Exact Mass: 457.2972
Exact Mass Matches: 457.2972
Found 460 metabolites which its exact mass value is equals to given mass value 457.2972
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
10,11-Dihydro-12R-hydroxy-leukotriene E4
10,11-dihydro-12R-hydroxy-leukotriene E4 is a metabolite through lipid oxidation of Leukotriene E4 (LTE4).Leukotriene E4 (LTE4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. Nasal blockage induced by CysLTs is mainly due to dilatation of nasal blood vessels, which can be induced by the nitric oxide produced through CysLT1 receptor activation. LTE4, activate contractile and inflammatory processes via specific interaction with putative seven transmembrane-spanning receptors that couple to G proteins and subsequent intracellular signaling pathways. LTE4 is metabolized from leukotriene C4 in a reaction catalyzed by gamma-glutamyl transpeptidase and a particulate dipeptidase from kidney. (PMID: 12607939, 12432945, 6311078). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 10,11-dihydro-12R-hydroxy-leukotriene E4 is a metabolite through lipid oxidation of Leukotriene E4 (LTE4).Leukotriene E4 (LTE4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. Nasal blockage induced by CysLTs is mainly due to dilatation of nasal blood vessels, which can be induced by the nitric oxide produced through CysLT1 receptor activation. LTE4, activate contractile and inflammatory processes via specific interaction with putative seven transmembrane-spanning receptors that couple to G proteins and subsequent intracellular signaling pathways. LTE4 is metabolized from leukotriene C4 in a reaction catalyzed by gamma-glutamyl transpeptidase and a particulate dipeptidase from kidney. (PMID: 12607939, 12432945, 6311078)
O-(17-Carboxyheptadecanoyl)carnitine
O-(17-Carboxyheptadecanoyl)carnitine is an acylcarnitine. More specifically, it is an octadecanedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. O-(17-Carboxyheptadecanoyl)carnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine O-(17-Carboxyheptadecanoyl)carnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
O‐[(4Z)‐Decenoyl]carnitine
O‚Äê[(4Z)‚Äêdecenoyl]carnitine is an acylcarnitine. More specifically, it is an 3-[(4Z)-dec-4-enoyloxy]-4-(trimethylazaniumyl)butanoate ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. O‚Äê[(4Z)‚Äêdecenoyl]carnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine O‚Äê[(4Z)‚Äêdecenoyl]carnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. In particular O‚Äê[(4Z)‚Äêdecenoyl]carnitine is elevated in the blood or plasma of individuals with overweight (PMID: 30322392). It is also decreased in the blood or plasma of individuals with schizophrenia (PMID: 31161852) and familial mediterranean fever (PMID: 29900937). Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
8-[(2R,3S)-3-(8-Hydroxyoctyl)oxiran-2-yl]octanoylcarnitine
8-[(2R,3S)-3-(8-hydroxyoctyl)oxiran-2-yl]octanoylcarnitine is an acylcarnitine. More specifically, it is an 8-[(2R,3S)-3-(8-hydroxyoctyl)oxiran-2-yl]octanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 8-[(2R,3S)-3-(8-hydroxyoctyl)oxiran-2-yl]octanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 8-[(2R,3S)-3-(8-hydroxyoctyl)oxiran-2-yl]octanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Docosahexaenoyl Glutamic acid
N-docosahexaenoyl glutamic acid belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Docosahexaenoyl amide of Glutamic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Docosahexaenoyl Glutamic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Docosahexaenoyl Glutamic acid is therefore classified as a very long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
CENTCHROMAN
3-[2-(1,1-dimethyl-allyl)-4,5-bis-(3-methyl-but-2-enyl)-indol-3-ylmethylene]-6-methylene-piperazine-2,5-dione|Cryptoechinulin G|Kryptoechinulin
(4E)-3,6-dihydroxy-2-[(2-hydroxydodecanoyl)amino]undec-4-en-1-yl acetate|phlomisamide
(1aR,1bR,2R,3S,3R,3aS,5R,5aS,5bS,6S,7aR,10aS,10bS,10cS)-1a,1b,23a,4,4,5,5,5a,5b,6,7,7a,9,10,10a,10b,10c-octadecahydro-3,5-dihydroxy-3,5a,6,7-tetramethylspiro[8H-benzo[1,2]fluoreno[ 3,4-b]oxirene-8,2(3H)-furo[3,2-b]pyridin]-6(3H)-one
Ala Ile Arg Val
Ala Ile Val Arg
Ala Leu Arg Val
Ala Leu Val Arg
Ala Arg Ile Val
Ala Arg Leu Val
Ala Arg Val Ile
Ala Arg Val Leu
Ala Val Ile Arg
Ala Val Leu Arg
Ala Val Arg Ile
Ala Val Arg Leu
Asp Lys Pro Val
Asp Lys Val Pro
Asp Pro Lys Val
Asp Pro Val Lys
Asp Val Lys Pro
Asp Val Pro Lys
Gly Ile Ile Arg
Gly Ile Leu Arg
Gly Ile Arg Ile
Gly Ile Arg Leu
Gly Leu Ile Arg
Gly Leu Leu Arg
Gly Leu Arg Ile
Gly Leu Arg Leu
Gly Arg Ile Ile
Gly Arg Ile Leu
Gly Arg Leu Ile
Gly Arg Leu Leu
Ile Ala Arg Val
Ile Ala Val Arg
Ile Gly Ile Arg
Ile Gly Leu Arg
Ile Gly Arg Ile
Ile Gly Arg Leu
Ile Ile Gly Arg
Ile Ile Asn Val
Ile Ile Arg Gly
Ile Ile Val Asn
Ile Lys Pro Thr
Ile Lys Thr Pro
Ile Lys Val Val
Ile Leu Gly Arg
Ile Leu Asn Val
Ile Leu Arg Gly
Ile Leu Val Asn
Ile Asn Ile Val
Ile Asn Leu Val
Ile Asn Val Ile
Ile Asn Val Leu
Ile Pro Lys Thr
Ile Pro Gln Thr
Ile Pro Thr Lys
Ile Pro Thr Gln
Ile Gln Pro Thr
Ile Gln Thr Pro
Ile Gln Val Val
Ile Arg Ala Val
Ile Arg Gly Ile
Ile Arg Gly Leu
Ile Arg Ile Gly
Ile Arg Leu Gly
Ile Arg Val Ala
Ile Thr Lys Pro
Ile Thr Pro Lys
Ile Thr Pro Gln
Ile Thr Gln Pro
Ile Val Ala Arg
Ile Val Ile Asn
Ile Val Lys Val
Ile Val Leu Asn
Ile Val Asn Ile
Ile Val Asn Leu
Ile Val Gln Val
Ile Val Arg Ala
Ile Val Val Lys
Ile Val Val Gln
Lys Asp Pro Val
Lys Asp Val Pro
Lys Ile Pro Thr
Lys Ile Thr Pro
Lys Ile Val Val
Lys Leu Pro Thr
Lys Leu Thr Pro
Lys Leu Val Val
Lys Pro Asp Val
Lys Pro Ile Thr
Lys Pro Leu Thr
Lys Pro Thr Ile
Lys Pro Thr Leu
Lys Pro Val Asp
Lys Thr Ile Pro
Lys Thr Leu Pro
Lys Thr Pro Ile
Lys Thr Pro Leu
Lys Val Asp Pro
Lys Val Ile Val
Lys Val Leu Val
Lys Val Pro Asp
Lys Val Val Ile
Lys Val Val Leu
Leu Ala Arg Val
Leu Ala Val Arg
Leu Gly Ile Arg
Leu Gly Leu Arg
Leu Gly Arg Ile
Leu Gly Arg Leu
Leu Ile Gly Arg
Leu Ile Asn Val
Leu Ile Arg Gly
Leu Ile Val Asn
Leu Lys Pro Thr
Leu Lys Thr Pro
Leu Lys Val Val
Leu Leu Gly Arg
Leu Leu Asn Val
Leu Leu Arg Gly
Leu Leu Val Asn
Leu Asn Ile Val
Leu Asn Leu Val
Leu Asn Val Ile
Leu Asn Val Leu
Leu Pro Lys Thr
Leu Pro Gln Thr
Leu Pro Thr Lys
Leu Pro Thr Gln
Leu Gln Pro Thr
Leu Gln Thr Pro
Leu Gln Val Val
Leu Arg Ala Val
Leu Arg Gly Ile
Leu Arg Gly Leu
Leu Arg Ile Gly
Leu Arg Leu Gly
Leu Arg Val Ala
Leu Thr Lys Pro
Leu Thr Pro Lys
Leu Thr Pro Gln
Leu Thr Gln Pro
Leu Val Ala Arg
Leu Val Ile Asn
Leu Val Lys Val
Leu Val Leu Asn
Leu Val Asn Ile
Leu Val Asn Leu
Leu Val Gln Val
Leu Val Arg Ala
Leu Val Val Lys
Leu Val Val Gln
Asn Ile Ile Val
Asn Ile Leu Val
Asn Ile Val Ile
Asn Ile Val Leu
Asn Leu Ile Val
Asn Leu Leu Val
Asn Leu Val Ile
Asn Leu Val Leu
Asn Val Ile Ile
Asn Val Ile Leu
Asn Val Leu Ile
Asn Val Leu Leu
Pro Asp Lys Val
Pro Asp Val Lys
Pro Ile Lys Thr
Pro Ile Gln Thr
Pro Ile Thr Lys
Pro Ile Thr Gln
Pro Lys Asp Val
Pro Lys Ile Thr
Pro Lys Leu Thr
Pro Lys Thr Ile
Pro Lys Thr Leu
Pro Lys Val Asp
Pro Leu Lys Thr
Pro Leu Gln Thr
Pro Leu Thr Lys
Pro Leu Thr Gln
Pro Gln Ile Thr
Pro Gln Leu Thr
Pro Gln Thr Ile
Pro Gln Thr Leu
Pro Arg Ser Val
Pro Arg Val Ser
Pro Ser Arg Val
Pro Ser Val Arg
Pro Thr Ile Lys
Pro Thr Ile Gln
Pro Thr Lys Ile
Pro Thr Lys Leu
Pro Thr Leu Lys
Pro Thr Leu Gln
Pro Thr Gln Ile
Pro Thr Gln Leu
Pro Val Asp Lys
Pro Val Lys Asp
Pro Val Arg Ser
Pro Val Ser Arg
Gln Ile Pro Thr
Gln Ile Thr Pro
Gln Ile Val Val
Gln Leu Pro Thr
Gln Leu Thr Pro
Gln Leu Val Val
Gln Pro Ile Thr
Gln Pro Leu Thr
Gln Pro Thr Ile
Gln Pro Thr Leu
Gln Thr Ile Pro
Gln Thr Leu Pro
Gln Thr Pro Ile
Gln Thr Pro Leu
Gln Val Ile Val
Gln Val Leu Val
Gln Val Val Ile
Gln Val Val Leu
Arg Ala Ile Val
Arg Ala Leu Val
Arg Ala Val Ile
Arg Ala Val Leu
Arg Gly Ile Ile
Arg Gly Ile Leu
Arg Gly Leu Ile
Arg Gly Leu Leu
Arg Ile Ala Val
Arg Ile Gly Ile
Arg Ile Gly Leu
Arg Ile Ile Gly
Arg Ile Leu Gly
Arg Ile Val Ala
Arg Leu Ala Val
Arg Leu Gly Ile
Arg Leu Gly Leu
Arg Leu Ile Gly
Arg Leu Leu Gly
Arg Leu Val Ala
Arg Pro Ser Val
Arg Pro Val Ser
Arg Ser Pro Val
Arg Ser Val Pro
Arg Val Ala Ile
Arg Val Ala Leu
Arg Val Ile Ala
Arg Val Leu Ala
Arg Val Pro Ser
Arg Val Ser Pro
Ser Pro Arg Val
Ser Pro Val Arg
Ser Arg Pro Val
Ser Arg Val Pro
Ser Val Pro Arg
Ser Val Arg Pro
Thr Ile Lys Pro
Thr Ile Pro Lys
Thr Ile Pro Gln
Thr Ile Gln Pro
Thr Lys Ile Pro
Thr Lys Leu Pro
Thr Lys Pro Ile
Thr Lys Pro Leu
Thr Leu Lys Pro
Thr Leu Pro Lys
Thr Leu Pro Gln
Thr Leu Gln Pro
Thr Pro Ile Lys
Thr Pro Ile Gln
Thr Pro Lys Ile
Thr Pro Lys Leu
Thr Pro Leu Lys
Thr Pro Leu Gln
Thr Pro Gln Ile
Thr Pro Gln Leu
Thr Gln Ile Pro
Thr Gln Leu Pro
Thr Gln Pro Ile
Thr Gln Pro Leu
Val Ala Ile Arg
Val Ala Leu Arg
Val Ala Arg Ile
Val Ala Arg Leu
Val Asp Lys Pro
Val Asp Pro Lys
Val Ile Ala Arg
Val Ile Ile Asn
Val Ile Lys Val
Val Ile Leu Asn
Val Ile Asn Ile
Val Ile Asn Leu
Val Ile Gln Val
Val Ile Arg Ala
Val Ile Val Lys
Val Ile Val Gln
Val Lys Asp Pro
Val Lys Ile Val
Val Lys Leu Val
Val Lys Pro Asp
Val Lys Val Ile
Val Lys Val Leu
Val Leu Ala Arg
Val Leu Ile Asn
Val Leu Lys Val
Val Leu Leu Asn
Val Leu Asn Ile
Val Leu Asn Leu
Val Leu Gln Val
Val Leu Arg Ala
Val Leu Val Lys
Val Leu Val Gln
Val Asn Ile Ile
Val Asn Ile Leu
Val Asn Leu Ile
Val Asn Leu Leu
Val Pro Asp Lys
Val Pro Lys Asp
Val Pro Arg Ser
Val Pro Ser Arg
Val Gln Ile Val
Val Gln Leu Val
Val Gln Val Ile
Val Gln Val Leu
Val Arg Ala Ile
Val Arg Ala Leu
Val Arg Ile Ala
Val Arg Leu Ala
Val Arg Pro Ser
Val Arg Ser Pro
Val Ser Pro Arg
Val Ser Arg Pro
Val Val Ile Lys
Val Val Ile Gln
Val Val Lys Ile
Val Val Lys Leu
Val Val Leu Lys
Val Val Leu Gln
Val Val Gln Ile
Val Val Gln Leu
10,11-Dihydro-12R-hydroxy-leukotriene E4
CAR 18:1;O2
decyl hydrogen sulphate, compound with 1,1,1-nitrilotripropan-2-ol
4-Cyano-4-biphenylyl trans-4-(4-pentylcyclohexyl)-1-cyclohexanecarboxylate
N-(1-Cyclohexylethyl)-N-(1-phenylethyl)dodecahydrodibenzo[d,f][1, 3,2]dioxaphosphepin-6-amine
Ormeloxifene
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03X - Other sex hormones and modulators of the genital system > G03XC - Selective estrogen receptor modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist C1892 - Chemopreventive Agent
Nevanimibe hydrochloride
C471 - Enzyme Inhibitor Nevanimibe hydrochloride (PD-132301 hydrochloride) is an orally active and selective acyl-coenzyme A:cholesterol O-acyltransferase 1 (ACAT1) inhibitor with an EC50 of 9 nM. Nevanimibe hydrochloride inhibits ACAT2 with an EC50 of 368 nM. Nevanimibe hydrochloride induces cell apoptosis and has the potential for adrenocortical cancer[1].
7-(4-Benzylpiperazin-1-yl)-3-(3,4-dimethoxyphenyl)-2,5-dimethylpyrazolo[1,5-a]pyrimidine
Octadecanedioic Acid Mono-L-carnitine Ester Chloride
8-[(2R,3S)-3-(8-Hydroxyoctyl)oxiran-2-yl]octanoylcarnitine
2-[[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]amino]pentanedioic acid
3-[3-[(E)-dec-4-enoyl]oxy-4-(trimethylazaniumyl)butanoyl]oxy-4-(trimethylazaniumyl)butanoate
5,12-Dihydroxy-6-cysteinyl-7,9,14-eicosatrienoic acid
4-[4-[[1-(2-Methylbutan-2-yl)-5-tetrazolyl]-(6-quinolinyl)methyl]-1-piperazinyl]phenol
N-[[(8S,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8R,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8R,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8S,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8S,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8R,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8R,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8S,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8S,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8S,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8R,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
N-[[(8R,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methyl-2-phenylacetamide
1-[(1S,3S,4aS,9aR)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-3-cyclopentylurea
1-[(1S,3S,4aR,9aS)-1-(hydroxymethyl)-3-(2-oxo-2-piperidin-1-ylethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b][1]benzofuran-6-yl]-3-cyclopentylurea
1-[(1R,3S,4aR,9aS)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-3-cyclopentylurea
1-[(1R,3R,4aS,9aR)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-3-cyclopentylurea
1-[(1R,3S,4aS,9aR)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-3-cyclopentylurea
(1R)-1-[2-(dimethylamino)-1-oxoethyl]-1-(hydroxymethyl)-7-methoxy-9-methyl-N-propyl-2-spiro[1,3-dihydropyrido[3,4-b]indole-4,3-azetidine]carboxamide
(1S)-1-[2-(dimethylamino)-1-oxoethyl]-1-(hydroxymethyl)-7-methoxy-9-methyl-N-propyl-2-spiro[1,3-dihydropyrido[3,4-b]indole-4,3-azetidine]carboxamide
1-[(1R,3R,4aR,9aS)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-3-cyclopentylurea
1-[(1S,3R,4aS,9aR)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-3-cyclopentylurea
1-[(1S,3R,4aR,9aS)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-3-cyclopentylurea
19-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-3-oxononadecanoate
(18R)-18-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-3-oxononadecanoate
(3E)-3-[[2-(2-methylbut-3-en-2-yl)-5,7-bis(3-methylbut-2-enyl)-1H-indol-3-yl]methylidene]-6-methylidenepiperazine-2,5-dione
2-aminoethyl [2-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] hydrogen phosphate
(4E,8E,12E)-2-(decanoylamino)-3-hydroxytetradeca-4,8,12-triene-1-sulfonic acid
O-(17-carboxyheptadecanoyl)carnitine
An O-acylcarnitine having 17-carboxyheptadecanoyl as the acyl substituent.
N-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl]-L-glutamic acid
An N-(long-chain-fatty-acyl)-L-glutamic acid in which the acyl group is specified as (4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl.
(12R)-hydroxy-10,11-dihydroleukotriene E4
A leukotriene with formula C23H39NO6S that results from the metabilism of leukotriene B4 by human keratinocytes.