Exact Mass: 441.2627
Exact Mass Matches: 441.2627
Found 162 metabolites which its exact mass value is equals to given mass value 441.2627
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Leukotriene E3
Leukotriene E3 is an eicosanoid derived from 8,11,14-Eicosatrienoic acid by the 5-Lipoxygenase-Leukotriene Pathway. The eicosanoids are a diverse family of molecules that have powerful effects on cell function. They are best known as intercellular messengers, having autocrine and paracrine effects following their secretion from the cells that synthesize them. The diversity of possible products that can be synthesized from eicosatrienoic acid is due, in part to the variety of enzymes that can act on it. Studies have placed many, but not all, of these enzymes at or inside the nucleus. In some cases, the nuclear import or export of eicosatrienoic acid-processing enzymes is highly regulated. Furthermore, nuclear receptors that are activated by specific eicosanoids are known to exist. Taken together, these findings indicate that the enzymatic conversion of eicosatrienoic acid to specific signaling molecules can occur in the nucleus, that it is regulated, and that the synthesized products may act within the nucleus. Leukotriene E3 is also a by-product of the metabolism of leukotriene C3. Although they are primarily known for their roles in asthma, pain, fever and vascular responses, present evidence indicates that eicosanoids exert relevant effects on immune/inflammatory, as well as structural, cells pertinent to fibrogenesis. (PMID: 7306127, 8142566, 16574479, 15896193)Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Leukotriene E3 is an eicosanoid derived from 8,11,14-Eicosatrienoic acid by the 5-Lipoxygenase-Leukotriene Pathway. The eicosanoids are a diverse family of molecules that have powerful effects on cell function. They are best known as intercellular messengers, having autocrine and paracrine effects following their secretion from the cells that synthesize them. The diversity of possible products that can be synthesized from eicosatrienoic acid is due, in part to the variety of enzymes that can act on it. Studies have placed many, but not all, of these enzymes at or inside the nucleus. In some cases, the nuclear import or export of eicosatrienoic acid-processing enzymes is highly regulated. Furthermore, nuclear receptors that are activated by specific eicosanoids are known to exist. Taken together, these findings indicate that the enzymatic conversion of eicosatrienoic acid to specific signaling molecules can occur in the nucleus, that it is regulated, and that the synthesized products may act within the nucleus. Leukotriene E3 is also a by-product of the metabolism of leukotriene C3. Although they are primarily known for their roles in asthma, pain, fever and vascular responses, present evidence indicates that eicosanoids exert relevant effects on immune/inflammatory, as well as structural, cells pertinent to fibrogenesis. (PMID: 7306127, 8142566, 16574479, 15896193)
Pentanoic acid, 5-(dipentylamino)-5-oxo-4-((3-quinolinylcarbonyl)amino)-, (R)-
Ala Pro Arg Val
Ala Pro Val Arg
Ala Arg Pro Val
Ala Arg Val Pro
Ala Val Pro Arg
Ala Val Arg Pro
Gly Ile Pro Arg
Gly Ile Arg Pro
Gly Leu Pro Arg
Gly Leu Arg Pro
Gly Pro Ile Arg
Gly Pro Leu Arg
Gly Pro Arg Ile
Gly Pro Arg Leu
Gly Arg Ile Pro
Gly Arg Leu Pro
Gly Arg Pro Ile
Gly Arg Pro Leu
Ile Gly Pro Arg
Ile Gly Arg Pro
Ile Asn Pro Val
Ile Asn Val Pro
Ile Pro Gly Arg
Ile Pro Asn Val
Ile Pro Arg Gly
Ile Pro Val Asn
Ile Arg Gly Pro
Ile Arg Pro Gly
Ile Val Asn Pro
Ile Val Pro Asn
Lys Pro Pro Thr
Lys Pro Thr Pro
Lys Thr Pro Pro
Leu Gly Pro Arg
Leu Gly Arg Pro
Leu Asn Pro Val
Leu Asn Val Pro
Leu Pro Gly Arg
Leu Pro Asn Val
Leu Pro Arg Gly
Leu Pro Val Asn
Leu Arg Gly Pro
Leu Arg Pro Gly
Leu Val Asn Pro
Leu Val Pro Asn
Asn Ile Pro Val
Asn Ile Val Pro
Asn Leu Pro Val
Asn Leu Val Pro
Asn Pro Ile Val
Asn Pro Leu Val
Asn Pro Val Ile
Asn Pro Val Leu
Asn Val Ile Pro
Asn Val Leu Pro
Asn Val Pro Ile
Asn Val Pro Leu
Pro Ala Arg Val
Pro Ala Val Arg
Pro Gly Ile Arg
Pro Gly Leu Arg
Pro Gly Arg Ile
Pro Gly Arg Leu
Pro Ile Gly Arg
Pro Ile Asn Val
Pro Ile Arg Gly
Pro Ile Val Asn
Pro Lys Pro Thr
Pro Lys Thr Pro
Pro Leu Gly Arg
Pro Leu Asn Val
Pro Leu Arg Gly
Pro Leu Val Asn
Pro Asn Ile Val
Pro Asn Leu Val
Pro Asn Val Ile
Pro Asn Val Leu
Pro Pro Lys Thr
Pro Pro Thr Lys
Pro Gln Val Val
Pro Arg Ala Val
Pro Arg Gly Ile
Pro Arg Gly Leu
Pro Arg Ile Gly
Pro Arg Leu Gly
Pro Arg Val Ala
Pro Thr Lys Pro
Pro Thr Pro Lys
Pro Val Ala Arg
Pro Val Ile Asn
Pro Val Leu Asn
Pro Val Asn Ile
Pro Val Asn Leu
Pro Val Gln Val
Pro Val Arg Ala
Pro Val Val Gln
Gln Pro Val Val
Gln Val Pro Val
Gln Val Val Pro
Arg Ala Pro Val
Arg Ala Val Pro
Arg Gly Ile Pro
Arg Gly Leu Pro
Arg Gly Pro Ile
Arg Gly Pro Leu
Arg Ile Gly Pro
Arg Ile Pro Gly
Arg Leu Gly Pro
Arg Leu Pro Gly
Arg Pro Ala Val
Arg Pro Gly Ile
Arg Pro Gly Leu
Arg Pro Ile Gly
Arg Pro Leu Gly
Arg Pro Val Ala
Arg Val Ala Pro
Arg Val Pro Ala
Thr Lys Pro Pro
Thr Pro Lys Pro
Thr Pro Pro Lys
Val Ala Pro Arg
Val Ala Arg Pro
Val Ile Asn Pro
Val Ile Pro Asn
Val Leu Asn Pro
Val Leu Pro Asn
Val Asn Ile Pro
Val Asn Leu Pro
Val Asn Pro Ile
Val Asn Pro Leu
Val Pro Ala Arg
Val Pro Ile Asn
Val Pro Leu Asn
Val Pro Asn Ile
Val Pro Asn Leu
Val Pro Gln Val
Val Pro Arg Ala
Val Pro Val Gln
Val Gln Pro Val
Val Gln Val Pro
Val Arg Ala Pro
Val Arg Pro Ala
Val Val Pro Gln
Val Val Gln Pro
Leukotriene E3
A leukotriene that is leukotriene E4 in which the non-conjugated double bond has been reduced to a single bond.
3-Hydroxy-piperidine-1-carboxylic acid tert-butyl ester
5-Methyl-3-(9-oxo-1,8-diaza-tricyclo[10.6.1.013,18]nonadeca-12(19),13,15,17-tetraen-10-ylcarbamoyl)-hexanoic acid
Lys-Thr-Pro-Pro
A tetrapeptide composed of L-lysine, L-threonine and two L-proline units joined in sequence by peptide linkages.
3alpha,7alpha-Dihydroxy-5beta-cholane-24-sulfonate
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids