Exact Mass: 466.3117
Exact Mass Matches: 466.3117
Found 189 metabolites which its exact mass value is equals to given mass value 466.3117
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Cholesterol sulfate
Cholesterol sulfate, or cholest-5-en-3beta-ol sulfate, is an endogenous steroid and the C3beta sulfate ester of cholesterol. It is formed from cholesterol by steroid sulfotransferases (SSTs) such as SULT2B1b (also known as cholesterol sulfotransferase) and is converted back into cholesterol by steroid sulfatase (STS). Accumulation of cholesterol sulfate in the skin is implicated in the pathophysiology of X-linked ichthyosis, a congenital disorder in which STS is non-functional and the body cannot convert cholesterol sulfate back into cholesterol. Cholesterol sulfate is quantitatively the most important known sterol sulfate in human plasma, where it is present in a concentration that overlaps that of the other abundant circulating steroid sulfate, dehydroepiandrosterone (DHEA) sulfate (PMID 12730293). Cholesterol sulfate has a stabilizing function on the membrane, supports platelet adhesion and is involved in signal transduction (PMID 12730293). It plays a role in protecting erythrocytes from osmotic lysis and regulating sperm capacitation. Cholesterol sulfate can regulate the activity of serine proteases, e.g., those involved in blood clotting, fibrinolysis, and epidermal cell adhesion (PMID 12730293). As a result of its ability to regulate the activity of selective protein kinase C isoforms and modulate the specificity of phosphatidylinositol 3-kinase, cholesterol sulfate is involved in signal transduction (PMID 12730293). Cholesterol sulfate functions in keratinocyte differentiation, inducing genes that encode for key components involved in development of the barrier (PMID 12730293). Cholesterol sulfate is a sterol sulfate in human plasma. It is a component of cell membrane and has a regulatory function. It has a stabilizing function on the membrane, supports platelet adhesion and involves in signal transduction. (PMID 12730293) [HMDB] D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents
1-eicosanoyl-glycero-3-phosphate
1-eicosanoyl-glycero-3-phosphate is also known as LPA(20:0/0:0). 1-eicosanoyl-glycero-3-phosphate is considered to be practically insoluble (in water) and acidic. 1-eicosanoyl-glycero-3-phosphate is a glycerophosphate lipid molecule
LysoPA(i-20:0/0:0)
LysoPA(i-20:0/0:0) is a lysophosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. Lysophosphatidic acids can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) or C-2 (sn-2) position. Fatty acids containing 16 and 18 carbons are the most common. LysoPA(i-20:0/0:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position. Lysophosphatidic acid is the simplest possible glycerophospholipid. It is the biosynthetic precursor of phosphatidic acid. Although it is present at very low levels only in animal tissues, it is extremely important biologically, influencing many biochemical processes.
N-Linoleoyl Tryptophan
N-linoleoyl tryptophan belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Linoleic acid amide of Tryptophan. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Linoleoyl Tryptophan is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Linoleoyl Tryptophan is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
Cholesterol phosphate
cholesterol sulfate
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors A steroid sulfate that is cholesterol substituted by a sulfoxy group at position 3. D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents
2,2,6a,6b,9,9,12a-heptamethyl-3,10-dioxo-1,4,5,6,6a,7,8,8a,11,12-decahydropicene-4a-carboxylic acid
Mastigophorene C
23,27-Epoxy-3-oxolanosta-7,23,25(27)-trien-26-oic acid|Pseudolarifuroic acid
8alpha-hydroxylabda-13(16),14-dien-19-yl p-methoxycinnamate
(22Z)-3,4-seco-9betaH-lanosta-4(28),7,22,24-tetraen-26,23-olid-3-oic acid
23-hydroxy-3-oxomariessia-7,14,24-trien-26,23-olide
23-hydroxy-3-oxomariessia-8(9),14,24-trien-26,23-olide
(5R,20R)-23-hydroxy-8(14?13R)-abeo-17,13-friedo-3-oxolanosta-8,14(30),24-triene-26,23-olide|(5R,20R)-23-hydroxyl-8(14?13R)-abeo-17,13-friedo-3-oxolanosta-8,14(30), 24-triene-26,23-olide
(24E,13R)-8(14->13)-abeo-17,13-friedo-lanosta-3,23-dion-8,14(30),24-trien-27-oic acid|neoabiestrine F
23-hydroxy-8(14?13)-abeo-17,13-fried-3-oxolanosta-8,14(15),24-triene-26,23-olide
(3R,28R)-3,28-dihydroxy-1,12,18,29-triacontatetrayne-14,17-dione|14,17-Diketone-1,12,18,29-Triacontatetrayne-3,14,17,28-tetrol
(-)-3,16-dioxolanosta-8,24-dien-21-oic acid|pinicolic acid B
(16R,23S)-3-oxo-16,23-epoxylanosta-7,24-dien-26,23-olide
(24RS)-28,28,28-trifluoro-25-hydroxyvitamin D2 / (24RS)-28,28,28-trifluoro-25-hydroxyergocalciferol
(24RS)-28,28,28-trifluoro-25-hydroxyvitamin D2
cholesteryl sulfate
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents
U-73343
U-73343, works as a protonophore, is an inactive analog of U-73122 and can be used as a negative control. U-73343 dose-dependently inhibits acid secretion irrespective of the stimulant. U-73122 is a phospholipase C (PLC) and 5-LO (5-lipoxygenase) inhibitor with an IC50 of 1-2.1 μM for PLC[1][2].
4-[2-[5-[4-(Diethylamino)phenyl]-4,5-dihydro-1-phenyl-1H-pyrazol-3-yl]vinyl]-N,N-diethylaniline
[10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] hydrogen sulfate
[3-Hydroxy-2-(octanoylamino)nonyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(propanoylamino)tetradecyl] 2-(trimethylazaniumyl)ethyl phosphate
(2-Acetamido-3-hydroxypentadecyl) 2-(trimethylazaniumyl)ethyl phosphate
[2-(Butanoylamino)-3-hydroxytridecyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Heptanoylamino)-3-hydroxydecyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Hexanoylamino)-3-hydroxyundecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(pentanoylamino)dodecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(nonanoylamino)octyl] 2-(trimethylazaniumyl)ethyl phosphate
7-Tert-butyl-7-(2,4,6-triisopropylphenyl)-2,3,5,6-dibenzo-7-silanorbornadiene
[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-hydroxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-hydroxypropoxy]propyl]-trimethylazanium
1-Icosanoyl-sn-glycero-3-phosphate
A 1-acyl-sn-glycerol 3-phosphate in which the 1-acyl substituent is specified as icosanoyl (arachidoyl).
LPEt(18:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved