Exact Mass: 413.293
Exact Mass Matches: 413.293
Found 351 metabolites which its exact mass value is equals to given mass value 413.293
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Solasodin
Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2286; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2286 Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2]. Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2]. Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2].
Norbuprenorphine
Norbuprenorphine is the primary active metabolite of buprenorphine. Norbuprenorphine acts as a μ-opioid, δ-opioid, and nociceptin receptor full agonist, as well as a κ-opioid receptor partial agonist. Norbuprenorphine crosses the blood-brain-barrier similarly to buprenorphine and likely contributes to its effects. It was observed that Intravenous administration of norbuprenorphine at 1 to 3 mg/kg decreased respiratory rate, whereas buprenorphine had no effect up to 3 mg/kg in rats. (Wikipedia) D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
Solasodine
Solasodine is a poisonous glycoalkaloid chemical compound that occurs in plants of the Solanaceae family. Solasodine is found in many foods, some of which are peppermint, chinese cinnamon, alaska blueberry, and sweet rowanberry. Solasodine is found in eggplant. Solasodine is a poisonous glycoalkaloid chemical compound that occurs in plants of the Solanaceae family Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2]. Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2]. Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2].
5alpha-Tomatidan-3-one
5alpha-Tomatidan-3-one is an alkaloid from roots of a Lycopersicon esculentum/Lycopersicon hirsutum hybri Alkaloid from roots of a Lycopersicon esculentum/Lycopersicon hirsutum hybrid.
3-Hydroxy-9-hexadecenoylcarnitine
3-Hydroxy-9-hexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (9Z)-3-hydroxyhexadec-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxy-9-hexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-hydroxy-9-hexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 3-hydroxy-9-hexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Docosahexaenoyl GABA
N-Docosahexaenoyl GABA is considered to be practically insoluble (in water) and acidic. N-Docosahexaenoyl GABA is a fatty amide lipid molecule
3-Hydroxypalmitoleoylcarnitine
3-Hydroxypalmitoleoylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxypalmitoleoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxypalmitoleoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Hydroxypalmitoleoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 3-Hydroxypalmitoleoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(10Z)-7-Hydroxyhexadecenoylcarnitine
(10Z)-7-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (10Z)-7-hydroxyhexadec-10-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (10Z)-7-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (10Z)-7-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (10Z)-7-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(3Z)-9-Hydroxyhexadecenoylcarnitine
(3Z)-9-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (3Z)-9-hydroxyhexadec-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (3Z)-9-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (3Z)-9-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (3Z)-9-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(6E)-9-Hydroxyhexadecenoylcarnitine
(6E)-9-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (6E)-9-hydroxyhexadec-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6E)-9-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (6E)-9-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (6E)-9-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(10Z)-12-Hydroxyhexadecenoylcarnitine
(10Z)-12-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (10Z)-12-hydroxyhexadec-10-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (10Z)-12-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (10Z)-12-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (10Z)-12-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(9Z)-12-Hydroxyhexadecenoylcarnitine
(9Z)-12-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (9Z)-12-hydroxyhexadec-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (9Z)-12-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (9Z)-12-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (9Z)-12-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E)-4-Hydroxyhexadecenoylcarnitine
(2E)-4-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (2E)-4-hydroxyhexadec-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-4-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (2E)-4-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (2E)-4-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(8Z)-10-Hydroxyhexadecenoylcarnitine
(8Z)-10-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (8Z)-10-hydroxyhexadec-8-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (8Z)-10-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (8Z)-10-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (8Z)-10-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3-Oxohexadecanoylcarnitine
3-Oxohexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 3-oxohexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Oxohexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Oxohexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Stearoyl Glutamic acid
N-stearoyl glutamic acid, also known as N-stearoyl glutamate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Stearic acid amide of Glutamic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Stearoyl Glutamic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Stearoyl Glutamic acid is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
Dihydroetorphine
3-oxocholest-4-en-26-oate
3-oxocholest-4-en-26-oate belongs to bile acids, alcohols and derivatives class of compounds. Those are organic compounds containing an alcohol or acid derivative of cholic acid. 3-oxocholest-4-en-26-oate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 3-oxocholest-4-en-26-oate can be found in a number of food items such as acerola, tamarind, chinese chives, and quince, which makes 3-oxocholest-4-en-26-oate a potential biomarker for the consumption of these food products.
Solasodine
Solasodine is an oxaspiro compound and steroid alkaloid sapogenin with formula C27H43NO2 found in the Solanum (nightshade) family. It is used as a precursor in the synthesis of complex steroidal compounds such as contraceptive pills. It has a role as a plant metabolite, a teratogenic agent, a diuretic, an antifungal agent, a cardiotonic drug, an immunomodulator, an antipyretic, an apoptosis inducer, an antioxidant, an antiinfective agent, an anticonvulsant, a central nervous system depressant and an antispermatogenic agent. It is an azaspiro compound, an oxaspiro compound, an alkaloid antibiotic, a hemiaminal ether, a sapogenin and a steroid alkaloid. It is a conjugate base of a solasodine(1+). Purapuridine is a natural product found in Solanum hazenii, Solanum americanum, and other organisms with data available. An oxaspiro compound and steroid alkaloid sapogenin with formula C27H43NO2 found in the Solanum (nightshade) family. It is used as a precursor in the synthesis of complex steroidal compounds such as contraceptive pills. Alkaloid from Solanum melanocerasum (garden huckleberry). alpha-Solanigrine is found in fruits. Origin: Plant; SubCategory_DNP: Steroidal alkaloids, Solanaceous alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.206 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.202 Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2]. Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2]. Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2].
Delavinone
Puqiedinone is a natural product found in Fritillaria thunbergii, Fritillaria hupehensis, and Fritillaria monantha with data available.
Metachromin S
A sesquiterpenoid that is 5-amino-2-hydroxy-3-methyl-1,4-benzoquinone in which one of the hydrogens of the methyl group is replaced by a 2-methyl-4-[(1R,2S)-1,2,3-trimethylcyclohex-3-en-1-yl]but-1-en-1-yl group and one of the hydrogens attached to the nitrogen is replaced by a 3-methylbutyl group. It is isolated from an Okinawan sponge Spongia sp.SS-1037 and exhibits moderate cytotoxicity against L1210 murine leukemia and KB human epidermoid carcinoma cells.
2-(14-Hydroxy-14,15-dimethylhexadecyl)quinoline-4(1H)-one
Eduardine
Ebeiedinone is a natural product found in Fritillaria anhuiensis, Fritillaria cirrhosa, and other organisms with data available. Ebeiedinone, a steroidal alkaloid from Fritillaria species, inhibits the bioactivity of human whole blood cholinesterase (ChE) at the concentration of 0.1 mM, with the inhibitory effects of 69.0\\%[1]. Ebeiedinone, a steroidal alkaloid from Fritillaria species, inhibits the bioactivity of human whole blood cholinesterase (ChE) at the concentration of 0.1 mM, with the inhibitory effects of 69.0\%[1].
(-)-veramitaline|(20S,25S)-22,26-epiminocho-lesta-5,22-diene-3beta,12alpha-diol|(3beta,12alpha,17beta)-17-{1-[(5S)-3,4,5,6-tetrahydro-5-methylpyridin-2-yl]ethyl}androst-5-ene-3,12-diol|veramitaline|vermitaline
(-)-veranigrine|(20S,25S)-iminocholesta-5,22(N)-diene-1beta,3beta-diol|veranigrine
Leptinidin, Delta5-Solanidendiol-(3beta,23beta), 23beta-Hydroxysolanidin
5-(Pentylamino)-2-hydroxy-3-(1,2,4a-trimethyl-5-methylenedecalin-1-ylmethyl)-1,4-benzoquinone
17-phenyl trinor Prostaglandin E2 ethyl amide
Zhebeirine
Zhebeirine is a natural product found in Fritillaria puqiensis, Fritillaria monantha, and Fritillaria unibracteata with data available.
Norbuprenorphine
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids CONFIDENCE standard compound; INTERNAL_ID 1664
Ala Lys Pro Val
Ala Lys Val Pro
Ala Pro Lys Val
Ala Pro Val Lys
Ala Val Lys Pro
Ala Val Pro Lys
Gly Ile Lys Pro
Gly Ile Pro Lys
Gly Lys Ile Pro
Gly Lys Leu Pro
Gly Lys Pro Ile
Gly Lys Pro Leu
Gly Leu Lys Pro
Gly Leu Pro Lys
Gly Pro Ile Lys
Gly Pro Lys Ile
Gly Pro Lys Leu
Gly Pro Leu Lys
Ile Gly Lys Pro
Ile Gly Pro Lys
Ile Lys Gly Pro
Ile Lys Pro Gly
Ile Pro Gly Lys
Ile Pro Lys Gly
Lys Ala Pro Val
Lys Ala Val Pro
Lys Gly Ile Pro
Lys Gly Leu Pro
Lys Gly Pro Ile
Lys Gly Pro Leu
Lys Ile Gly Pro
Lys Ile Pro Gly
Lys Leu Gly Pro
Lys Leu Pro Gly
Lys Pro Ala Val
Lys Pro Gly Ile
Lys Pro Gly Leu
Lys Pro Ile Gly
Lys Pro Leu Gly
Lys Pro Val Ala
Lys Val Ala Pro
Lys Val Pro Ala
Leu Gly Lys Pro
Leu Gly Pro Lys
Leu Lys Gly Pro
Leu Lys Pro Gly
Leu Pro Gly Lys
Leu Pro Lys Gly
Pro Ala Lys Val
Pro Ala Val Lys
Pro Gly Ile Lys
Pro Gly Lys Ile
Pro Gly Lys Leu
Pro Gly Leu Lys
Pro Ile Gly Lys
Pro Ile Lys Gly
Pro Lys Ala Val
Pro Lys Gly Ile
Pro Lys Gly Leu
Pro Lys Ile Gly
Pro Lys Leu Gly
Pro Lys Val Ala
Pro Leu Gly Lys
Pro Leu Lys Gly
Pro Val Ala Lys
Pro Val Lys Ala
Val Ala Lys Pro
Val Ala Pro Lys
Val Lys Ala Pro
Val Lys Pro Ala
Val Pro Ala Lys
Val Pro Lys Ala
5a-Tomatidan-3-one
CAR 16:1;O
(3aR,4R,6S,6aS)-4-(tert-butoxycarbonylamino)-3-(pentan-3-yl)-4,5,6,6a-tetrahydro-3aH-cyclopenta[d]isoxazole-6-carboxylic acid
Dihydroetorphine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
15-Keto Bimatoprost
3-hydroxy-(9Z)-hexadecenoyl-L-carnitine
A O-hydroxyhexadecenoyl-L-carnitine in which the acyl group specified is 3-hydroxy-(9Z)-hexadecenoyl.
N-Cyclooctylglycyl-N-(4-Carbamimidoylbenzyl)-L-Prolinamide
16-(2-Hydroxy-3,3-dimethylbutan-2-yl)-15-methoxy-13-oxa-5-azahexacyclo[13.2.2.12,8.01,6.02,14.012,20]icosa-8(20),9,11-trien-11-ol
3-Hydroxy-10,13-dimethyl-17-[1-(3-methyl-2,3,4,5-tetrahydropyridin-6-yl)ethyl]-1,2,3,4,5,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-6-one
3-oxocholest-4-en-26-oate
3-oxocholest-4-en-26-oate belongs to bile acids, alcohols and derivatives class of compounds. Those are organic compounds containing an alcohol or acid derivative of cholic acid. 3-oxocholest-4-en-26-oate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 3-oxocholest-4-en-26-oate can be found in a number of food items such as acerola, tamarind, chinese chives, and quince, which makes 3-oxocholest-4-en-26-oate a potential biomarker for the consumption of these food products.
(2S,7S,8R,9S,12S,13R)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-piperidine]-16-ol
(1S,2S,4S,6R,7S,8R,9S,13R)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-piperidine]-16-ol
5-Hydroxy-2-(3-methylbutanoyl)-4,4,6-tris(3-methylbut-2-en-1-yl)-3-oxocyclohexa-1,5-dien-1-olate
5-Hydroxy-2-(2-methylbutanoyl)-4,4,6-tris(3-methylbut-2-en-1-yl)-3-oxocyclohexa-1,5-dien-1-olate
(2S,6E)-6-[(3S,8R,9S,10R,13S,14S)-3-hydroxy-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-ylidene]-2-methylheptanoate
(1R,2S,4S,5R,6R,7S,8R,9R,12S,13S,18S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-piperidine]-16-one
(1S,2S,4S,5R,6R,7S,8R,9R,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-piperidine]-16-ol
4-[[(4E,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]butanoic acid
(E)-3,19-dihydroxy-4-oxo-3-[(trimethylazaniumyl)methyl]nonadec-5-enoate
(3S,10R,13S,17R)-3-Hydroxy-10,13-dimethyl-17-[1-(3-methyl-2,3,4,5-tetrahydropyridin-6-yl)ethyl]-1,2,3,4,5,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-6-one
(25S)-Delta(7)-dafachronate
A steroid acid anion that is the conjugate base of (25S)-Delta(7)-dafachronic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
2-Amino-6,7-dimethyl-5-(1-octylpyridin-1-ium-3-carbonyl)-1,6,7,8-tetrahydropteridin-4-one
(1R,9S,10S,11S)-12-(cyclopentylmethyl)-10-(hydroxymethyl)-6-oxo-5-[(E)-prop-1-enyl]-N-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide
(13Z,16Z,19Z,22Z,25Z)-octacosapentaenoate
A polyunsaturated fatty acid anion that is the conjugate base of (13Z,16Z,19Z,22Z,25Z)-octacosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
(10Z,13Z,16Z,19Z,22Z)-octacosapentaenoate
A polyunsaturated fatty acid anion that is the conjugate base of (10Z,13Z,16Z,19Z,22Z)-octacosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
3-(3-Hydroxyhexadec-9-enoyloxy)-4-(trimethylazaniumyl)butanoate
(2E)-17-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]heptadec-2-enoate
3-Farnesyl-2,3,5-trimethyl-6-hydroxy-4-oxocyclohexa-1,5-diene-1-carboxylic acid methyl ester
(1S,9R,10R,11R)-12-(cyclopentylmethyl)-10-(hydroxymethyl)-6-oxo-5-[(E)-prop-1-enyl]-N-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide
(E,16R)-16-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxyheptadec-2-enoate
[(2S,3S)-2-benzhydryl-1-azabicyclo[2.2.2]octan-3-yl]-[(2-methoxyphenyl)methyl]azanium
2-(2-Butyl-5-methyl-1,3,2-dioxaborolan-4-yl)methoxy-N-(2-ethylaminoethyl)-4-quinolinecarboxamide
lupulone(1-)
A beta-bitter acid(1-) that is the conjugate base of lupulone, obtained by deprotonation of the 1-hydroxy group. It is the major microspecies at pH 7.3 (according to Marvin v 6.2.0.).
(25S)-Delta(4)-dafachronate
A steroid acid anion that is the conjugate base of (25S)-Delta(4)-dafachronic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
adlupulone(1-)
A beta-bitter acid(1-) that is the conjugate base of adlupulone, obtained by deprotonation of one of the enolic hydroxy groups. It is the major microspecies at pH 7.3 (according to Marvin v 6.2.0.).
3-hydroxypalmitoleoylcarnitine
An O-acylcarnitine having 3-hydroxypalmitoleoyl as the acyl substituent.
oscr#29(1-)
A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#29, obtained by deprotonation of the carboxy group; major species at pH 7.3.
octacosapentaenoate
A polyunsaturated fatty acid anion that is the conjugate base of octacosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3. Formula is C28H45O2
O-(hydroxyhexadecenoyl)carnitine
An O-acylcarnitine having a hydroxyhexadecenoyl group as the acyl substituent in which the position of the hydroxy group and the double bond is unspecified.
O-hydroxyhexadecenoyl-L-carnitine
An O-acyl-L-carnitine that is L-carnitine having a hydroxyhexadecenoyl group as the acyl substituent in which the position of the hydroxy group and the double bond is unspecified.
CarE(16:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
13-methoxy-3,15-dimethyl-6-(6-methylhepta-3,5-dien-2-yl)-12-azatetracyclo[8.5.1.0³,⁷.0¹³,¹⁶]hexadeca-9,11-diene-11,15-diol
2-(14-hydroxy-14,15-dimethylhexadecyl)-1h-quinolin-4-one
10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁷,²²]tetracos-4-ene-7,18-diol
10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁷,²²]tetracos-4-ene-7,13-diol
2-[(2e,5e,7e,11e)-10-hydroxy-3,7,9,11,13-pentamethyltetradeca-2,5,7,11-tetraen-1-yl]-6-methoxy-3-methylpyridin-4-ol
6-(1-{7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}ethyl)-3-methyl-4,5-dihydro-2h-pyridin-3-ol
(1r,2s,6r,9s,11s,14s,15s,18s,20s,23r,24s)-20-hydroxy-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosan-17-one
2-hydroxy-3-[3-methyl-5-(1,2,3-trimethylcyclohex-3-en-1-yl)pent-2-en-1-yl]-5-[(3-methylbutyl)amino]cyclohexa-2,5-diene-1,4-dione
3-{hydroxy[1,3,6-trimethyl-2-(penta-1,3-dien-1-yl)-4a,5,6,7,8,8a-hexahydro-2h-naphthalen-1-yl]methylidene}-5-(hydroxymethyl)-1-methylpyrrolidine-2,4-dione
methyl (1r,3s,4r,10s,14s,15r,18r,19s)-18-[(acetyloxy)methyl]-14-methyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-7(20)-ene-3-carboxylate
(1r,2s,4s,5'r,6r,7s,8r,9s,12s,13s,18r)-5',7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-16-one
3-imino-4a,6a,9,9,12a,14a-hexamethyl-1h,2h,4h,5h,6h,7h,8h,8ah,10h,11h,12h,13h,14h,14bh-phenanthro[2,1-f]quinazolin-13-ol
(1s,3r,6r,7s,9e,13s,15r,16r)-13-methoxy-3,15-dimethyl-6-[(2s,3z)-6-methylhepta-3,5-dien-2-yl]-12-azatetracyclo[8.5.1.0³,⁷.0¹³,¹⁶]hexadeca-9,11-diene-11,15-diol
12-ethyl-20-hydroxy-5-methyl-19-methylidene-10-oxa-12-azaheptacyclo[16.2.1.0¹,¹⁵.0²,¹³.0⁴,¹⁴.0⁵,¹¹.0⁸,¹⁴]henicosan-17-yl acetate
(1r,6r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacos-2(11)-ene-17,20-diol
(1r,2s,6s,9s,10r,11r,15s,18s,20s,23r,24s)-20-hydroxy-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosan-17-one
(1r,6r,9s,10r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacos-2(11)-ene-17,20-diol
(1r,2s,6r,9s,10s,11s,14s,15s,18s,20s,23r,24s)-20-hydroxy-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosan-17-one
25β-hydroxyverazine
{"Ingredient_id": "HBIN004602","Ingredient_name": "25\u03b2-hydroxyverazine","Alias": "NA","Ingredient_formula": "C27H43NO2","Ingredient_Smile": "CC(C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C)C5=NCC(CC5)(C)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "36153","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
4β-hydroxyverazine
{"Ingredient_id": "HBIN010271","Ingredient_name": "4\u03b2-hydroxyverazine","Alias": "NA","Ingredient_formula": "C27H43NO2","Ingredient_Smile": "CC1CCC(=NC1)C(C)C2CCC3C2(CCC4C3CC=C5C4(CCC(C5O)O)C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "36151","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}