecoxy]phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-[3-hydroxy-2-(octanoylamino)undecoxy]phosphoryl]oxyethyl-trimethylazanium

C24H52N2O6P+ (495.3562802)


   

2-[[2-(Hexanoylamino)-3-hydroxytridecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-(Hexanoylamino)-3-hydroxytridecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C24H52N2O6P+ (495.3562802)


   

2-[[2-(Butanoylamino)-3-hydroxypentadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-(Butanoylamino)-3-hydroxypentadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C24H52N2O6P+ (495.3562802)


   

2-[Hydroxy-[3-hydroxy-2-(pentanoylamino)tetradecoxy]phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-[3-hydroxy-2-(pentanoylamino)tetradecoxy]phosphoryl]oxyethyl-trimethylazanium

C24H52N2O6P+ (495.3562802)


   

2-[[2-(Heptanoylamino)-3-hydroxydodecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-(Heptanoylamino)-3-hydroxydodecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C24H52N2O6P+ (495.3562802)


   

2-[Hydroxy-[3-hydroxy-2-(undecanoylamino)octoxy]phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-[3-hydroxy-2-(undecanoylamino)octoxy]phosphoryl]oxyethyl-trimethylazanium

C24H52N2O6P+ (495.3562802)


   

2-[[2-(Decanoylamino)-3-hydroxynonoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-(Decanoylamino)-3-hydroxynonoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C24H52N2O6P+ (495.3562802)


   

2-Palmitoyl-sn-glycero-3-phosphocholine

2-Palmitoyl-sn-glycero-3-phosphocholine

C24H50NO7P (495.33247200000005)


A lysophosphatidylcholine 16:0 in which the acyl group is specified as palmitoyl (hexadecanoyl) and is located at position 2.

   

1-tetradecyl-2-acetyl-sn-glycero-3-phosphocholine

1-tetradecyl-2-acetyl-sn-glycero-3-phosphocholine

C24H50NO7P (495.33247200000005)


A 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine in which the alkyl group is specified as tetradecyl.

   

1-heptadecyl-sn-glycero-3-phosphocholine

1-heptadecyl-sn-glycero-3-phosphocholine

C25H54NO6P (495.36885540000003)


   

1-eicosyl-glycero-3-phosphoethanolamine

1-eicosyl-glycero-3-phosphoethanolamine

C25H54NO6P (495.36885540000003)


   

1-nonadecanoyl-glycero-3-phosphoethanolamine

1-nonadecanoyl-glycero-3-phosphoethanolamine

C24H50NO7P (495.33247200000005)


   

1-(2-methoxy-6Z-octadecenyl)-sn-glycero-3-phosphoethanolamine

1-(2-methoxy-6Z-octadecenyl)-sn-glycero-3-phosphoethanolamine

C24H50NO7P (495.33247200000005)


   

lysophosphatidylcholine 16:0

lysophosphatidylcholine 16:0

C24H50NO7P (495.33247200000005)


A lysophosphatidylcholine in which the acyl group has a fully saturated C16 chain and is attached to the glycero moiety at either position 1 or 2.

   

tetratriacontahexaenoate

tetratriacontahexaenoate

C34H55O2 (495.42018299999995)


A polyunsaturated fatty acid anion that is the conjugate base of tetratriacontahexaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

Lysophosphatidylcholine(0:0/16:0)

Lysophosphatidylcholine(0:0/16:0)

C24H50NO7P (495.33247200000005)


A 2-acyl-sn-glycero-3-phosphocholine in which the 2-acyl group contains 16 carbons and is fully saturated.

   

1-hexadecanoyl-sn-glycero-3-phosphocholine

1-hexadecanoyl-sn-glycero-3-phosphocholine

C24H50NO7P (495.33247200000005)


A lysophosphatidylcholine 16:0 in which a hexadecanoyl (palmitoyl) group is attached to the glycero moiety at position 1.

   

LdMePE(17:0)

LdMePE(17:0)

C24H50NO7P (495.33247200000005)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

LdMePE(18:0)

LdMePE(18:0(1))

C25H54NO6P (495.36885540000003)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PE(19:0)

PE(8:0(1)_11:0)

C24H50NO7P (495.33247200000005)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

AcCa(23:1)

AcCa(23:1)

C30H57NO4 (495.42873620000006)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

6-(3-aminopropyl)-13-(7-methylnonyl)-3-(sec-butyl)-1,4,7,10-tetraazacyclotrideca-1,4,7,10-tetraene-2,5,8,11-tetrol

6-(3-aminopropyl)-13-(7-methylnonyl)-3-(sec-butyl)-1,4,7,10-tetraazacyclotrideca-1,4,7,10-tetraene-2,5,8,11-tetrol

C26H49N5O4 (495.37843540000006)


   

(2-{[(2r)-3-(hexadecanoyloxy)-2-hydroxypropyl phosphonato]oxy}ethyl)trimethylazanium

(2-{[(2r)-3-(hexadecanoyloxy)-2-hydroxypropyl phosphonato]oxy}ethyl)trimethylazanium

C24H50NO7P (495.33247200000005)


   

(3s,6s,13r)-6-(3-aminopropyl)-3-isopropyl-13-(9-methyldecyl)-1,4,7,10-tetraazacyclotrideca-1,4,7,10-tetraene-2,5,8,11-tetrol

(3s,6s,13r)-6-(3-aminopropyl)-3-isopropyl-13-(9-methyldecyl)-1,4,7,10-tetraazacyclotrideca-1,4,7,10-tetraene-2,5,8,11-tetrol

C26H49N5O4 (495.37843540000006)


   

(3s,6s)-6-(3-aminopropyl)-13-(7-methylnonyl)-3-(sec-butyl)-1,4,7,10-tetraazacyclotrideca-1,4,7,10-tetraene-2,5,8,11-tetrol

(3s,6s)-6-(3-aminopropyl)-13-(7-methylnonyl)-3-(sec-butyl)-1,4,7,10-tetraazacyclotrideca-1,4,7,10-tetraene-2,5,8,11-tetrol

C26H49N5O4 (495.37843540000006)


   

6-(3-aminopropyl)-3-isopropyl-13-(9-methyldecyl)-1,4,7,10-tetraazacyclotrideca-1,4,7,10-tetraene-2,5,8,11-tetrol

6-(3-aminopropyl)-3-isopropyl-13-(9-methyldecyl)-1,4,7,10-tetraazacyclotrideca-1,4,7,10-tetraene-2,5,8,11-tetrol

C26H49N5O4 (495.37843540000006)


   

(3s,6s)-6-(3-aminopropyl)-3-isopropyl-13-(9-methyldecyl)-1,4,7,10-tetraazacyclotrideca-1,4,7,10-tetraene-2,5,8,11-tetrol

(3s,6s)-6-(3-aminopropyl)-3-isopropyl-13-(9-methyldecyl)-1,4,7,10-tetraazacyclotrideca-1,4,7,10-tetraene-2,5,8,11-tetrol

C26H49N5O4 (495.37843540000006)


   

(3s,6s,13r)-6-(3-aminopropyl)-13-(7-methylnonyl)-3-(sec-butyl)-1,4,7,10-tetraazacyclotrideca-1,4,7,10-tetraene-2,5,8,11-tetrol

(3s,6s,13r)-6-(3-aminopropyl)-13-(7-methylnonyl)-3-(sec-butyl)-1,4,7,10-tetraazacyclotrideca-1,4,7,10-tetraene-2,5,8,11-tetrol

C26H49N5O4 (495.37843540000006)


   

(2-{[(2r)-2-hydroxy-3-[(15-methylhexadecyl)oxy]propyl phosphonato]oxy}ethyl)trimethylazanium

(2-{[(2r)-2-hydroxy-3-[(15-methylhexadecyl)oxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C25H54NO6P (495.36885540000003)


   

(3s,6s,9r)-13-heptyl-5,8,11-trihydroxy-3-isopropyl-6,9-bis(2-methylpropyl)-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-2-one

(3s,6s,9r)-13-heptyl-5,8,11-trihydroxy-3-isopropyl-6,9-bis(2-methylpropyl)-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-2-one

C27H49N3O5 (495.36720240000005)