Exact Mass: 479.3147756000001

Exact Mass Matches: 479.3147756000001

Found 50 metabolites which its exact mass value is equals to given mass value 479.3147756000001, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

(5Z,8Z,10E,12S,14Z)-12-Hydroperoxyicosa-5,8,10,14-tetraenoylcarnitine

3-[(12-hydroperoxyicosa-5,8,10,14-tetraenoyl)oxy]-4-(trimethylazaniumyl)butanoate

C27H45NO6 (479.324671)


(5Z,8Z,10E,12S,14Z)-12-hydroperoxyicosa-5,8,10,14-tetraenoylcarnitine is an acylcarnitine. More specifically, it is an (5Z,8Z,10E,12S,14Z)-12-hydroperoxyicosa-5,8,10,14-tetraenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z,8Z,10E,12S,14Z)-12-hydroperoxyicosa-5,8,10,14-tetraenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5Z,8Z,10E,12S,14Z)-12-hydroperoxyicosa-5,8,10,14-tetraenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(5Z)-7-[(1R,2E)-2-[(3S)-3-hydroxyoctylidene]-3-oxocyclopentyl]hept-5-enoylcarnitine

3-({7-[2-(3-hydroxyoctylidene)-3-oxocyclopentyl]hept-5-enoyl}oxy)-4-(trimethylazaniumyl)butanoate

C27H45NO6 (479.324671)


(5Z)-7-[(1R,2E)-2-[(3S)-3-hydroxyoctylidene]-3-oxocyclopentyl]hept-5-enoylcarnitine is an acylcarnitine. More specifically, it is an (5Z)-7-[(1R,2E)-2-[(3S)-3-hydroxyoctylidene]-3-oxocyclopentyl]hept-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z)-7-[(1R,2E)-2-[(3S)-3-hydroxyoctylidene]-3-oxocyclopentyl]hept-5-enoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5Z)-7-[(1R,2E)-2-[(3S)-3-hydroxyoctylidene]-3-oxocyclopentyl]hept-5-enoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

7-[(1R)-2-[(1E,3S)-3-Hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoylcarnitine

3-({7-[2-(3-hydroxyoct-1-en-1-yl)-5-oxocyclopent-2-en-1-yl]heptanoyl}oxy)-4-(trimethylazaniumyl)butanoate

C27H45NO6 (479.324671)


7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoylcarnitine is an acylcarnitine. More specifically, it is an 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

7-{2-[(1E,3S)-3-Hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoylcarnitine

3-({7-[2-(3-hydroxyoct-1-en-1-yl)-5-oxocyclopent-1-en-1-yl]heptanoyl}oxy)-4-(trimethylazaniumyl)butanoate

C27H45NO6 (479.324671)


7-{2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoylcarnitine is an acylcarnitine. More specifically, it is an 7-{2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-{2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 7-{2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(5Z,8Z,11Z,13E,15S)-15-Hydroperoxyicosa-5,8,11,13-tetraenoylcarnitine

3-[(15-hydroperoxyicosa-5,8,11,13-tetraenoyl)oxy]-4-(trimethylazaniumyl)butanoate

C27H45NO6 (479.324671)


(5Z,8Z,11Z,13E,15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoylcarnitine is an acylcarnitine. More specifically, it is an (5Z,8Z,11Z,13E,15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z,8Z,11Z,13E,15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5Z,8Z,11Z,13E,15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(5Z,8Z)-10-{3-[(1E,3S)-3-Hydroxyoct-1-en-1-yl]oxiran-2-yl}deca-5,8-dienoylcarnitine

3-({10-[3-(3-hydroxyoct-1-en-1-yl)oxiran-2-yl]deca-5,8-dienoyl}oxy)-4-(trimethylazaniumyl)butanoate

C27H45NO6 (479.324671)


(5Z,8Z)-10-{3-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxiran-2-yl}deca-5,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an (5Z,8Z)-10-{3-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxiran-2-yl}deca-5,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z,8Z)-10-{3-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxiran-2-yl}deca-5,8-dienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5Z,8Z)-10-{3-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxiran-2-yl}deca-5,8-dienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Cholylalanine

2-[(1-Hydroxy-4-{5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0,.0,]heptadecan-14-yl}pentylidene)amino]propanoate

C27H45NO6 (479.324671)


Cholylalanine belongs to a class of molecules known as bile acid-amino acid conjugates. These are bile acid conjugates that consist of a primary bile acid such as cholic acid, doxycholic acid and chenodeoxycholic acid, conjugated to an amino acid. Cholylalanine consists of the bile acid cholic acid conjugated to the amino acid Alanine conjugated at the C24 acyl site.Bile acids play an important role in regulating various physiological systems, such as fat digestion, cholesterol metabolism, vitamin absorption, liver function, and enterohepatic circulation through their combined signaling, detergent, and antimicrobial mechanisms (PMID: 34127070). Bile acids also act as detergents in the gut and support the absorption of fats through the intestinal membrane. These same properties allow for the disruption of bacterial membranes, thereby allowing them to serve a bacteriocidal or bacteriostatic function. In humans (and other mammals) bile acids are normally conjugated with the amino acids glycine and taurine by the liver. This conjugation catalyzed by two liver enzymes, bile acid CoA ligase (BAL) and bile acid CoA: amino acid N-acyltransferase (BAT). Glycine and taurine bound BAs are also referred to as bile salts due to their decreased pKa and complete ionization resulting in these compounds being present as anions in vivo. Unlike glycine and taurine-conjugated bile acids, these recently discovered bile acids, such as Cholylalanine, are produced by the gut microbiota, making them secondary bile acids (PMID: 32103176) or microbially conjugated bile acids (MCBAs) (PMID: 34127070). Evidence suggests that these bile acid-amino acid conjugates are produced by microbes belonging to Clostridia species (PMID: 32103176). These unusual bile acid-amino acid conjugates are found in higher frequency in patients with inflammatory bowel disease (IBD), cystic fibrosis (CF) and in infants (PMID: 32103176). Cholylalanine appears to act as an agonist for the farnesoid X receptor (FXR) and it can also lead to reduced expression of bile acid synthesis genes (PMID: 32103176). It currently appears that microbially conjugated bile acids (MCBAs) or amino acid-bile acid conjugates are only conjugated to cholic acid, deoxycholic acid and chenodeoxycholic acid (PMID: 34127070). It has been estimated that if microbial conjugation of bile acids is very promiscuous and occurs for all potential oxidized, epimerized, and dehydroxylated states of each hydroxyl group present on cholic acid (C3, C7, C12) in addition to ring orientation, the total number of potential human bile acid conjugates could be over 2800 (PMID: 34127070).

   

Chenodeoxycholylserine

2-[(4-{5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0,.0,]heptadecan-14-yl}-1-hydroxypentylidene)amino]-3-hydroxypropanoate

C27H45NO6 (479.324671)


Chenodeoxycholylserine belongs to a class of molecules known as bile acid-amino acid conjugates. These are bile acid conjugates that consist of a primary bile acid such as cholic acid, doxycholic acid and chenodeoxycholic acid, conjugated to an amino acid. Chenodeoxycholylserine consists of the bile acid chenodeoxycholic acid conjugated to the amino acid Serine conjugated at the C24 acyl site.Bile acids play an important role in regulating various physiological systems, such as fat digestion, cholesterol metabolism, vitamin absorption, liver function, and enterohepatic circulation through their combined signaling, detergent, and antimicrobial mechanisms (PMID: 34127070). Bile acids also act as detergents in the gut and support the absorption of fats through the intestinal membrane. These same properties allow for the disruption of bacterial membranes, thereby allowing them to serve a bacteriocidal or bacteriostatic function. In humans (and other mammals) bile acids are normally conjugated with the amino acids glycine and taurine by the liver. This conjugation catalyzed by two liver enzymes, bile acid CoA ligase (BAL) and bile acid CoA: amino acid N-acyltransferase (BAT). Glycine and taurine bound BAs are also referred to as bile salts due to their decreased pKa and complete ionization resulting in these compounds being present as anions in vivo. Unlike glycine and taurine-conjugated bile acids, these recently discovered bile acids, such as Chenodeoxycholylserine, are produced by the gut microbiota, making them secondary bile acids (PMID: 32103176) or microbially conjugated bile acids (MCBAs) (PMID: 34127070). Evidence suggests that these bile acid-amino acid conjugates are produced by microbes belonging to Clostridia species (PMID: 32103176). These unusual bile acid-amino acid conjugates are found in higher frequency in patients with inflammatory bowel disease (IBD), cystic fibrosis (CF) and in infants (PMID: 32103176). Chenodeoxycholylserine appears to act as an agonist for the farnesoid X receptor (FXR) and it can also lead to reduced expression of bile acid synthesis genes (PMID: 32103176). It currently appears that microbially conjugated bile acids (MCBAs) or amino acid-bile acid conjugates are only conjugated to cholic acid, deoxycholic acid and chenodeoxycholic acid (PMID: 34127070). It has been estimated that if microbial conjugation of bile acids is very promiscuous and occurs for all potential oxidized, epimerized, and dehydroxylated states of each hydroxyl group present on cholic acid (C3, C7, C12) in addition to ring orientation, the total number of potential human bile acid conjugates could be over 2800 (PMID: 34127070).

   

Deoxycholylserine

2-(4-{5,16-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}pentanamido)-3-hydroxypropanoic acid

C27H45NO6 (479.324671)


Deoxycholylserine belongs to a class of molecules known as bile acid-amino acid conjugates. These are bile acid conjugates that consist of a primary bile acid such as cholic acid, doxycholic acid and chenodeoxycholic acid, conjugated to an amino acid. Deoxycholylserine consists of the bile acid deoxycholic acid conjugated to the amino acid Serine conjugated at the C24 acyl site.Bile acids play an important role in regulating various physiological systems, such as fat digestion, cholesterol metabolism, vitamin absorption, liver function, and enterohepatic circulation through their combined signaling, detergent, and antimicrobial mechanisms (PMID: 34127070). Bile acids also act as detergents in the gut and support the absorption of fats through the intestinal membrane. These same properties allow for the disruption of bacterial membranes, thereby allowing them to serve a bacteriocidal or bacteriostatic function. In humans (and other mammals) bile acids are normally conjugated with the amino acids glycine and taurine by the liver. This conjugation catalyzed by two liver enzymes, bile acid CoA ligase (BAL) and bile acid CoA: amino acid N-acyltransferase (BAT). Glycine and taurine bound BAs are also referred to as bile salts due to their decreased pKa and complete ionization resulting in these compounds being present as anions in vivo. Unlike glycine and taurine-conjugated bile acids, these recently discovered bile acids, such as Deoxycholylserine, are produced by the gut microbiota, making them secondary bile acids (PMID: 32103176) or microbially conjugated bile acids (MCBAs) (PMID: 34127070). Evidence suggests that these bile acid-amino acid conjugates are produced by microbes belonging to Clostridia species (PMID: 32103176). These unusual bile acid-amino acid conjugates are found in higher frequency in patients with inflammatory bowel disease (IBD), cystic fibrosis (CF) and in infants (PMID: 32103176). Deoxycholylserine appears to act as an agonist for the farnesoid X receptor (FXR) and it can also lead to reduced expression of bile acid synthesis genes (PMID: 32103176). It currently appears that microbially conjugated bile acids (MCBAs) or amino acid-bile acid conjugates are only conjugated to cholic acid, deoxycholic acid and chenodeoxycholic acid (PMID: 34127070). It has been estimated that if microbial conjugation of bile acids is very promiscuous and occurs for all potential oxidized, epimerized, and dehydroxylated states of each hydroxyl group present on cholic acid (C3, C7, C12) in addition to ring orientation, the total number of potential human bile acid conjugates could be over 2800 (PMID: 34127070).

   

Cholylsarcosine

2-[methyl-[4-(3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl]amino]acetic acid

C27H45NO6 (479.324671)


   
   
   
   
   

Serine conjugated chenodeoxycholic acid

Serine conjugated chenodeoxycholic acid

C27H45NO6 (479.324671)


   

Alanine conjugated cholic acid

Alanine conjugated cholic acid

C27H45NO6 (479.324671)


   
   

Deoxycholylserine

Deoxycholylserine

C27H45NO6 (479.324671)


   

Chenodeoxycholylserine

Chenodeoxycholylserine

C27H45NO6 (479.324671)


   

(5Z,8Z,10E,12S,14Z)-12-Hydroperoxyicosa-5,8,10,14-tetraenoylcarnitine

(5Z,8Z,10E,12S,14Z)-12-Hydroperoxyicosa-5,8,10,14-tetraenoylcarnitine

C27H45NO6 (479.324671)


   

(5Z,8Z,11Z,13E,15S)-15-Hydroperoxyicosa-5,8,11,13-tetraenoylcarnitine

(5Z,8Z,11Z,13E,15S)-15-Hydroperoxyicosa-5,8,11,13-tetraenoylcarnitine

C27H45NO6 (479.324671)


   

(5Z)-7-[(1R,2E)-2-[(3S)-3-hydroxyoctylidene]-3-oxocyclopentyl]hept-5-enoylcarnitine

(5Z)-7-[(1R,2E)-2-[(3S)-3-hydroxyoctylidene]-3-oxocyclopentyl]hept-5-enoylcarnitine

C27H45NO6 (479.324671)


   

7-[(1R)-2-[(1E,3S)-3-Hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoylcarnitine

7-[(1R)-2-[(1E,3S)-3-Hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoylcarnitine

C27H45NO6 (479.324671)


   

7-{2-[(1E,3S)-3-Hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoylcarnitine

7-{2-[(1E,3S)-3-Hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoylcarnitine

C27H45NO6 (479.324671)


   

(5Z,8Z)-10-{3-[(1E,3S)-3-Hydroxyoct-1-en-1-yl]oxiran-2-yl}deca-5,8-dienoylcarnitine

(5Z,8Z)-10-{3-[(1E,3S)-3-Hydroxyoct-1-en-1-yl]oxiran-2-yl}deca-5,8-dienoylcarnitine

C27H45NO6 (479.324671)


   
   
   

(2R,3R)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(4-methylphenyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one

(2R,3R)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(4-methylphenyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one

C29H41N3O3 (479.3147756000001)


   

(2S,3S)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(2-methylphenyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one

(2S,3S)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(2-methylphenyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one

C29H41N3O3 (479.3147756000001)


   

cyclobutyl-[(1S)-1-(cyclopentylmethyl)-1-(hydroxymethyl)-7-methoxy-9-methyl-2-spiro[1,3-dihydropyrido[3,4-b]indole-4,4-piperidine]yl]methanone

cyclobutyl-[(1S)-1-(cyclopentylmethyl)-1-(hydroxymethyl)-7-methoxy-9-methyl-2-spiro[1,3-dihydropyrido[3,4-b]indole-4,4-piperidine]yl]methanone

C29H41N3O3 (479.3147756000001)


   

cyclobutyl-[(1R)-1-(cyclopentylmethyl)-1-(hydroxymethyl)-7-methoxy-9-methyl-2-spiro[1,3-dihydropyrido[3,4-b]indole-4,4-piperidine]yl]methanone

cyclobutyl-[(1R)-1-(cyclopentylmethyl)-1-(hydroxymethyl)-7-methoxy-9-methyl-2-spiro[1,3-dihydropyrido[3,4-b]indole-4,4-piperidine]yl]methanone

C29H41N3O3 (479.3147756000001)


   
   
   
   
   
   
   
   
   
   
   
   
   

methyl (2s)-1-{[(3s,4s,5r)-4-hydroxy-5-methyl-2-oxo-5-[(4e)-pentadec-4-en-1-yl]oxolan-3-yl]methyl}-5-oxopyrrolidine-2-carboxylate

methyl (2s)-1-{[(3s,4s,5r)-4-hydroxy-5-methyl-2-oxo-5-[(4e)-pentadec-4-en-1-yl]oxolan-3-yl]methyl}-5-oxopyrrolidine-2-carboxylate

C27H45NO6 (479.324671)


   

methyl 1-{[4-hydroxy-5-methyl-2-oxo-5-(pentadec-4-en-1-yl)oxolan-3-yl]methyl}-5-oxopyrrolidine-2-carboxylate

methyl 1-{[4-hydroxy-5-methyl-2-oxo-5-(pentadec-4-en-1-yl)oxolan-3-yl]methyl}-5-oxopyrrolidine-2-carboxylate

C27H45NO6 (479.324671)


   

[(10s,13s)-5-[(3r)-3,7-dimethylocta-1,6-dien-3-yl]-11-hydroxy-10-isopropyl-9-methyl-3,9,12-triazatricyclo[6.6.1.0⁴,¹⁵]pentadeca-1,4,6,8(15),11-pentaen-13-yl]methyl acetate

[(10s,13s)-5-[(3r)-3,7-dimethylocta-1,6-dien-3-yl]-11-hydroxy-10-isopropyl-9-methyl-3,9,12-triazatricyclo[6.6.1.0⁴,¹⁵]pentadeca-1,4,6,8(15),11-pentaen-13-yl]methyl acetate

C29H41N3O3 (479.3147756000001)


   

methyl (2s)-1-{[(3r,4s,5r)-4-hydroxy-5-methyl-2-oxo-5-[(4e)-pentadec-4-en-1-yl]oxolan-3-yl]methyl}-5-oxopyrrolidine-2-carboxylate

methyl (2s)-1-{[(3r,4s,5r)-4-hydroxy-5-methyl-2-oxo-5-[(4e)-pentadec-4-en-1-yl]oxolan-3-yl]methyl}-5-oxopyrrolidine-2-carboxylate

C27H45NO6 (479.324671)


   

[5-(3,7-dimethylocta-1,6-dien-3-yl)-11-hydroxy-10-isopropyl-9-methyl-3,9,12-triazatricyclo[6.6.1.0⁴,¹⁵]pentadeca-1,4,6,8(15),11-pentaen-13-yl]methyl acetate

[5-(3,7-dimethylocta-1,6-dien-3-yl)-11-hydroxy-10-isopropyl-9-methyl-3,9,12-triazatricyclo[6.6.1.0⁴,¹⁵]pentadeca-1,4,6,8(15),11-pentaen-13-yl]methyl acetate

C29H41N3O3 (479.3147756000001)


   

methyl (2s)-1-{[(3s,4r,5s)-4-hydroxy-5-methyl-2-oxo-5-[(4e)-pentadec-4-en-1-yl]oxolan-3-yl]methyl}-5-oxopyrrolidine-2-carboxylate

methyl (2s)-1-{[(3s,4r,5s)-4-hydroxy-5-methyl-2-oxo-5-[(4e)-pentadec-4-en-1-yl]oxolan-3-yl]methyl}-5-oxopyrrolidine-2-carboxylate

C27H45NO6 (479.324671)


   

[(10s,13s)-5-[(3s)-3,7-dimethylocta-1,6-dien-3-yl]-11-hydroxy-10-isopropyl-9-methyl-3,9,12-triazatricyclo[6.6.1.0⁴,¹⁵]pentadeca-1,4,6,8(15),11-pentaen-13-yl]methyl acetate

[(10s,13s)-5-[(3s)-3,7-dimethylocta-1,6-dien-3-yl]-11-hydroxy-10-isopropyl-9-methyl-3,9,12-triazatricyclo[6.6.1.0⁴,¹⁵]pentadeca-1,4,6,8(15),11-pentaen-13-yl]methyl acetate

C29H41N3O3 (479.3147756000001)